Aufgabe 1 (2 Punkte):

Zeigen oder widerlegen Sie: Für $n \geq 1$ ist die Abbildung $f: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}, (v, w) \mapsto ||v|| \cdot ||w||$ ein hermitesches Skalarprodukt, wobei ||v|| die Norm von v bezüglich des Standardskalarprodukts ist.

Aufgabe 2 (2 Punkte):

Zeigen oder widerlegen Sie: Ist V ein endlich-dimensionaler unitärer Vektorraum und sind $U_1, U_2 \subseteq V$ Untervektorräume mit $U_1 \oplus U_2 = V$, so ist $U_1 = U_2^{\perp}$.

Wenn die Aussage falsch ist, geben Sie insbesondere ein konkretes Gegenbeispiel an und begründen Sie, dass es sich um ein Gegenbeispiel handelt.

Aufgabe 3 (2 Punkte):

Zeigen oder widerlegen Sie: Ist K ein Körper, $n \geq 1$ und sind $A, B \in K^{n \times n}$ Matrizen mit im $A \subseteq \ker B$, so ist ABnilpotent.

Wenn die Aussage falsch ist, geben Sie insbesondere ein konkretes Gegenbeispiel an und begründen Sie, dass es sich um ein Gegenbeispiel handelt.

Aufgabe 4 (2 Punkte):

Zeigen oder widerlegen Sie: Ist K ein Körper, sind V, W endlich-dimensionale K-Vektorräume, sind $f \in \text{End}(V)$, $g \in \operatorname{End}(W)$ gegeben und ist $h \in \operatorname{End}(V \oplus W)$ definiert durch h((v, w)) := (f(v), g(w)), so ist $\lambda \in K$ ein Eigenwert von h genau dann, wenn λ ein Eigenwert von f oder ein Eigenwert von q ist.

Wenn die Aussage falsch ist, geben Sie insbesondere ein konkretes Gegenbeispiel an und begründen Sie, dass es sich um ein Gegenbeispiel handelt.

Aufgabe 5 (2 Punkte):

Zeigen oder widerlegen Sie: Ist $p \in \mathbb{C}[X]$ ein Polynom, $q = p \cdot p \in \mathbb{C}[X]$ sein Quadrat, V ein endlich-dimensionaler \mathbb{C} -Vektorraum und $f \in \mathrm{End}(V)$, so ist $\mathrm{im}(q(f)) = \mathrm{im}(p(f))$.

Wenn die Aussage falsch ist, geben Sie insbesondere ein konkretes Gegenbeispiel an und begründen Sie, dass es sich um ein Gegenbeispiel handelt.

Aufgabe 6 (2 Punkte):

Bestimmen Sie die Jordansche Normalform der Matrix $\begin{pmatrix} 3 & 0 & 0 & 0 & 4 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix} \in \mathbb{C}^{5\times 5}$. Begründen Sie Ihr Ergebnis.

Aufgabe 7 (2 Punkte):

Zeigen oder widerlegen Sie: Ist K ein Körper, sind U, V und W endlich-dimensionale K-Vektorräume und ist $f \in$ $\operatorname{Hom}(U,V)$ eine injektive Abbildung, so ist die Abbildung $\operatorname{Hom}(V,W) \to \operatorname{Hom}(U,W), g \mapsto g \circ f$ surjektiv.

Wenn die Aussage falsch ist, geben Sie insbesondere konkrete U, V, W und f an, die ein Gegenbeispiel bilden und begründen Sie, dass es sich um ein Gegenbeispiel handelt.

Aufgabe 8 (2 Punkte):

Gibt es eine lineare Abbildung $f \in \text{Hom}(\mathbb{R}^2 \otimes \mathbb{R}^3, \mathbb{R}^3)$, die $\binom{1}{1} \otimes v$ auf v abbildet für jedes $v \in \mathbb{R}^3$? Begründen Sie.

Aufgabe 9 (2 Punkte):

Zeigen oder widerlegen Sie: Ist K ein Körper und V ein endlich-dimensionaler K-Vektorraum, so gibt es genau einen Isomorphismus $f: K^2 \otimes V \to V \oplus V$, der $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes v$ auf (v,0) und $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes v$ auf (0,v) abbildet für jedes $v \in V$.

Aufgabe 10 (2 Punkte):

Zeigen oder widerlegen Sie: Sind V und W endlich-dimensionale \mathbb{R} -Vektorräume, so gibt es zu jedem \mathbb{C} -Vektorraum-Homomorphismus $f' \in \text{Hom}(V_{\mathbb{C}}, W_{\mathbb{C}})$ einen \mathbb{R} -Vektorraum-Homomorphismus $f \in \text{Hom}(V, W)$, so dass für alle $v \in V$ gilt: $f'(1 \otimes_{\mathbb{R}} v) = 1 \otimes_{\mathbb{R}} f(v)$.

Wenn die Aussage falsch ist, geben Sie insbesondere ein konkretes Gegenbeispiel an und begründen Sie, dass es sich um ein Gegenbeispiel handelt.