Name und Matr-Nr. (a)	Lineare Algebra II – Blatt 1	1	2	3	4	B^1	Σ
	Abgabe am 27.4.2017 bis 8:30 Uhr					(a)	-
Name und Matr-Nr. (b)						(b)	
Bitte drucken Sie diese Seite aus und verwenden Sie sie als Deckblatt für Ihre Lösungen. Gruppe							

Aufgabe 1 (2 Punkte):

Sei V ein unitärer Vektorraum. Zeigen Sie, dass für beliebige $u, v \in V$ gilt: $||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$.

Aufgabe 2 (4 Punkte):

Sei $V \neq \{0\}$ ein unitärer Vektorraum. Die Dreiecksungleichung (siehe Vorlesung) besagt, dass für $u,v \in V$ gilt: $||u+v|| \leq ||u|| + ||v||$.

- (a) Gibt es linear abhängige Vektoren $u, v \in V$, so dass ||u + v|| < ||u|| + ||v|| gilt?
- (b) Gibt es linear unabhängige Vektoren $u, v \in V$, so dass ||u + v|| = ||u|| + ||v|| gilt?

Geben Sie Beispiele an oder begründen Sie, dass es solche Vektoren nicht gibt.

Hinweis: Der Beweis der Dreiecksungleichung kann nützlich sein.

Aufgabe 3 (6 Punkte):

Sei V der \mathbb{C} -Vektorraum der stetigen Funktionen vom Intervall [0,1] nach \mathbb{C} (mit punktweiser Addition und Skalar-multiplikation).

(a) Zeigen Sie, dass durch

$$\langle f, g \rangle := \int_0^1 f(x) \overline{g(x)} \, dx$$

ein (hermitesches) Skalarprodukt auf V definiert wird.

- (b) Sei $f_1 \in V$ die Funktion, die konstant 1 ist (d. h. $f_1(x) = 1$ für alle $x \in [0,1]$). Geben Sie eine Funktion $f_2 \in V$ an mit $||f_2|| = 1$ und $\langle f_1, f_2 \rangle = 0$.
- (c) Gibt es une ndlich viele Funktionen $f_1, f_2, f_3, \dots \in V$, so dass $||f_i|| = 1$ für alle $i \in \mathbb{N}$ und $\langle f_i, f_j \rangle = 0$ für alle $i, j \in \mathbb{N}$ mit $i \neq j$?

Aufgabe 4 (4 Punkte):

- (a) Sei V ein unitärer Vektorraum und seien $u, v \in V$ Vektoren mit ||u|| = ||v||. Zeigen Sie, dass $\langle u + v, u v \rangle$ rein imaginär ist, d. h. von der Form ib, für $b \in \mathbb{R}$.
- (b) Erklären Sie die folgende Behauptung: Wenn man in (a) annimmt, V sei ein Euklidischer Vektorraum, dann erhält man genau den Satz des Thales. (Finden Sie, falls nötig, selbst heraus, was der Satz des Thales besagt.)

Vorlesungswebseite: http://reh.math.uni-duesseldorf.de/~internet/LAII_SS17/

¹Bonuspunkt: Wenn Sie eine Frage zum Inhalt der Vorlesung gestellt haben und Sie diese samt Antwort (kurz) aufschreiben, bekommen Sie einen Bonuspunkt. Bitte geben Sie auch an, wo (Vorlesung/Tutorium/Übung/Sprechstunde), wem und wann Sie die Frage gestellt haben. Bei Abgabe zu zweit auch: Wer hat die Frage gestellt bzw. wer hat welche der Fragen gestellt.