Düsseldorf

P.D. Dr. C. Bertolin

Ergebnisse für das Extrablatt

Aufgabe 1

Nur die Menge in Aufgabenteil (b) ist ein Vektorraum.

Aufgabe 2

- (a) Die Abbildung f ist \mathbb{R} -linear.
- (b) Eine Basis von ker(f) ist

$$\left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

und eine Basis von im(f) ist

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

Damit ist $\dim_{\mathbb{R}} \ker(f) = 1$ und $\operatorname{rg}(f) = 3$.

(c) Für $1 \le k < l \le n$ sei A(k, l) die Matrix, deren Eintrag an der Stelle (k, l) gleich 1 ist, an der Stelle (l, k) gleich -1 ist und bei der alle weiteren Einträge 0 sind. Dann ist $\{A(k, l); 1 \le k < l \le n\}$ eine Basis von $\ker(f)$.

Für $1 \le k < l \le n$ sei B(k, l) die Matrix, deren Einträge an den Stellen (k, l) und (l, k) gleich 1 ist und bei der alle weiteren Einträge 0 sind.

Für $1 \le m \le n$ sei C(m) die Matrix, deren Eintrag an der Stelle (m, m) gleich 1 ist und bei der alle weiteren Einträge 0 sind.

Dann ist $\{B(k,l); 1 \leq k < l \leq n\} \cup \{C(m); 1 \leq m \leq n\}$ eine Basis von im(f). Damit ist $\dim_{\mathbb{R}} \ker(f) = \frac{n(n-1)}{2}$ und $\operatorname{rg}(f) = \frac{n(n+1)}{2}$.

Aufgabe 3

- (a) $2x^3 + 3x^2 1 = 2p_1(x) + p_2(x) + p_4(x)$
- (b) Z.B. sind $\{p_1(x), p_2(x), p_3(x), p_4(x)\}$ und $\{1, x, x^2, x^3\}$ Basen von der Hülle.

Aufgabe 4

- (a) Z.B. bilden $\{v_1, v_2, v_3, v_4\}$ eine Basis der Hülle.
- (b) Die Basis aus Aufgabenteil (a) kann z.B. durch $e_5 = (0, 0, 0, 0, 1)^t$ zu einer Basis von \mathbb{R}^5 ergänzt werden.
- (c) Die Basen sind $\{v_1, v_2, v_3, v_4\}$, $\{v_1, v_2, v_4, v_5\}$, $\{v_2, v_3, v_4, v_5\}$. Die zusätzlichen Darstellungen sind

$$v_5 = 2v_1 + v_3;$$
 $v_3 = -2v_1 + v_5;$ $v_1 = -\frac{1}{2}v_3 + \frac{1}{2}v_5.$

Aufgabe 5

- (1) Die Matrix ist für $k \neq 0$ invertierbar.
- (2) Über den reellen Zahlen ist A für jedes $k \in (-\frac{1}{4}, \infty) \setminus \{0, 2\}$ diagonalisierbar.

Aufgabe 6

(1) Für k = -1 ist die Lösungsmenge von dem Gleichungssystem

$$\left\{ a \begin{pmatrix} -1\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\-1 \end{pmatrix} ; a \in \mathbb{R} \right\}.$$

Für $k \neq -1$ ist die Lösungsmenge gleich

$$\left\{ \left(\frac{k-1}{2}, 1, \frac{k-1}{2}\right) \right\}.$$

(2) Für jedes $h \notin \{0, -10\}$ und beliebiges $k \in \mathbb{R}$ gibt es genau eine Lösung. Für h = 0 und $k \neq 0$ gibt es keine Lösungen. Für h = -10 und $k \neq 0$ gibt es ebenfalls keine Lösungen.

In allen anderen Fällen, d.h. $(h,k) \in \{(0,0),(-10,0)\}$, gibt es unendlich viele Lösungen.

Aufgabe 8

Seien A, B Mengen und $f: A \to B$ eine Abbildung. Dann ist

$$f(T) = \{ f(x); \ x \in T \} \qquad (T \subset A)$$

und

$$f^{-1}(S) = \{x \in A; \ f(x) \in S\}$$
 $(S \subset B).$

(1) f ist injektiv $\iff f^{-1}(f(T)) = T \quad \forall \ T \subset A$. Beweis.

"\Rightarrow": Sei f injektiv und $T \subset A$. Z.z.: $f^{-1}(f(T)) = T$.

- Sei $x \in f^{-1}(f(T))$, d.h. $f(x) \in f(T)$. Also gibt es $y \in T$ mit f(x) = f(y). Da f injektiv ist, gilt $x = y \in T$. Damit ist $f^{-1}(f(T)) \subset T$ bewiesen.
- Sei $x \in T$. Dann gilt $f(x) \in f(T)$, d.h. $x \in f^{-1}(f(T))$. Also $T \subset f^{-1}(f(T))$. Damit $f^{-1}(f(T)) = T$.

" \Leftarrow ": Sei $f^{-1}(f(T)) = T \ \forall \ T \subset A$ und seien $x, y \in A$ mit f(x) = f(y). Wähle $T = \{y\}$. Dann gilt $x \in f^{-1}(f(\{y\})) = \{y\}$, d.h. x = y. Also ist f injektiv.

(2) f ist surjektiv $\iff f(f^{-1}(S)) = S \quad \forall S \subset B$.. Beweis.

" \Rightarrow ": Sei f surjektiv und $S \subset B$. Z.z.: $f(f^{-1}(S)) = S$.

- Sei $x \in f(f^{-1}(S))$, d.h. es gibt ein $y \in f^{-1}(S)$ mit x = f(y). Wegen $f(y) \in S$ folgt $x \in S$. Damit gilt $f(f^{-1}(S)) \subset S$.
- Sei $x \in S$. Da f surjektiv ist, gibt es ein $a \in A$ mit f(a) = x, d.h. $a \in f^{-1}(\{x\}) \subset f^{-1}(S)$. Somit gilt $x = f(a) \in f(f^{-1}(S))$. Also $S \subset f(f^{-1}(S))$.

"←": Können Sie das selbst beweisen?