WS 2011/12 16.11.2011 Blatt 6

P.D. Dr. C. Bertolin

Übungen zu Lineare Algebra I

- 1. Seien $T_1 = \langle (0, 1, -1), (1, 1, 0) \rangle$ und $T_2 = \langle (1, 2, -1), (0, 0, 1) \rangle$ lineare Unterräume von \mathbb{R}^3 . Ist die Summe $T_1 + T_2$ direkt?
- 2. Untersuchen Sie die folgenden Abbildungen auf Linearität:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (3x+2y,x)$ über \mathbb{R} ;
 - (b) $f: \mathbb{R} \to \mathbb{R}, x \mapsto ax + b \text{ mit } a, b \in \mathbb{R} \text{ über } \mathbb{R};$
 - (c) $f: \mathbb{C} \to \mathbb{C}, z = a + ib \mapsto \overline{z} = a ib$ (die Konjugationsabbildung) über \mathbb{R} und über \mathbb{C} ;
 - (d) $f : Abb(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, g \mapsto g(1)$ über \mathbb{R} .
- 3. Sei $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (2x + y, y + z)$ eine Abbildung. Ist f \mathbb{R} -linear? Finden Sie eine Basis für $\ker(f)$. Berechnen Sie $\dim_{\mathbb{R}} \ker(f)$ und $\operatorname{rg}(f)$.
- 4. Sei $f: V \to V'$ eine K-lineare Abbildung. Seien $\{v_1, v_2, \ldots, v_n\}$ linear unabhängige Vektoren von V. Zeigen Sie, dass $\{f(v_1), f(v_2), \ldots, f(v_n)\}$ linear unabhängige Vektoren von V' sind, falls f injektiv ist.

Abgabe: 25.11.2011, 11:00 Uhr