

Nichtlineare Evolutionsgleichungen

Sommersemester 2017

7. Aufgabenblatt — 08.06.2017 / Abgabe 22.06.2017

Übungsaufgabe 7.1 Sei $\epsilon > 0$ und $x_j := j\epsilon$ für $j \in \mathbb{Z}$. Sei ferner $I_j := (x_j - \epsilon, x_j + \epsilon), j \in \mathbb{Z}$, und $\pi \in C_0^\infty(\mathbb{R}, [0, 1])$ mit supp $\pi \subset (-1, 1)$ und $\pi = 1$ auf [-1/2, 1/2]. Für $j \in \mathbb{Z}$ sei

$$\pi_j(x) := \frac{\pi((x-x_j)/\epsilon)}{\sum_{k \in \mathbb{Z}} \pi((x-x_k)/\epsilon)}, \qquad x \in \mathbb{R}.$$

- (i) Zeigen Sie:
 - (a) π_j ist wohl-definiert, $\pi_j \in C_0^{\infty}(\mathbb{R}, [0, 1])$, und supp $\pi_j \subset I_j$, $j \in \mathbb{Z}$.
 - **(b)** $\sum_{j\in\mathbb{Z}} \pi_j(x) = 1$ für alle $x \in \mathbb{R}$.
 - (c) Zu jedem $k \in \mathbb{N}$ existiert eine Konstante C(k) > 0 mit $\|\pi_i^{(k)}\|_{B(\mathbb{R})} \leqslant C(k)/\epsilon^k$ für alle $j \in \mathbb{Z}$.

Die Familie $\{(\pi_j, I_j)\}_{j \in \mathbb{Z}}$ heißt **glatte** ε -**Zerlegung der Eins auf** \mathbb{R} .

(ii) Sei nun $N:=N(\epsilon):=[1/\epsilon^2]+2\in\mathbb{N}$, wobei $[\cdot]$ die Gaußklammer ist. Ist $\{(\pi_j,I_j)\}_{j\in\mathbb{Z}}$ die glatte ϵ -Zerlegung der Eins aus (i), so definieren wir eine **glatte endliche** ϵ -**Zerlegung der Eins**

$$\{(\Pi_j,J_j)\}_{-N\leqslant j\leqslant N+1}$$

auf $\mathbb R$ durch

$$\Pi_j=\pi_j,\ J_j:=I_j\quad |j|\leqslant N,\qquad \text{bzw}.\qquad \Pi_{N+1}:=\sum_{|k|\geqslant N+1}\pi_k,\ J_{N+1}:=[|x|\geqslant x_N].$$

Zeigen Sie, dass zu jedem $k \in \mathbb{N}$ eine Konstante C(k) > 0 existiert mit $\|\Pi_j^{(k)}\|_{B(\mathbb{R})} \leqslant C(k)/\epsilon^k$ für alle $-N \leqslant j \leqslant N+1$.

(iii) Sei $\{(\pi_i, I_i)\}_{i \in \mathbb{Z}}$ die glatte ϵ -Zerlegung der Eins aus (i) und

$$\chi_j = \pi_{j-1} + \pi_j + \pi_{j+1}, \quad |j| \leqslant N, \qquad \text{bzw.} \qquad \chi_{N+1} \coloneqq \sum_{|k| \geqslant N} \pi_k.$$

Zeigen Sie, dass

- (a) $\chi_j \in C_0^\infty(\mathbb{R},[0,1])$ und $\chi_j=1$ auf supp Π_j , $-N\leqslant j\leqslant N+1$.
- **(b)** $|\sup \chi_j| \leqslant 4\epsilon$ für $|j| \leqslant N$, bzw. $\sup \chi_{N+1} \subset [1/\epsilon \leqslant |x|]$.

Übungsaufgabe 7.2 Sei $\{\Pi_j\}_{-N\leqslant j\leqslant N+1}$ auf $\mathbb R$ eine endliche glatte Zerlegung der Eins und $k\in\mathbb N$. Zeigen Sie, dass

$$\left[u\mapsto\sum_{j=-N}^{N+1}\|\Pi_ju\|_{H^k}\right]:H^k(\mathbb{R},\mathbb{C})\to[0,\infty)$$

eine Norm auf $H^k(\mathbb{R})$ definiert, welche äguivalent ist zu der H^k -Norm.

Übungsaufgabe 7.3 Sei $\eta\geqslant 1$. Für $\overline{\alpha}\in [1/\eta,\eta]$ sei $A_{\overline{\alpha}}\in \mathcal{L}(H^2(\mathbb{R},\mathbb{C}),L_2(\mathbb{R},\mathbb{C}))$ definiert durch

$$A_{\overline{\alpha}}u := \overline{\alpha}u''$$
.

Zeigen Sie, dass

- (a) $[Re \lambda \geqslant 1] \subset \rho(A_{\overline{\alpha}})$
- (b) $2\eta \|(\lambda A_{\overline{\alpha}})u\|_2 \geqslant |\lambda| \|u\|_2 + \|u\|_{H^2} \quad \forall u \in H^2(\mathbb{R}, \mathbb{C}), \operatorname{Re} \lambda \geqslant 1.$

Übungsaufgabe 7.4 Sei $b\in C_0(\mathbb{R})$ und nehme an, dass $\eta\geqslant 1$ existiert mit

$$a := 1 + b \in [1/\eta, \eta].$$

Für $\overline{\alpha} \in [1/\eta, \eta]$ sei $A_{\overline{\alpha}} \in \mathcal{L}(H^2(\mathbb{R}, \mathbb{C}), L_2(\mathbb{R}, \mathbb{C}))$ definiert in Übungsaufgabe 7.3, bzw. sei der Operator $A \in \mathcal{L}(H^2(\mathbb{R}, \mathbb{C}), L_2(\mathbb{R}, \mathbb{C}))$ definiert durch

$$Au := au''$$
.

Wir betrachten den stetigen Weg

$$[\tau\mapsto A(\tau)]:[0,1]\to \mathcal{L}(H^2(\mathbb{R},\mathbb{C}),L_2(\mathbb{R},\mathbb{C})) \qquad \text{mit} \qquad A(\tau)\mathfrak{u}:=\underbrace{((1-\tau)\mathfrak{a}+\tau)}_{:=\mathfrak{a}_\tau}\mathfrak{u}''.$$

Beweisen Sie, dass es zu jedem $\mu>0$ ein $\epsilon>0$, eine endliche ϵ -Zerlegung der Eins $\{(\Pi_j,J_j)\}_{-N\leqslant j\leqslant N+1}$, und ein $K=K(\mu)>0$ existieren derart dass

$$\begin{split} &\|\Pi_j A(\tau) u - A_{\alpha_\tau(x_j)} [\Pi_j u]\|_{L_2} \leqslant \mu \|\Pi_j u\|_{H^2} + K \|u\|_{H^1}, \qquad \forall \, u \in H^2(\mathbb{R},\mathbb{C}), \, |j| \leqslant N, \, \tau \in [0,1], \\ &\|\Pi_{N+1} A(\tau) u - A_1 [\Pi_{N+1} u]\|_{L_2} \leqslant \mu \|\Pi_{N+1} u\|_{H^2} + K \|u\|_{H^1}, \qquad \forall \, u \in H^2(\mathbb{R},\mathbb{C}), \, \tau \in [0,1], \end{split}$$

wobei wir $x_i \in J_i$ beliebig gewählt haben für $|j| \leq N$.