Übungsblatt 4

Partielle Differentialgleichungen II, SoSe 2017

Prof. Dr. Jürgen Saal, Pascal Hobus

Abgabe: 16.05.17 in der Übung

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Aufgabe 1: (Erzeuger einer C_0 -Gruppe)(3P)

Sei $(T(t))_{t\in\mathbb{R}}$ eine C_0 -Gruppe auf einem Banachraum X. Zeigen Sie, dass die folgenden drei Definitionen für den Erzeuger $A:D(A)\subset X\to X$ von $(T(t))_{t\in\mathbb{R}}$ äquivalent sind.

- (i) $D(A) := \left\{ x \in X : \lim_{h \searrow 0} \frac{T(h)x x}{h} \text{ existient} \right\} \text{ mit } Ax := \lim_{h \searrow 0} \frac{T(h)x x}{h}.$
- (ii) $D(A) := \left\{ x \in X : \lim_{h \nearrow 0} \frac{T(h)x x}{h} \text{ existiert} \right\} \text{ mit } Ax := \lim_{h \nearrow 0} \frac{T(h)x x}{h}.$
- $\text{(iii)} \ \ D(A) := \left\{x \in X : \lim_{h \to 0, \ h \in \mathbb{R} \backslash \{0\}} \frac{T(h)x x}{h} \text{ existiert} \right\} \text{ mit } Ax := \lim_{h \to 0, \ h \in \mathbb{R} \backslash \{0\}} \frac{T(h)x x}{h}.$

Aufgabe 2: (Periodische C_0 -Halbgruppen)(6P)

Sei $(T(t))_{t\geq 0}$ eine periodische C_0 -Halbgruppe (d.h. es gibt ein $t_0>0$ mit $T(t_0)=I)$ auf einem Banachraum X mit Erzeuger A. Zeigen Sie die folgenden Aussagen.

- (a) $(T(t))_{t\geq 0}$ lässt sich zu einer C_0 -Gruppe $(T(t))_{t\in\mathbb{R}}$ fortsetzen.
- (b) Für die Wachstumsschranke von $(T(t))_{t\geq 0}$ gilt $\omega(T)=0$.
- (c) $\sigma(A) \subset i\mathbb{R}$.

Aufgabe 3: (Stetigkeit Duale Halbgruppe)(4P)

Der Operator $A = \frac{d}{dx} : W^{1,1}(\mathbb{R}) \subset L^1(\mathbb{R}) \to L^1(\mathbb{R})$ erzeugt die Translationshalbgruppe

$$(T(t))_{t\geqslant 0}\subset \mathscr{L}(L^1(\mathbb{R})), \quad T(t)f=f(\cdot+t)$$

(vgl. Lemma 2.7). Zeigen Sie, dass die duale Halbgruppe $(T(t)')_{t\geq 0}$ schwach*-stetig aber nicht stark stetig ist.

Hinweis: $(T(t)')_{t\geq 0}$ heißt schwach*-stetig, wenn

$$\langle f \mid T(\cdot)'g \rangle : [0, \infty) \longrightarrow \mathbb{C}$$

für alle $f \in L^1(\mathbb{R})$ und $g \in L^1(\mathbb{R})'$ stetig ist.

Aufgabe 4: (2P)

Sei $(T(t))_{t\geqslant 0}$ eine C_0 -Halbgruppe auf einem Banachraum X. Wir sagen, $(T(t))_{t\geqslant 0}$ ist gleichmäßig stetig auf $(y_n)_{n\in\mathbb{N}}\subset X$, wenn die Folge von Abbildungen

$$T(\cdot)y_n:[0,\infty)\longrightarrow X,\quad n\in\mathbb{N}$$

gleichgradig stetig in der Null ist, also $\sup_{n\in\mathbb{N}} \|T(t)y_n - y_n\| \xrightarrow{t\searrow 0} 0$. Zeigen Sie, dass $(T(t))_{t\geqslant 0}$ gleichmäßig stetig auf jeder Nullfolge $(y_n)_{n\in\mathbb{N}} \subset X$ ist.