Übungsblatt 5

Partielle Differentialgleichungen II, SoSe 2017

Prof. Dr. Jürgen Saal, Pascal Hobus

Abgabe: 23.05.17 in der Übung

Spainvif Spain HEINRICH HEINE

UNIVERSITÄT DÜSSELDORF

Aufgabe 1: (Selbstadjungierte Operatoren mit kompakter Resolvente)(1P+2P+2P+3P) Sei $A:D(A)\subset H\to H$ ein selbstadjungierter Operator in einem separablen Hilbertraum H mit kompakter Resolvente (d.h. es gibt ein $\lambda \in \rho(A)$, sodass $(\lambda - A)^{-1} \in \mathcal{L}(H)$ ein kompakter Operator ist) und $\sigma(A) \subset (-\infty, 0)$. Zeigen Sie:

(a) $(\mu - A)^{-1}$ ist für jedes $\mu \in \rho(A)$ kompakt.

Nach dem Spektralsatz für kompakte selbstadjunigerte Operatoren gibt es dann eine Nullfolge $(\mu_k)_{k\in\mathbb{N}}$ aus Eigenwerten von A^{-1} und eine zugehörige Orthonormalbasis $(e_k)_{k\in\mathbb{N}}$ aus Eigenvektoren, sodass $A^{-1}x = \sum_{k=1}^{\infty} \mu_k \langle x, e_k \rangle_H e_k$ für jedes $x \in H$ gilt. Zeigen Sie:

- (b) $Ax = \sum_{k=1}^{\infty} \frac{1}{\mu_k} \langle x, e_k \rangle_H e_k$ für alle $x \in D(A)$ und e_k ist Eigenvektor von A zum Eigenwert $\frac{1}{\mu_k}$.
- (c) Definiert man einen Funktionalkalkül durch $f(A)x := \sum_{k=1}^{\infty} f(\frac{1}{\mu_k})\langle x, e_k \rangle_H e_k, \ x \in H$, so ist

$$L^{\infty}((-\infty,0)) \longrightarrow \mathcal{L}(H), \quad f \longmapsto f(A)$$

ein Algebren-Homomorphismus mit $||f(A)||_{\mathcal{L}(H)} \leq ||f||_{\infty}$ für alle $f \in L^{\infty}((-\infty,0))$.

(d) Definiert man $T(t)x := e^{tA}x, t \ge 0, x \in H$ durch den obigen Funktionalkalkül, so ist $(T(t))_{t \ge 0}$ eine exponentiell stabile C_0 -Halbgruppe mit Erzeuger A.

Aufgabe 2: (Poissonkern für den Halbraum)(2P)

Für $y \ge 0$ ist der Poissonkern für den Halbraum gegeben durch

$$P_y(s) := \frac{1}{\pi} \frac{y}{s^2 + y^2}, \quad s \in \mathbb{R}.$$

Zeigen Sie, dass $P_y = \frac{1}{\sqrt{2\pi}} \mathscr{F}[t \mapsto e^{-y|t|}]$ für alle y > 0 gilt.

Aufgabe 3: (2P+2P)

A erzeuge die C_0 -Halbgruppe $(T(t))_{t\geqslant 0}$ auf dem Banachraum X. Es gelte $\sigma_P(A) \subset i\alpha\mathbb{Z}$ für ein $\alpha >$ 0, sodass die zugehörigen Eigenvektoren einen dichten Teilraum von X aufspannen. Zeigen Sie die folgenden Aussagen.

- (a) Ist $\lambda \in \mathbb{C}$ ein Eigenwert von A zum Eigenvektor $x \in D(A)$, so ist $e^{\lambda t}$ ein Eigenwert von T(t) zum gleichen Eigenvektor x für alle $t \ge 0$.
- (b) $(T(t))_{t\geq 0}$ ist periodisch.

Aufgabe 4: (Zusatz zum Satz von Mikhlin)(2P)

Sei $m \in L^{\infty}(\mathbb{R}^n, \mathbb{C})$ und $1 . Falls <math>m \in C^k(\mathbb{R}^n \setminus \{0\}, \mathbb{C})$ für ein $k > \frac{n}{2}$ gilt und m die Mikhlin-Bedingung

$$||m||_{\operatorname{Mik}} := \max_{|\alpha| \le k} \sup_{\xi \in \mathbb{R}^n \setminus \{0\}} |\xi|^{|\alpha|} |\partial^{\alpha} m(\xi)| < \infty$$
(Mik)

erfüllt, so gilt für den Operator

$$\mathscr{F}^{-1}m\mathscr{F}:\mathscr{S}(\mathbb{R}^n)\longrightarrow\mathscr{S}'(\mathbb{R}^n),$$

dass $\mathscr{F}^{-1}m\mathscr{F}u\in L^p(\mathbb{R}^n)\ \forall u\in\mathscr{S}(\mathbb{R}^n)$ und es gibt eine eindeutige Fortsetzung $T\in\mathscr{L}(L^p(\mathbb{R}^n))$. Zeigen Sie: Gilt zusätzlich $m \in C^{\infty}(\mathbb{R}^n, \mathbb{C})$, so ist T gerade die Einschränkung von

$$\mathscr{F}^{-1}m\mathscr{F}:\mathscr{S}'(\mathbb{R}^n)\longrightarrow\mathscr{S}'(\mathbb{R}^n)$$

auf $L^p(\mathbb{R}^n)$.