PROF. DR. W. SINGHOF

Übungen zu Topologie II

- 12. Ist X ein topologischer Raum, so definiert man die Einhängung ΣX von X durch $\Sigma X := (X \times I)/\sim$, wobei \sim die Äquivalenzrelation ist, die erzeugt wird von $(x,1) \sim (x',1), (x,0) \sim (x',0)$ für alle $x,x' \in X$. Mit $[x,t] \in \Sigma X$ bezeichnet man die Äquivalenzklasse von $(x,t) \in X \times I$. Zeigen Sie:
 - (a) Ist $f: X \longrightarrow Y$ eine stetige Abbildung, so erhält man durch $\Sigma f[x,t] := [f(x),t]$ eine stetige Abbildung $\Sigma f: \Sigma X \longrightarrow \Sigma Y$. Auf diese Weise entsteht ein Funktor Σ von der Kategorie der topologischen Räume in sich.
 - (b) Für jedes $n \in \mathbb{Z}$ gibt es einen natürlichen Isomorphismus $\tilde{H}_n(\Sigma X) \stackrel{\cong}{\longrightarrow} \tilde{H}_{n-1}(X)$.
- 13. Seien $n, m \in \mathbb{N}$. Berechnen Sie die Homologiegruppen von $S^n \vee S^m$.
- 14. Berechnen Sie die Homologiegruppen der geschlossenen Flächen M_g und N_g . Gehen Sie dabei ähnlich vor wie bei der Berechnung der Fundamentalgruppen in Topologie I.

Abgabe: Dienstag, den 13.05.2008, in der Vorlesung