Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Prof. Dr. W. Singhof WS 2008/2009 31.10.2008 Blatt 3

Übungen zu Topologie III

- 8. Seien G und H Lie-Gruppen und $f:G\to H$ ein Gruppenhomomorphismus. Es gebe eine offene Umgebung U von e in G, so dass f|U glatt ist. Zeigen Sie, dass f auf ganz G glatt ist.
- 9. Sei G eine Lie-Gruppe und $i: G \to G$ definiert durch $i(x) := x^{-1}$. Zeigen Sie mittels des Satzes über implizite Funktionen, dass i glatt ist und dass für $x \in G$ und $u \in T_x(G)$ gilt:

$$T_x(i) \cdot u = -x^{-1} \cdot u \cdot x^{-1} .$$

10. Sei $G := \mathrm{GL}(n,\mathbb{R})$. Da G offen in $M_n(\mathbb{R})$ ist, identifizieren wir für jedes $x \in G$ den Tangentialraum $T_x(G)$ mit $M_n(\mathbb{R})$ vermöge des in §2 eingeführten Isomorphismus τ_x . Mit dieser Identifikation wird für $a \in G$ der Homomorphismus

$$T_x(G) \rightarrow T_{ax}(G)$$

 $u \mapsto a \cdot u = T_x(L_a) \cdot u$

zu einer linearen Abbildung von $M_n(\mathbb{R})$ in sich. Wie sieht sie aus?

- 11. Sei $\mathbb{H}:=\{z\in\mathbb{C}\mid \operatorname{Im} z>0\}$ die obere Halbebene. Zeigen Sie:
 - a) Die Gruppe $\mathrm{SL}(2,\mathbb{R})$ operiert differenzierbar auf $\mathbb H$ durch

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- b) Diese Operation ist transitiv, d.h. es gibt nur eine Bahn.
- c) Der Stabilisator von i ist die Gruppe SO(2).
- d) $SL(2,\mathbb{R})/SO(2)$ ist diffeomorph zu \mathbb{R}^2 .

Abgabe: Montag, den 10.11.2008 in der Vorlesung