Ubungen zu Mathematik für Wirtschaftswissenschaftler I

Aufgabe 1 (Gleichungen und Ungleichungen):

Bestimmen Sie alle Lösungen $x \in \mathbb{R}$ der folgenden Gleichungen bzw. Ungleichungen:

$$\mathbf{i})\frac{1}{1+\frac{3}{1-n}}=2$$

i)
$$\frac{1}{1+\frac{3}{1-x}} = 2$$
 ii) $\frac{1}{1-\frac{4}{x-1}} = \frac{x-1}{x-5}$ iii) $\frac{5x}{2x+1} < -3$

$$(iii)$$
 $\frac{5x}{2x+1} < -3$

Rechnen Sie die Probe.

Aufgabe 2 (Polynomgleichungen):

Bestimmen Sie alle Lösungen $x \in \mathbb{R}$ der folgenden Gleichungen. Dabei sei a, b > 0:

i)
$$\sqrt{4x-4} = x-1$$

$$ii)x^3 + 2x^2 - 5x - 6 = 0$$

i)
$$\sqrt{4x-4} = x-1$$
 ii) $x^3 + 2x^2 - 5x - 6 = 0$ iii) $x^2 - (\sqrt{a} - \sqrt{b})x - \sqrt{ab} = 0$

Rechnen Sie die Probe.

Aufgabe 3 (*Mittelwerte*):

Gegeben die Zahlenfolge: 3, 4, 6, 7

Legen Sie eine Gewichtung für diese Zahlenfolge fest, mit den Gewichten 1 oder 2, sodass das gewichtete arithmetische Mittel kleiner als das ungewichtete arithmetische Mittel ist.

Aufgabe 4 (Determinanten):

Berechnen Sie die Determinante der Matrix:

$$\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 1 \\
1 & 1 & 1 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)$$

Aufgabe 5 (*Inverse Matrizen*):

Berechnen Sie die inversen Matrizen folgender invertierbarer Matrizen:

i)
$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 ii) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

Aufgabe 6 (*Matrizenprodukte*):

Berechnen Sie bis auf A^2 und C^2 alle mögichen Produkte von je zwei der folgenden Matrizen:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 4 \\ 5 & 0 & 6 \end{pmatrix}$$

Aufgabe 7 (Lineare Gleichungssysteme):

Finden Sie alle Lösungen $x,y,z\in\mathbb{R}$ des Gleichungssystems:

Aufgabe 8 (Eigenwerte und Eingenvektoren):

Bestimmen Sie die Eigenwerte und die Eigenvektoren der Matrix:

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$$