Abgabe bis: Di 04.11.2014 13:00 Uhr

Mathematik für Wirtschaftswissenschaftler I

Übungsblatt 2

Aufgabe 1 (2 Punkte, Multiple Choice). (a) Welche Gleichung stimmt?

$$(1) \begin{pmatrix} 7000 \\ 200 \end{pmatrix} = 35 \qquad (2) \begin{pmatrix} 7000 \\ 200 \end{pmatrix} = \begin{pmatrix} 6800 \\ 200 \end{pmatrix} \qquad (3) \begin{pmatrix} 7000 \\ 200 \end{pmatrix} = \begin{pmatrix} 7000 \\ 6800 \end{pmatrix}$$

(b) Sei $a = 1 + \frac{\sqrt{8}}{\sqrt{2}}$. Welche Aussage stimmt? (1) $a \in \mathbb{Z}$ (2) $a \in \mathbb{Q}$ und $a \notin \mathbb{Z}$ (3) $a \in \mathbb{R}$ und $a \notin \mathbb{Q}$.

(Bewertung: Richtige Antwort = 1 Punkt, falsche Antwort = -1 Punkt, keine Antwort = 0 Punkte. Für die gesamte Aufgabe 1 werden nie weniger als 0 Punkte berechnet.)

Aufgabe 2 (3 Punkte, Rechenweg wird bewertet). (a) Berechnen Sie mit Hilfe des Binomischen Lehrsatzes die Potenzen 11⁵ und 19⁴.

(b) Es seien n und k natürliche Zahlen mit $1 \leq k \leq n$. Zeigen Sie die folgende Gleichung.

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

Aufgabe 3 (3 Punkte, nur das Ergebnis wird bewertet). Finden Sie jeweils alle Lösungen $x \in \mathbb{R}$ der folgenden Gleichungen.

(a)
$$-x + \frac{2}{7} = \frac{x}{5} - 4$$
 (b) $\frac{4}{3x - 7} = 5$ (c) $\frac{2x - 6}{3x - 1} = 10$

Aufgabe 4 (4 Punkte, Rechenweg wird bewertet). (a) Sei $q \in \mathbb{R}$ und $q \neq 1$. Leiten Sie die Formel der geometrischen Reihe

$$\sum_{i=0}^{m} q^{i} = \frac{1 - q^{m+1}}{1 - q}$$

aus der geometrischen Summenformel der Vorlesung her.

(b) Bestimmen Sie die Summen mit Hilfe der Formeln aus der Vorlesung.

(i)
$$\sum_{i=0}^{5} \frac{1}{2 \cdot 3^i}$$
 (ii) $\sum_{k=1}^{100} (\frac{1}{5}k - 4)$ (iii) $4 + 7 + 10 + 13 + \dots + 121$