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Introduction

Inspired by the Hasse-Weil zeta function of an algebraic variety over
a finite field, Artin and Mazur defined the Artin - Mazur zeta
function for an arbitrary map f : X → X of a topological space X :

Ff (z) := exp

( ∞∑
n=1

F (f n)

n
zn
)

where F (f n) is the number of isolated fixed points of f n. Artin and
Mazur showed that for a dense set of the space of smooth maps of
a compact smooth manifold into itself the Artin-Mazur zeta
function Ff (z) has a positive radius of convergence.
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Later Manning proved the rationality of the Artin - Mazur zeta
function for diffeomorphisms of a smooth compact manifold
satisfying Smale axiom A. On the other hand there exist maps for
which Artin-Mazur zeta function is transcendental. The
Artin-Mazur zeta function was historically the first dynamical zeta
function for discrete dynamical system. The next dynamical zeta
function was defined by Smale and Milnor . This is the Lefschetz
zeta function of discrete dynamical system:

Lf (z) := exp

( ∞∑
n=1

L(f n)

n
zn
)
,
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where

L(f n) :=
dimX∑
k=0

(−1)k tr
[
f n∗k : Hk(X ;Q)→ Hk(X ;Q)

]
is the Lefschetz number of the iterate f n of f .
The Lefschetz zeta function is always a rational function of z and is
given by the formula:

Lf (z) =
dimX∏
k=0

det
(
I − f∗k .z

)(−1)k+1
.
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We apply a simple linear algebra calculation connecting a trace and
a determinant:

exp

( ∞∑
n=1

trBn

n
zn
)

=

= exp

(
tr
∞∑
n=1

Bn

n
zn
)

= exp (tr(− log(1− Bz)))

=
1

det(1− Bz)
.

This implies a formula above connecting a graded trace and a
graded determinant.
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Nielsen - Reidemeister fixed point theory

Nielsen - Reidemeister fixed point theory

There is another way of counting the fixed points of f n - according
to Nielsen and Reidemeister. This is counting of fixed points of a
map in the presence of the foundamental group of a space.

I would like to start from the definitions.
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Nielsen - Reidemeister fixed point theory

We assume everywhere X to be a connected, compact polyhedron
and f : X → X to be a continuous map. Let p : X̃ → X be the
universal cover of X and f̃ : X̃ → X̃ a lifting of f , i.e., p ◦ f̃ = f ◦ p.

Definition

Two liftings f̃ ′ and f̃ of f are said to be conjugate if there exists
covering translation γ ∈ Γ ∼= π1(X ), such that f̃ ′ = γ ◦ f̃ ◦ γ−1.
Lifting classes are equivalence classes by conjugacy. Notation:

[f̃ ] = {γ ◦ f̃ ◦ γ−1|γ ∈ Γ}

The subset p(Fix(f̃ )) ⊂ Fix(f ) is called the fixed point class of f
A. Fel’shtyn University of Szczecin
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Nielsen - Reidemeister fixed point theory

determined by the lifting class [f̃ ].

Lemma

(1) Fix(f ) = ∪f̃ p(Fix(f̃ )).

(2) p(Fix(f̃ )) = p(Fix(f̃ ′)) if [f̃ ] = [f̃ ′].
(3) p(Fix(f̃ )) ∩ p(Fix(f̃ ′)) = ∅ if [f̃ ] 6= [f̃ ′].

Our definition of a fixed point class is via the universal covering
space. It essentially says: two fixed point of f are in the same class
iff there is a lifting f̃ of f having fixed points above both of them.
There is another way of saying this, which does not use covering
space explicitly, hence is very useful in identifying fixed point
classes. Two fixed points x0 and x1 of f belong to the same fixed
point class iff there is a path c from x0 to x1 such that c ∼= f ◦ c (
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Nielsen - Reidemeister fixed point theory

homotopy relative endpoints - "Nielsen disk"). This fact can be
considered as an equivalent definition(geometrical) of a non-empty
fixed point class. Every map f has only finitely many non-empty
fixed point classes, each a compact subset of X .
Examples: a map of degree d of the circle S1, involution on torus
T 2.
A fixed point class is called essential if its index is nonzero. The
number of lifting classes of f (and hence the number of all fixed
point classes) is called the Reidemeister number of f , denoted by
R(f ). This is a positive integer or infinity. The number of essential
fixed point classes is called the Nielsen number of f , denoted by
N(f ) .
The Nielsen number is always finite. R(f ) and N(f ) are homotopy
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Nielsen - Reidemeister fixed point theory

invariants. In the category of compact, connected polyhedra the
Nielsen number of a map is, apart from in certain exceptional cases,
equal to the least number of fixed points of maps with the same
homotopy type as f .
Let G be a group and φ : G → G an endomorphism. Two elements
α, β ∈ G are said to be φ-conjugate iff there exists γ ∈ G such
that β = γαφ(γ)−1. Reidemeister classes (twisted conjugacy
classes, φ-conjugacy classes) of an automorphism (endomorphism)
φ of a (countable discrete) group G are the classes {g}φ of the
equivalence relation

g ∼ xgφ(x−1), g , x ∈ G .

The number of them is the Reidemeister number R(φ). For φ = Id
A. Fel’shtyn University of Szczecin
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Nielsen - Reidemeister fixed point theory

we have the usual conjugacy classes.
Reidemeister bijection: Reidemeister number of continuous map f
coincides with Reidemeister number (the number of twisted
conjugacy classes) of induced endomorphism f∗ of the fundamental
group of X : R(f ) = R(f∗).

Taking a dynamical point of view, we consider the iterates of f and
φ, and define following zeta functions connected with the
Nielsen-Reidemeister fixed point theory. The Reidemeister zeta
functions of f and φ and the Nielsen zeta function of f are defined
as power series:
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Nielsen - Reidemeister fixed point theory

Rφ(z) = exp

( ∞∑
n=1

R(φn)

n
zn
)
,

Rf (z) = exp

( ∞∑
n=1

R(f n)

n
zn
)
,

Nf (z) = exp

( ∞∑
n=1

N(f n)

n
zn
)
.

The investigation and computation of the Reidemeister zeta
function Rφ(z)of a group endomorphism φ is an algebraic ground of
the computation and investigation of zeta functions Rf (z) and
Nf (z).
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Nielsen - Reidemeister fixed point theory

The Reidemeister bijection implies that Reidemeister zeta function
of continuous map f coincides with Reidemeister zeta function of
induced endomorphism f∗ of the fundamental group of X :
Rf (z) = Rf∗(z).
Whenever we mention the Reidemeister zeta function, we shall
assume that it is well-defined and so R(f n) <∞ and R(φn) <∞
for all n > 0. There are spaces and maps for which Rf (z) is not
defined. The zeta functions Rf (z) and Nf (z) are homotopy
invariants. The function Nf (z) has a positive radius of convergence
for any continuous map f . The above zeta functions are directly
analogous to the Lefschetz zeta function of a map. We start with
an example that shows how different can be the Nielsen, the
Reidemeister and the Lefschetz zeta functions.
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Nielsen - Reidemeister fixed point theory

Example

Let f : S2 ∨ S4 → S2 ∨ S4 to be a continuous map of the bouquet
of spheres such that the restriction f |S4 = idS4 and the degree of
the restriction f |S2 : S2 → S2 equal to −2. Then L(f ) = 0, hence
N(f ) = 0 since S2 ∨ S4 is simply connected. For k > 1 we have
L(f k) = 2 + (−2)k 6= 0, therefore N(f k) = 1. R(f k) = 1 for all
k ≥ 1 since S2 ∨ S4 is simply connected. From this we have by
direct calculation that

Nf (z) = exp(−z)· 1
1− z

; Rf (z) =
1

1− z
; Lf (z) =

1
(1− z)2(1 + 2z)

.
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Topological entropy and the radius of convergence of the Nielsen zeta function

Hence Nf (z) is a meromorphic function, and Rf (z) and Lf (z) are
rational and different.
The following main problem was investigated: for which spaces and
maps and for which groups and endomorphisms are the Nielsen and
Reidemeister zeta functions rational functions? Are these functions
algebraic functions?
The knowledge that a zeta function is a rational function is
important because it shows that the infinite sequence of coefficients
of the corresponding power series is closely interconnected, and is
given by the finite set of zeros and poles of the zeta function.
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Topological entropy and the radius of convergence of the Nielsen zeta function

Topological entropy the radius of convergence of the Nielsen
zeta function

The most widely used measure for the complexity of a dynamical
system is the topological entropy. For the convenience of the
reader, we include its definition.
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Topological entropy and the radius of convergence of the Nielsen zeta function

Let f : X → X be a self-map of a compact metric space. For given
ε > 0 and n ∈ N, a subset E ⊂ X is said to be (n, ε)-separated
under f if for each pair x 6= y in E there is 0 ≤ i < n such that
d(f i (x), f i (y)) > ε. Let sn(ε, f ) denote the largest cardinality of
any (n, ε)-separated subset E under f . Thus sn(ε, f ) is the greatest
number of orbit segments x , f (x), · · · , f n−1(x) of length n that can
be distinguished one from another provided we can only distinguish
between points of X that are at least ε apart. Now let

h(f , ε) := lim sup
n

1
n
log sn(ε, f )

h(f ) := lim sup
ε→0

h(f , ε).
A. Fel’shtyn University of Szczecin
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Topological entropy and the radius of convergence of the Nielsen zeta function

The number 0 ≤ h(f ) ≤ ∞, which to be independent of the metric
d used, is called the topological entropy of f . If h(f , ε) > 0 then,
up to resolution ε > 0, the number sn(ε, f ) of distinguishable orbit
segments of length n grows exponentially with n. So h(f ) measures
the growth rate in n of the number of orbit segments of length n
with arbitrarily fine resolution.

For a "hyperbolic"( Axiom A) diffeomorphism of a manifold
topological entropy

h(f ) = lim sup
n

1
n
· log#Fix(f n),

so h(f ) measures the growth rate of the number of periodic points.
A. Fel’shtyn University of Szczecin
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Topological entropy and the radius of convergence of the Nielsen zeta function

A basic relation between topological entropy h(f ) and Nielsen
numbers was found by N. Ivanov-1982. We present here a very
short proof of the Ivanov’s inequality.

Lemma

Let f be a continuous map on a compact connected polyhedron X .
Then

h(f ) ≥ lim sup
n

1
n
· logN(f n) := logN∞(f )

Proof: Let δ be such that every loop in X of diameter < 2δ is
contractible. Let ε > 0 be a smaller number such that
d(f (x), f (y)) < δ whenever d(x , y) < 2ε. Let En ⊂ X be a set
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Topological entropy and the radius of convergence of the Nielsen zeta function

consisting of one point from each essential fixed point class of f n.
Thus |En| = N(f n). By the definition of h(f ), it suffices to show
that En is (n, ε)-separated. Suppose it is not so. Then there would
be two points x 6= y ∈ En such that d(f i (x), f i (y)) ≤ ε for
o ≤ i < n hence for all i ≥ 0. Pick a path ci from f i (x) to f i (y) of
diameter < 2ε for 0 ≤ i < n and let cn = c0. By the choice of δ
and ε, f ◦ ci ' ci+1 for all i , so f n ◦ c0 ' cn = c0. This means x , y
in the same fixed point class of f n, contradicting the construction
of En.
This inequality is remarkable in that it does not require smoothness
of the map and provides a common lower bound for the topological
entropy of all maps in a homotopy class.
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Topological entropy and the radius of convergence of the Nielsen zeta function

We denote by R the radius of convergence of the Nielsen zeta
function Nf (z). Let h = inf h(g) over all maps g of the same
homotopy type as f .

Theorem

For a continuous map of a compact polyhedron X into itself,

R ≥ exp(−h) > 0. (1)

A. Fel’shtyn University of Szczecin
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Topological entropy and the radius of convergence of the Nielsen zeta function

Proof.

The inequality R ≥ exp(−h) follows from the previous lemma, the
Cauchy-Hadamard formula, and the homotopy invariance of the
radius R of the Nielsen zeta function Nf (z). We consider a smooth
compact manifold M which is a regular neighborhood of X and a
smooth map g : M → M of the same homotopy type as f . As is
known, the entropy h(g) is finite. Thus
exp(−h) ≥ exp(−h(g)) > 0.
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Nielsen zeta function of a periodic map

Nielsen zeta function of a periodic map

Sometimes one can answer above questions without directly
calculating the Nielsen numbers N(f n), but using the connection
between Nielsen numbers of iterates. We denote N(f n) by Nn.We
shall say that f : X → X is a periodic map of period m, if f m is the
identity map idX : X → X . Let µ(d), d ∈ N, be the Möbius
function of number theory. As is known, it is given by the following
equations: µ(d) = 0 if d is divisible by a square different from one ;
µ(d) = (−1)k if d is not divisible by a square different from one ,
where k denotes the number of prime divisors of d ; µ(1) = 1.
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Nielsen zeta function of a periodic map

Theorem ( F. - V. Pilyugina, 1985)

Let f be a periodic map of least period m of the connected
compact polyhedron X . Then the Nielsen zeta function is equal to

Nf (z) =
∏
d |m

d
√

(1− zd )−P(d),

where the product is taken over all divisors d of the period m, and
P(d) is the integer P(d) =

∑
d1|d µ(d1)Nd |d1 .

A. Fel’shtyn University of Szczecin
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Nielsen zeta function of a periodic map

Proof. Since f m = id , for each j ,Nj = Nm+j . Since (k ,m) = 1,
there exist positive integers t and q such that kt = mq + 1. So
(f k)t = f kt = f mq+1 = f mqf = (f m)qf = f . Consequently,
N(f ) = N(f k). For an arbitrary period m one can prove completely
analogously that Nd = Ndi , if (i ,m/d) = 1, where d is a divisor of
m. Using these series of equal Nielsen numbers, one can regroup
the terms of the series in the exponential of the Nielsen zeta
function so as to get logarithmic functions by adding and
subtracting missing terms with necessary coefficient. The same
argument shows that N(f d ) = N(f di ) if (i ,m/d) = 1 where d
divisor m. Using these series of equal numbers we obtain the result
by direct calculation
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Nielsen zeta function of a periodic map

Nf (z) = exp

( ∞∑
i=1

N(f i )
i

z i
)

= exp

∑
d |m

∞∑
i=1

P(d)

d
· z

d i

i


= exp

∑
d |m

P(d)

d
· log(1− zd )


=

∏
d |m

d
√

(1− zd )−P(d)
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where the integers P(d) are calculated recursively by the formula

P(d) = Nd −
∑

d1|d ;d1 6=d

P(d1).

Moreover, if the last formula is rewritten in the form

Nd =
∑
d1|d

P(d1)

and one uses the Möbius Inversion law for real function in number
theory, then

P(d) =
∑
d1|d

µ(d1) · Nd/d1 .
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Reidemeister zeta function

In this section we study the problem of rationality of the
Reidemeister zeta function. The first group of related problems
includes a study of validity of the TBFT (twisted
Burnside-Frobenius theorem (or theory)) for different classes of
groups and a proof of the Gauss congruences for the Reidemeister
numbers of iterations. TBFT says that the Reidemeister number
R(φ) of automorphism φ of a group G is equal to the number of
finite-dimensional fixed points of the induced map φ̂ on the unitary
dual space Ĝ if R(φ) <∞. TBFT was proved for automorphisms
of abelian, finite, compact, abelian-by-finite and polycyclic-by-finite
groups.A. Fel’shtyn University of Szczecin
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Definition (Unitary Dual)

Denote by Ĝ the set of equivalence classes of unitary irreducible
representations of G and by Ĝf its part corresponding to
finite-dimensional representations. The class of ρ in Ĝ we will
denote by [ρ]. An automorphism φ of G induces a bijection
φ̂ : Ĝ → Ĝ by the formula [φ̂(ρ)] := [ρ ◦ φ].

If G is a finite group and φ = Id then TBFT becomes the classical
Burnside-Frobenius theorem: the number of classes of irreducible
representations of finite group G is equal to the number of
conjugacy classes of elements of G .

A. Fel’shtyn University of Szczecin
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TBFT, first example

For the simplest infinite group G = Z and its unique non-trivial
isomorphism φ = −Id we have

m ∼ k + m − (−k) = m + 2k , ∀ k

Thus even and odd numbers form 2 Reidemeister classes.
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The dual object can be identified with the unit circle S1 ⊂ C as
follows: each (one dimensional) irreducible representation is defined
at m ∈ Z as multiplication by (e iα)m = e iαm. In this way, e iα ∈ S1

corresponds to this representation (denote by ρα). Then
φ̂(ρα)(m) = (ρα)(−m) = (e iα)−m = (e−iα)m. Thus, φ̂ coincides
with the complex conjugation and has on S1 exactly two fixed
points: ±1. Hence, F (φ̂) = 2 = R(φ). This example shows, in
particular, that even for “simple” infinite groups the number of
twisted conjugacy classes can be finite (in contrast with the
ordinary classes).

A. Fel’shtyn University of Szczecin

Dynamical zeta functions



Introduction Reidemeister zeta function Reidemeister torsion R − infinity groups Dynamic representation theory zeta functions

Finite groups

Finite groups

Let φ-class functions be functions, which are constant on
Reidemeister classes of φ, i.e. twisted invariant functions:
gf φ(g−1) = f . Evidently, R(φ) is equal to the dimension of the
space of such functions. On the other hand, for the L2(G ) we have
the Peter-Weyl decomposition:

L2(G ) ∼=
⊕
ρ∈Ĝ

End Vρ, End Vρ ∼= Mat(dim ρ,C),

which respects the left and right G -actions (we have written L2(G ),
but this is C [G ] = C ∗(G ) because the group is finite).
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Finite groups

Thus

R(φ) = dim{space of twisted invariant elements of L2(G )} =

∑
[ρ]∈Ĝ

dimTρ, Tρ := {F ∈ EndVρ|F = ρ(g)Fρ(φ(g−1) for all g ∈ G}.

=
∑

[ρ]∈Ĝ

dim{space of intertwinning operators of ρ→ ρ ◦ φ} =

=
∑

[ρ]∈Ĝ

{
1, if ρ ∼ ρ ◦ ϕ
0, if ρ 6∼ ρ ◦ ϕ = #Fix(φ̂).

A. Fel’shtyn University of Szczecin
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Finite groups

We therefore have [ F. - R.Hill, 1994]:

R(φ) = #Fix
(
φ̂ : Ĝ → Ĝ

)
(2)

The following nice way of calculation is known (Brauer ?). Consider
the natural action φ∗ on class-functions (for usual conjugacy
classes). Then φ∗ = φ̂ under the identification of
Burnside-Frobenius. The trace of this operator should be the same
in the basis of class-functions and in the basis of characters. In
both cases the operator acts by transpositions of basic elements,
thus, its trace is equal to the number of fixed element. Hence
#Fix(φ̂) = the number of φ-invariant usual conjugacy classes. The
TBFT in finite group case implies R(φ) = #Fix((φ̂). Hence,

A. Fel’shtyn University of Szczecin

Dynamical zeta functions



Introduction Reidemeister zeta function Reidemeister torsion R − infinity groups Dynamic representation theory zeta functions

Finite groups

R(φ) = the number of φ-invariant usual classes. The above
example with Z shows that this is not correct for infinite groups.
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Abelian groups and Pontryagin Duality

Abelian groups

Let G be a locally compact abelian topological group. We write Ĝ
for the set of continuous homomorphisms from G to the circle
U(1) = {z ∈ C : |z | = 1}. This is a group with pointwise
multiplication. We call Ĝ the Pontryagin dual of G . When we
equip Ĝ with the compact-open topology it becomes a locally
compact abelian topological group. The dual of the dual of G is
canonically isomorphic to G .
A continuous endomorphism f : G → G gives rise to a continuous
endomorphism f̂ : Ĝ → Ĝ defined by

f̂ (χ) := χ ◦ f .
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If G is a finitely generated free abelian group then a homomorphism
χ : G → U(1) is completely determined by its values on a basis of
G , and these values may be chosen arbitrarily. The dual of G is
thus a torus whose dimension is equal to the rank of G .
If G = Z/nZ then the elements of Ĝ are of the form

x → e
2πiyx
n

with y ∈ {1, 2, . . . , n}. A cyclic group is therefore (uncanonically)
isomorphic to itself.
The dual of G1 ⊕ G2 is canonically isomorphic to Ĝ1 ⊕ Ĝ2. From
this we see that any finite abelian group is (non-canonically)
isomorphic to its own Pontryagin dual group, and that the dual of
any finitely generated discrete abelian group is the direct sum of a
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Torus and a finite group.
We shall require the following statement:

Proposition

Let φ : G → G be an endomorphism of an abelian group G . Then
the kernel ker

[
φ̂ : Ĝ → Ĝ

]
is canonically isomorphic to the

Pontryagin dual of Coker φ.

Proof. We construct the isomorphism explicitly. Let χ be in the
dual of Coker (φ : G → G ). In that case χ is a homomorphism

χ : G/ im(φ) −→ U(1).
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There is therefore an induced map

χ : G −→ U(1)

which is trivial on im(φ).
This means that χ ◦ φ is trivial, or in other words φ̂(χ) is the
identity element of Ĝ . We therefore have χ ∈ ker(φ̂).
If on the other hand we begin with χ ∈ ker(φ̂), then it follows that
χ is trivial on imφ, and so χ induces a homomorphism

χ : G/ im(φ) −→ U(1)

and χ is then in the dual of Coker φ. The correspondence χ↔ χ
is clearly a bijection.
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TBFT for Abelian groups

By Proposition above, the Pontrjagin dual of the cokernel of
(1− φ) : G → G is canoically isomorphic to the kernel of the dual
map ̂(1− φ) : Ĝ → Ĝ . Since Coker (1− φ) is finite, we have

#Coker (1− φ) = # ̂Coker (1− φ) = # ker ̂(1− φ).

The map 1̂− φ is equal to 1̂− φ̂. Its kernel is thus the set of fixed
points of the map φ̂ : Ĝ → Ĝ . We therefore have [ F. - R.Hill,
1994]:

R(φ) = #Fix
(
φ̂ : Ĝ → Ĝ

)
(3)
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Polycyclic groups

Let G ′ = [G ,G ] be the commutator subgroup or derived group of
G , i.e. the subgroup generated by commutators. G ′ is invariant
under any homomorphism, in particular it is normal. It is the
smallest normal subgroup of G with an abelian factor group.
Denoting G (0) := G , G (1) := G ′, G (n) := (G (n−1))′, n ≥ 2, one
obtains derived series of G :

G = G (0) ⊃ G ′ ⊃ G (2) ⊃ · · · ⊃ G (n) ⊃ . . . (4)

If G (n) = e for some value n, i.e. the series (4) stabilizes by trivial
group, then the group G is solvable.
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A solvable group is a polycyclic group, if it has a derived series with
all G (n) finitely generated and all factors G (n)/G (n+1) are cyclic. A
group is said to have max if every its subgroup is finitely generated.
It is known that a solvable group has max if and only if it is
polycyclic. A polycyclic group is virtually poly-Z.
In fact, the TBFT for group is closely related to a generalization of
the following well-known notion.

Definition

A group G is conjugacy separable if any pair g , h of non-conjugate
elements of G are non-conjugate in some finite quotient of G .

It was proved by Remeslenikov and Formanek that
polycyclic-by-finite( or almost polycyclic) groups are conjugacy
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separable (see Daniel Segal book).
We can introduce the following notion, which coincides with the
previous definition in the case φ = Id.

Definition

A group G is φ-conjugacy separable with respect to an
automorphism φ : G → G if any pair g , h of non-φ-conjugate
elements of G are non-φ-conjugate in some finite quotient of G
respecting φ.
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Lemma

Let ρ be a finite dimensional irreducible representation of G on Vρ,
and φ : G → G is an automorphism.
1). There exists a twisted invariant function ω : G → C being a
matrix coefficient of ρ if and only if φ̂[ρ] = [ρ].
2). In this case such ω is unique up to scaling.
3). If we have several distinct φ̂-fixed representations, then the
correspondent twisted invariant functions are linearly independent.

Function ω is defined by the formula

ω : g 7→ Tr(S ◦ ρ(g)), (5)
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where S is an intertwining operator between ρ and ρ ◦ ϕ:

ρ(ϕ(x))S = Sρ(x) for any x ∈ G .

In particular, TBFT is true for φ if and only if these matrix
coefficients form a base of the space of φ-class functions.
One gets the following statement.

Theorem ( F. - E. Troitsky, 2007)

Suppose, R(φ) <∞. If a group G is φ-conjugacy separable then
TBFT is true for G.

Proof: Indeed, let Fij : G → Kij distinguish ith and jth φ-conjugacy
classes, where Kij are finite groups, i , j = 1, . . . ,R(φ). Let
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F : G → ⊕i ,jKij , F (g) =
∑

i ,j Fij(g), be the diagonal mapping and
K its image. Then the map F : G → K gives TBFT. Indeed, each
φ-class function f on G is a linear combination of functionals
coming from some finite collection {ρi} of fixed by the map φ̂
elements of Ĝf . These representations ρ1, . . . , ρs are in fact
representations of the form πi ◦ F , where πi are irreducible
representations of the finite group K and F : G → K , as above.
The following construction relates φ-conjugacy classes and
some conjugacy classes of another group.
Consider the action of Z on G , i.e. a homomorphism Z→ Aut(G ),
n 7→ φn. Let Γ be a corresponding semi-direct product
Γ = G o Z:
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Γ :=< G , t | tgt−1 = φ(g) > (6)

in terms of generators and relations, where t is a generator of Z .
The group G is a normal subgroup of Γ. As a set, Γ has the form

Γ = tn∈ZG · tn, (7)

where G · tn is the coset by G containing tn.

Lemma
A. Fel’shtyn University of Szczecin
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Two elements x , y of G are φ-conjugate iff xt and yt are conjugate
in the usual sense in Γ. Therefore g 7→ g · t is a bijection from the
set of φ-conjugacy classes of G onto the set of conjugacy classes of
Γ contained in G · t.

Proof. If x and y are φ-conjugate then there is a g ∈ G such that
gx = yφ(g). This implies gx = ytgt−1 and therefore g(xt) = (yt)g
so xt and yt are conjugate in the usual sense in Γ. Conversely,
suppose xt and yt are conjugate in Γ. Then there is a gtn ∈ Γ
with gtnxt = ytgtn. From the relation txt−1 = φ(x) we obtain
gφn(x)tn+1 = yφ(g)tn+1 and therefore gφn(x) = yφ(g).
Hence, y and φn(x) are φ-conjugate. Thus,
y and x are φ-conjugate, because x and φ(x) are always
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φ-conjugate: φ(x) = x−1xφ(x).

Theorem

Let F : Γ→ K be a morphism onto a finite group K which
separates two conjugacy classes of Γ in G · t. Then the restriction
FG := F |G : G → Im(F |G ) separates the corresponding
φ-conjugacy classes in G.

Proof: First let us remark that Ker(FG ) is φ-invariant. Indeed,
suppose FG (g) = F (g) = e. Then

FG (φ(g)) = F (φ(g)) = F (tgt−1) = F (t)F (t)−1 = e

(the kernel of F is a normal subgroup).
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Let gt and g̃ t be some representatives of the mentioned conjugacy
classes. Then

F ((htn)gt(htn)−1) 6= F (g̃ t), ∀h ∈ G , n ∈ Z,

F (htngt) 6= F (g̃ thtn), ∀h ∈ G , n ∈ Z,

F (hφn(g)tn+1) 6= F (g̃φ(h)tn+1), ∀h ∈ G , n ∈ Z,

F (hφn(g)) 6= F (g̃φ(h)), ∀h ∈ G , n ∈ Z,

in particular, F (hgφ(h−1)) 6= F (g̃) ∀h ∈ G .
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Theorem ( F. - E. Troitsky, 2007)

Let G be a polycyclic-by-finite group. Suppose, R(φ) <∞. Then
TBFT is true for G i.e.

R(φ) = #Fix
(
φ̂ : Ĝf → Ĝf

)
(8)

Proof: The class of polycyclic-by-finite groups is closed under
taking semidirect products by Z . Indeed, let G be an
polycyclic-by-finite group. Then there exists a characteristic
(polycyclic) subgroup P of finite index in G . Hence, P o Z is a
polycyclic normal group of G o Z of the same finite index.
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Polycyclic-by-finite groups are conjugacy separable . It remains to
apply theorem for φ-conjugacy separable group above.
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Gauss congruences: an application of TBFT

In dynamical context we study Reidemeister numbers of iterations.
Nice analytical properties of the Reidemeister zeta function indicate
that the Reidemeister numbers R(φn) are closely interconnected.
The manifestation of this are Gauss congruences for Reidemeister
numbers.
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More precisely, let µ be the Möbius function:

µ(d) =


1, if d = 1;
(−1)k , if d — is a product of

k distinct prime numbers;
0, if d is not square free.

In number theory, the following Gauss congruence for integers holds:∑
d |n

µ(d) an/d ≡ 0 mod n

for any integer a and any natural number n.
In the case of a prime power n = pr , the Gauss congruences turn
into the Euler congruences. Indeed, for n = pr the Möbius function
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µ(n/d) = µ(pr/d) is different from zero only in two cases: when
d = pr and when d = pr−1. Therefore, from the Gauss congruence
we obtain the Euler congruence

ap
r ≡ ap

r−1
mod pr

This congruence is equivalent to the following classical Euler’s
theorem:

aϕ(n) ≡ 1 mod n

where (a, n) = 1.
These congruences have been generalized from integers a to some
other mathematical invariants such as the traces of all integer
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matrices A and the Lefschetz numbers of iterations of a map:∑
d |n

µ(d) tr(An/d ) ≡ 0 mod n, (9)

tr(Apr ) ≡ tr(Apr−1) mod pr . (10)

∑
d |n

µ(d) L(f n/d ) ≡ 0 mod n (DL)

These congruences are now also called the Dold congruences. It is
shown that the above congruences (9), (10) and (DL) are
equivalent.
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Suppose, the TBFT holds for a group. Then, using congruences for
fixed points of iterations of the dual map one can obtain the Gauss
congruences for Reidemeister numbers of iterations

Theorem

Let G be a polycyclic-by-finite group. Suppose, R(φn) <∞ for all
n. Then we have Gauss congruences for Reidemeister numbers of
iterations: ∑

d |n

µ(d) · R(φn/d ) ≡ 0 mod n, (11)
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Proof. we have following evident consequence of TBFT:
R(φn) = # Fix(φ̂n|Ĝf

) =
∑

d |n Pd , where Pd denote the number of

periodic points of φ̂ on Ĝf of least period d . Applying the Möbius’
inversion formula we obtain Pn =

∑
d |n µ(d) ·R(φn/d ). But number

Pn is always divisible by n, because Pn is exactly n times the
number of orbits of φ̂ of length n.
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Rationality of the Reidemeister zeta function of
endomorphisms of finitely generated Abelian groups

For a finitely generated Abelian group G we define the finite
subgroup Gfinite to be the subgroup of torsion elements of G . We
denote the quotient G∞ := G/Gfinite . The group G∞ is torsion
free. Since the image of any torsion element by a homomorphism
must be a torsion element, the function φ : G → G induces maps

φfinite : Gfinite −→ Gfinite , φ∞ : G∞ −→ G∞.

The dual group of G∞ is a torus whose dimension is the rank of G .
This is canonically a closed subgroup of Ĝ . We shall denote it Ĝ0.
The quotient Ĝ/Ĝ0 is canonically isomorphic to the dual of Gfinite .
It is therefore finite. From this we know that Ĝ is a union of finitely
many disjoint tori. We shall call these tori Ĝ0, . . . , Ĝr .
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We shall call a torus Ĝi periodic if there is an iteration φ̂s such that
φ̂s(Ĝi ) ⊂ Ĝi . If this is the case, then the map φ̂s : Ĝi → Ĝi is a
translation of the map φ̂s : Ĝ0 → Ĝ0 and has the same number of
fixed points as this map. If φ̂s(Ĝi ) 6⊂ Ĝi then φ̂s has no fixed points
in Ĝi . The map on the torus

φ̂0 : Ĝ0 → Ĝ0

lifts to a linear map F of the universal cover, which is in this case
the Lie algebra of Ĝ . It is well known that Lefschetz number of φ̂0
equals det(F − Id).

Theorem ( F. - R.Hill, 1994)
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Let φ : G → G be an endomorphism of a finitely generated Abelian
group. Then we have the following R(φn) =| L(φ̂n) |, where L(φ̂n)
is the Lefschetz number of φ̂ thought of as a self-map of the
topological space Ĝ . From this it follows that zeta functon Rφ(z) is
rational function and is equal to:

Rφ(z) = Lφ̂(σz)(−1)r , (12)

where σ = (−1)p where p is the number of real eingevalues
λ ∈ Spec(F ) such that λ < −1 and r is the number of real
eingevalues λ ∈ Spec(F ) such that | λ |> 1. If G is finite abelian
group then this reduces to R(φn) = L(φ̂n) and Rφ(z) = Lφ̂(z).
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Proof. If G is finite abelian then Ĝ is a discrete finite set, so the
number of fixed points is equal to the Lefschetz number. This
finishes the proof in the case that G is finite.
If G a finitely generated Abelian group it is only necessary to check
that the number of fixed points of φ̂n is equal to the absolute value
of its Lefschetz number. We assume without loss of generality that
n = 1. We are assuming that R(φ) is finite, so the fixed points of φ̂
form a discrete set. We therefore have L(φ̂) =

∑
x∈Fix φ̂ ind(φ̂, x).

Since φ is a group endomorphism, the zero element 0 ∈ Ĝ is always
fixed. Let x be any fixed point of φ̂. We then have a commutative
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diagram

g Ĝ
φ̂−→ Ĝ g

l l l l

g + x Ĝ
φ̂−→ Ĝ g + x

in which the vertical functions are translations on Ĝ by x . Since the
vertical maps map 0 to x , we deduce that

ind(φ̂, x) = ind(φ̂, 0)

and so all fixed points have the same index. It is now sufficient to
show that ind(φ̂, 0) = ±1. This follows because the map on the
torus φ̂0 : Ĝ0 → Ĝ0 lifts to a linear map F of the universal cover,
which is the Lie algebra of Ĝ . The index is then the sign of the
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determinant of the identity map minus this lifted map F . This
determinant cannot be zero, because 1− φ̂ must have finite kernel
by our assumption that the R(φ) is finite (if det(1− F ) = 0 then
the kernel of 1− φ̂ is a positive dimensional subgroup of Ĝ , and
therefore infinite). So we have
R(φn) = #Fix

(
φ̂n : Ĝ → Ĝ

)
=| L(φ̂n) |= (−1)r+pnL(φ̂n) for all

n. Then zeta function Rφ(z) = Lφ̂(σz)(−1)r is rational function.
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Rationality of the Reidemeister zeta function of
endomorphisms of finitely generated Abelian groups - second
proof
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A Convolution Product
When Rφ(z) is a rational function the infinite sequence {R(φn)}∞n=1
of Reidemeister numbers is determined by a finite set of complex
numbers - the zeros and poles of Rφ(z).

Lemma

Rφ(z) is a rational function if and only if there exists a finite set of
complex numbers αi and βj such that R(φn) =

∑
j β

n
j −

∑
i α

n
i for

every n > 0.

Proof Suppose Rφ(z) is a rational function. Then

Rφ(z) =

∏
i (1− αiz)∏
j(1− βjz)

,
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where αi , βj ∈ C . Taking the logarithmic derivative of both sides
and then using the geometric series expansion we see that
R(φn) =

∑
j β

n
j −

∑
i α

n
i . The converse is proved by a direct

calculation.

For two sequences (xn) and (yn) we may define the corresponding
zeta functions:

X (z) := exp

( ∞∑
n=1

xn
n
zn
)
,

Y (z) := exp

( ∞∑
n=1

yn
n
zn
)
.

Alternately, given complex functions X and Y (defined in a
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neighbourhood of 0) we may define sequences

xn :=
dn

dzn
log (X (z)) |z=0,

yn :=
dn

dzn
log (Y (z)) |z=0 .

Taking the componentwise product of the two sequences gives
another sequence, from which we obtain another complex function.
We call this new function the additive convolution of X and Y , and
we write it

(X ∗ Y )(z) := exp

( ∞∑
n=1

xn.yn
n

zn
)
.
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It follows immediately from lemma 1 that if X and Y are rational
functions then X ∗ Y is a rational function. In fact we may show
using the same method the following

Lemma (Convolution of rational functions)

Let
X (z) =

∏
i

(1− αiz)m(i), Y (z) =
∏
j

(1− βjz)l(j)

be rational functions in z. Then X ∗ Y is the following rational
function

(X ∗ Y )(z) =
∏
i ,j

(1− αiβjz)−m(i).l(j). (13)
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Lemma

Let φ : Z k → Z k be a group endomorphism. Then we have

Rφ(z) =

(
k∏

i=0

det(1− Λiφ.σz)(−1)i+1

)(−1)r

(14)

where σ = (−1)p with p the number of µ ∈ specφ such that
µ < −1, and r the number of real eigenvalues of φ whose absolute
value is > 1. Λi denotes the exterior power.

Proof Since Z k is abelian, we have as before,

R(φn) = #Coker (1− φn).
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On the other hand we have

#Coker (1− φn) =| det(1− φn) |,

and hence R(φn) = (−1)r+pn det(1− φn). It is well known from
linear algebra that det(1− φn) =

∑k
i=0(−1)i tr(Λiφn).

From this we have the following “trace formula” for Reidemeister
numbers:

R(φn) = (−1)r+pn
k∑

i=0

(−1)i tr(Λiφn). (15)
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We now calculate directly

Rφ(z) = exp

( ∞∑
n=1

R(φn)

n
zn
)

= exp

( ∞∑
n=1

(−1)r
∑k

i=0(−1)i tr(Λiφn)

n
(σz)n

)

=

 k∏
i=0

(
exp

( ∞∑
n=1

1
n
tr(Λiφn).(σz)n

))(−1)i
(−1)r

=

(
k∏

i=0

det
(
1− Λiφ.σz

)(−1)i+1
)(−1)r

.
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Lemma

Let φ : G → G be an endomorphism of a finite abelian group G.
Then we have the following “Euler product” expression

Rφ(z) =
∏
[γ]

1
1− z#[γ]

(16)

where the product is taken over the periodic orbits of φ in G .

We give two proofs of this lemma. The first proof is given here and
the second proof is a special case of the proof for nonabelian finite
group.
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Proof Since G is abelian, we again have,

R(φn) = #Coker (1− φn)

= #G/# im(1− φn)

= #G/#(G/ ker(1− φn))

= #G/(#G/# ker(1− φn))

= # ker(1− φn)

= #Fix(φn)

We shall call an element of G periodic if it is fixed by some
iteration of φ. A periodic element γ is fixed by φn iff n is divisible
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by the cardinality the orbit of γ. We therefore have

R(φn) =
∑

γ periodic
#[γ]|n

1

=
∑

[γ] such that,
#[γ]|n

#[γ].

From this follows
A. Fel’shtyn University of Szczecin
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Rφ(z) = exp

( ∞∑
n=1

R(φn)

n
zn
)

= exp

∑
[γ]

∞∑
n=1

#[γ]|n

#[γ]

n
zn


=

∏
[γ]

exp

( ∞∑
n=1

#[γ]

#[γ]n
z#[γ]n

)
=
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=
∏
[γ]

exp

( ∞∑
n=1

1
n
z#[γ]n

)

=
∏
[γ]

exp
(
− log

(
1− z#[γ]

))
=

∏
[γ]

1
1− z#[γ]

.

A. Fel’shtyn University of Szczecin

Dynamical zeta functions



Introduction Reidemeister zeta function Reidemeister torsion R − infinity groups Dynamic representation theory zeta functions

Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

For a finitely generated abelian group G we define the finite
subgroup Gfinite to be the subgroup of torsion elements of G . We
denote the quotient G∞ := G/Gfinite . The group G∞ is torsion
free. Since the image of any torsion element by a homomorphism
must be a torsion element, the function φ : G → G induces maps

φfinite : Gfinite −→ Gfinite , φ∞ : G∞ −→ G∞.

Theorem ( F. - R.Hill, 1994)
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If G is a finitely generated abelian group and φ an endomorphism
of G then Rφ(z) is a rational function and is equal to the following
additive convolution:

Rφ(z) = R∞φ (z) ∗ Rfinite
φ (z). (17)

where R∞φ (z) is the Reidemeister zeta function of the
endomorphism φ∞ : G∞ → G∞, and Rfinite

φ (z) is the Reidemeister
zeta function of the endomorphism
φfinite : Gfinite → Gfinite . The rational functions R∞φ (z) and
Rfinite
φ (z) are given by the formulae above
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Proof By Pontrjagin duality we have as above

R(φn) = #Fix
(
φ̂n : Ĝ → Ĝ

)
.1 (18)

The dual group of G∞ is a torus whose dimension is the
rank of G . This is canonically a closed subgroup of Ĝ . We shall
denote it Ĝ0. The quotient Ĝ/Ĝ0 is canonically isomorphic to the
dual of Gfinite . It is therefore finite. From this we know that Ĝ is a
union of finitely many disjoint tori. We shall call these tori
Ĝ0, . . . , Ĝr .
We shall call a torus Ĝi periodic if there is an iteration φ̂s such that
φ̂s(Ĝi ) ⊂ Ĝi . If this is the case, then the map φ̂s : Ĝi → Ĝi is a
translation of the map φ̂s : Ĝ0 → Ĝ0 and has the same number of
fixed points as this map. If φ̂s(Ĝi ) 6⊂ Ĝi then φ̂s has no fixed points
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in Ĝi . From this we see

#Fix
(
φ̂n : Ĝ → Ĝ

)
= #Fix

(
φ̂n : Ĝ0 → Ĝ0

)
×#{Ĝi | φ̂n(Ĝi ) ⊂ Ĝi}.

We now rephrase this

#Fix
(
φ̂n : Ĝ → Ĝ

)
= #Fix

(
φ̂∞

n
: Ĝ0 → Ĝ0

)
×#Fix

(
φ̂finite

n
: Ĝ/(Ĝ0)→ Ĝ/(Ĝ0)

)
.

From this we have

Rφ(z) = R(φ∞)(z) ∗ R(φfinite)(z).

The rationality of Rφ(z) and the formulae for R∞φ (z) and Rfinite
φ (z)

follow from the previous lemmas.
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Rationality of the Reidemeister zeta function of
endomorphisms of finite groups

In this section we consider finite non-abelian groups. We shall write
the group law multiplicatively. We generalize our results on
endomorphisms of finite abelian groups to endomorphisms of finite
non-abelian groups. We shall write {g} for the φ-conjugacy class of
an element g ∈ G . We shall write < g > for the ordinary
conjugacy class of g in G . We continue to write [g ] for the φ-orbit
of g ∈ G , and we also write now [< g >] for the φ-orbit of the
ordinary conjugacy class of g ∈ G . We first note that if φ is an
endomorphism of a group G then φ maps conjugate elements to
conjugate elements. It therefore induces an endomorphism of the
set of conjugacy classes of elements of G .A. Fel’shtyn University of Szczecin
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If G is abelian then a conjugacy class consists of a single element.
The following is thus an extension of the result in abelian case:

Theorem ( F. - R.Hill, 1994)

Let G be a finite group and let φ : G → G be an endomorphism.
Then R(φ) is the number of ordinary conjugacy classes < x > in G
such that < φ(x) >=< x >.

Proof From the definition of the Reidemeister number we have,

R(φ) =
∑
{g}

1

where {g} runs through
A. Fel’shtyn University of Szczecin
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the set of φ-conjugacy classes in G . This gives us immediately

R(φ) =
∑
{g}

∑
x∈{g}

1
#{g}

=
∑
{g}

∑
x∈{g}

1
#{x}

=
∑
x∈G

1
#{x}

.

We now calculate for any x ∈ G the order of {x}. The class {x} is
the orbit of x under the G -action

(g , x) 7−→ gxφ(g)−1.
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We verify that this is actually a G -action:

(id , x) 7−→ id .x .φ(id)−1

= x ,
(g1g2, x) 7−→ g1g2.x .φ(g1g2)−1

= g1g2.x .(φ(g1)φ(g2))−1

= g1g2.x .φ(g2)−1φ(g1)−1

= g1(g2.x .φ(g2)−1)φ(g1)−1.

We therefore have from the orbit-stabilizer theorem,

#{x} =
#G

#{g ∈ G | gxφ(g)−1 = x}
.
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The condition gxφ(g)−1 = x is equivalent to

x−1gxφ(g)−1 = 1 ⇔ x−1gx = φ(g)

We therefore have

R(φ) =
1

#G

∑
x∈G

#{g ∈ G | x−1gx = φ(g)}.

Changing the summation over x to summation over g , we have:

R(φ) =
1

#G

∑
g∈G

#{x ∈ G | x−1gx = φ(g)}.

If < φ(g) >6=< g > then there are no elements x such that
A. Fel’shtyn University of Szczecin
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x−1gx = φ(g). We therefore have:

R(φ) =
1

#G

∑
g∈G such that
<φ(g)>=<g>

#{x ∈ G | x−1gx = φ(g)}.

The elements x such that x−1gx = φ(g) form a coset of the
subgroup satisfying x−1gx = g . This subgroup is the centralizer of
g in G which we write C (g). With this notation we have,

R(φ) =
1

#G

∑
g∈G such that
<φ(g)>=<g>

#C (g)

=
1

#G

∑
<g>⊂G such that
<φ(g)>=<g>

# < g > .#C (g).
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The last identity follows because C (h−1gh) = h−1C (g)h. From the
orbit stabilizer theorem, we know that # < g > .#C (g) = #G .
We therefore have R(φ) = #{< g >⊂ G |< φ(g) >=< g >}.
From this theorem we have immediately,

Theorem ( F. - R.Hill, 1994)
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Let φ be an endomorphism of a finite group G. Then Rφ(z) is a
rational function with a functional equation. In particular we have,

Rφ(z) =
∏

[<g>]

1
1− z#[<g>]

,Rφ

(
1
z

)
= (−1)azbRφ(z). (19)

The product here is over all periodic φ-orbits of ordinary conjugacy
classes of elements of G . The number #[< g >] is the number of
conjugacy classes in the φ-orbit of the conjugacy class < g >. In
the functional equation the numbers a and b are respectively the
number of periodic φ-orbits of conjugacy classes of elements of G
and the number of periodic conjugacy classes of elements of G .
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Proof From the previous theorem we know that R(φn) is the
number of conjugacy classes < g >⊂ G such that
φn(< g >) ⊂< g >. We can rewrite this

R(φn) =
∑

[< g >] such that
#[< g >] | n

#[< g >].
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From this we have,

Rφ(z) =
∏

[<g>]

exp


∞∑

n = 1 such that
#[< g >] | n

#[< g >]

n
zn

 .

The first formula now follows by using the power series expansion
for log(1− z). The functional equation follows from the previous
theorem by direct computation.
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Rationality of the Reidemeister zeta function of
endomorphisms of finitely generated torsion free nilpotent
groups

Consider the lower central series of a finitely generated group G :
G = G1 ⊃ G2 ⊃ · · · , where Gj = [G ,Gj−1] is the j-fold
commutator subgroup γj(G ) of G . The group G is called
nilpotent if Gj = 1 for some j . When Gc 6= 1 but Gc+1 = 1, we
say that it is c-step nilpotent.
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In this section we consider finitely generated torsion free nilpotent
group Γ. It is well known(Malcev) that such group Γ is a uniform
discrete subgroup of a simply connected nilpotent Lie group G
(uniform means that the coset space G/Γ is compact).The coset
space M = G/Γ is called a nilmanifold.Since Γ = π1(M) and M is a
K (Γ, 1), every endomorphism φ : Γ→ Γ can be realized by a
selfmap f : M → M such that f∗ = φ and thus R(f ) = R(φ).
Any endomorphism φ : Γ→ Γ can be uniquely extended to an
endomorphism F : G → G . Let F̃ : G̃ → G̃ be the corresponding
Lie algebra endomorphism induced from F .

Lemma
A. Fel’shtyn University of Szczecin
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If Γ is a finitely generated torsion free nilpotent group and φ an
endomorphism of Γ .Then

R(φ) = (−1)r+p
m∑
i=0

(−1)i trΛi F̃ , (20)

where m is rgΓ = dimM, p the number of µ ∈ spec F̃ such that
µ < −1, and r the number of real eigenvalues of F̃ whose absolute
value is > 1.

Proof: Let f : M → M be a map realizing φ on a compact
nilmanifold M of dimension m.We suppose that the Reidemeister
number R(f ) = R(φ) is finite.The finiteness of R(f ) implies the
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nonvanishing of the Lefschetz number L(f ).A strengthened version
of Anosov’s theorem states, in particular, that if L(f ) 6= 0 than
N(f ) = |L(f )| = R(f ). It is well known that L(f ) = det(F̃ − 1).
From this we have

R(φ) = R(f ) = |L(f )| = | det(1− F̃ )| = (−1)r+p det(1− F̃ ) =

= (−1)r+p
m∑
i=0

(−1)i trΛi F̃ .
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Theorem

If Γ is a finitely generated torsion free nilpotent group and φ an
endomorphism of Γ .Then Rφ(z) is a rational function and is equal
to

Rφ(z) =

(
m∏
i=0

det(1− Λi F̃ · σ · z)(−1)i+1

)(−1)r

(21)

where σ = (−1)p,p , r , m and F̃ is defined in Lemma above.

Proof Lemma above implies the trace formula for R(φn) :

R(φn) = (−1)r+pn
m∑
i=0

(−1)i tr(Λi F̃ )n
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We now calculate directly

Rφ(z) = exp

( ∞∑
n=1

R(φn)

n
zn
)

= exp

( ∞∑
n=1

(−1)r
∑k

i=0(−1)i tr(Λi F̃ n)

n
(σz)n

)

=

 k∏
i=0

(
exp

( ∞∑
n=1

1
n
tr(Λi F̃ n) · (σz)n

))(−1)i
(−1)r

=

(
k∏

i=0

det
(
1− Λi F̃ · σz

)(−1)i+1
)(−1)r

.
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Reidemeister and Nielsen zeta functions for maps of
infra-nilmanifolds and infra-solvmanifolds

I will try to explain a essential progress in the problem of the
rationality and properties of the Nielsen and the Reidemeister zeta
function for maps of infra-nilmanifolds and infra-solvmanifolds of
type R and their connection to the topological entropy of maps and
the Reidemeister torsion of the corresponding mapping tori and also
the progress in the problem of Gauss congruences for Nielsen and
Reidemeister numbers. Zeta functions Rf (z) and Nf (z) coincide
and are rational on on infra-nilmanifolds and on infra-solvmanifolds
of type R. This allows to give a linear bound for the number of
essential periodic orbits of a map.A. Fel’shtyn University of Szczecin
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We consider almost Bieberbach groups Π ⊂ G oAut(G ), where G
is a connected, simply connected nilpotent Lie group, and
infra-nilmanifolds M = Π\G . It is known that these are exactly the
class of almost flat Riemannian manifolds . It is L. Auslander’s
result that Γ := Π ∩ G is a lattice of G , and is the unique maximal
normal nilpotent subgroup of Π. The group Φ = Π/Γ is the
holonomy group of Π or M. Thus we have the following
commutative diagram:
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1 −−−−→ G −−−−→ G oAut(G ) −−−−→ Aut(G ) −−−−→ 1x x x
1 −−−−→ Γ −−−−→ Π

p−−−−→ Φ −−−−→ 1

Thus Φ sits naturally in Aut(G ). Denote ρ : Φ→ Aut(G),
A 7→ A∗ = the differential of A.
Let M = Π\G be an infra-nilmanifold. Any continuous map
f : M → M induces a homomorphism φ : Π→ Π. We can choose
an affine element (d ,D) ∈ G o Endo(G ) such that

φ(α) ◦ (d ,D) = (d ,D) ◦ α, ∀α ∈ Π. (22)
A. Fel’shtyn University of Szczecin
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This implies that the affine map (d ,D) : G → G induces a
continuous map on the infra-nilmanifold M = Π\G , which is
homotopic to f . That is, f has an affine homotopy lift (d ,D).
We can choose a fully invariant subgroup Λ ⊂ Γ of Π which is of
finite index. Therefore φ(Λ) ⊂ Λ and so φ induces the following
commutative diagram

1 −−−−→ Λ −−−−→ Π −−−−→ Ψ −−−−→ 1yφ′ yφ yφ̄
1 −−−−→ Λ −−−−→ Π −−−−→ Ψ −−−−→ 1

where Ψ = Π/Λ is finite. Applying (22) for λ ∈ Λ ⊂ Π, we see that

φ(λ) = dD(λ)d−1 = (τdD)(λ)
A. Fel’shtyn University of Szczecin
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where τd is the conjugation by d . The homomorphism φ′ : Λ→ Λ
induces a unique Lie group homomorphism F = τdD : G → G , and
hence a Lie algebra homomorphism F∗ : G→ G. On the other
hand, since φ(Λ) ⊂ Λ, f has a lift f̄ : N → N on the nilmanifold
N := Λ\G which finitely and regularly covers M and has Ψ as its
group of covering transformations.

Theorem (Averaging Formula (JB Lee - KB Lee, 2006))
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Let f be a continuous map on an infra-nilmanifold Π\G with
holonomy group Φ. Let f have an affine homotopy lift (d ,D) and
let φ : Π→ Π be the homomorphism induced by f . Then we have

L(f ) =
1
|Φ|

∑
A∈Φ

det(I − A∗F∗) =
1
|Φ|

∑
A∈Φ

det(I − A∗D∗),

N(f ) =
1
|Φ|

∑
A∈Φ

| det(I − A∗F∗)| =
1
|Φ|

∑
A∈Φ

| det(I − A∗D∗)|,

R(f ) = R(φ) =
1
|Φ|

∑
A∈Φ

σ (det(A∗ − F∗)) =
1
|Φ|

∑
A∈Φ

σ (det(A∗ − D∗))

where σ : R→ R ∪ {∞} is defined by σ(0) =∞ and σ(x) = |x |
for all x 6= 0.
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We can choose a linear basis of G so that ρ(Φ) = Φ∗ ⊂ Aut(G)
can be expressed as diagonal block matrices[

Φ1 0
0 Φ2

]
⊂ GL(n1,R)χGL(n2,R) ⊂ GL(n,R)

and D∗ can be written in block triangular form[
D1 ∗
0 D2

]
where D1 and D2 have eigenvalues of modulus ≤ 1 and > 1,
respectively. We can assume Φ = Φ1χΦ2. Every element α ∈ Π is
of the form (a,A) ∈ G oAut(G ) and α is mapped to A = (A1,A2).

A. Fel’shtyn University of Szczecin

Dynamical zeta functions



Introduction Reidemeister zeta function Reidemeister torsion R − infinity groups Dynamic representation theory zeta functions

Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

We define

Π+ = {α ∈ Π | detA2 = 1}.

Then Π+ is a subgroup of Π of index at most 2. If [Π : Π+] = 2,
then Π+ is also an almost Bieberbach group and the corresponding
infra-nilmanifold M+ = Π+\G is a double covering of M = Π\G ;
the map f lifts to a map f+ : M+ → M+ which has the same affine
homotopy lift (d ,D) as f . If D∗ has no eigenvalues of modulus
> 1, then for any A ∈ Φ, A = A1 and in this case we take Π+ = Π.

Theorem (F.- Jong Bum Lee, 2013)
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Let f be a continuous map on an infra-nilmanifold with an affine
homotopy lift (d ,D). Assume N(f n) = |L(f n)| for all n > 0 and
none of the eigenvalues of D∗ is a root of unity. Then the Nielsen
zeta function Nf (z) is a rational function and is equal to

Nf (z) = Lf ((−1)qz)(−1)r

where q is the number of real eigenvalues of D∗ which are < −1
and r is the number of real eigenvalues of D∗ of modulus > 1.
When the Reidemeister zeta function Rf (z) is defined, we have

Rf (z) = Rφ(z) = Nf (z).

A. Fel’shtyn University of Szczecin

Dynamical zeta functions



Introduction Reidemeister zeta function Reidemeister torsion R − infinity groups Dynamic representation theory zeta functions

Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

The class of infra-solvmanifolds of type R contains and shares a lot
of properties of the class of infra-nilmanifolds such as the averaging
formula for Nielsen numbers. Therefore, the statement about
Nf (z) can be generalized directly to the class of infra-solvmanifolds
of type R.
Let S be a connected and simply connected solvable Lie group. A
discrete subgroup Γ of S is a lattice of S if Γ\S is compact, and in
this case, we say that the quotient space Γ\S is a special
solvmanifold. Let Π ⊂ Aff(S) be a torsion-free finite extension of
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

the lattice Γ = Π ∩ S of S . That is, Π fits the short exact sequence

1 −−−−→ S −−−−→ Aff(S) −−−−→ Aut(S) −−−−→ 1x x x
1 −−−−→ Γ −−−−→ Π −−−−→ Π/Γ −−−−→ 1

Then Π acts freely on S and the manifold Π\S is called an
infra-solvmanifold. The finite group Φ = Π/Γ is the holonomy
group of Π or Π\S . It sits naturally in Aut(S). Thus every
infra-solvmanifold Π\S is finitely covered by the special
solvmanifold Γ\S . An infra-solvmanifold M = Π\S is of type R if S
is of type R or completely solvable, i.e., if adX : S→ S has only
real eigenvalues for all X in the Lie algebra S of S .
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

Recall that a connected solvable Lie group S contains a sequence of
closed subgroups

1 = N1 ⊂ · · · ⊂ Nk = S

such that Ni is normal in Ni+1 and Ni+1/Ni ∼= R or Ni+1/Ni ∼= S1.
If the groups N1, · · · ,Nk are normal in S , the group S is called
supersolvable. The supersolvable Lie groups are the Lie groups of
type R.

Lemma (Wilking-2000)

A. Fel’shtyn University of Szczecin

Dynamical zeta functions



Introduction Reidemeister zeta function Reidemeister torsion R − infinity groups Dynamic representation theory zeta functions

Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

For a connected Lie group S, the following are equivalent:
(1) S is supersolvable.
(2) All elements of Ad(S) have only positive eigenvalues.
(3) S is of type R.

We shall assume that f : M → M is a continuous map on an
infra-solvmanifold M = Π\S of type R with holonomy group Φ.
Then f has an affine homotopy lift (d ,D) : S → S , and so f k has
an affine homotopy lift (d ,D)k = (d ′,Dk) where
d ′ = dD(d) · · ·Dk−1(d).
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

Theorem (K. Dekimpe - G.J. Dugardein; F. -J.B. Lee, 2013)

Let f be a continuous map on an infra-solvmanifold Π\S of type R
with an affine homotopy lift (d ,D). Then the Reidemeister zeta
function, whenever it is defined, is a rational function and is equal
to

Rf (z) = Nf (z) =

Lf ((−1)nz)(−1)p+n
when Π = Π+;(

Lf+ ((−1)nz)

Lf ((−1)nz)

)(−1)p+n

when Π 6= Π+,
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

Recall the following

Theorem (Bourbaki, Algebra)

Let σ be a Lie algebra automorphism. If none of the eigenvalues of
σ is a root of unity, then the Lie algebra must be nilpotent.

Theorem

If the Reidemeister zeta function Rf (z) is defined for a
homeomorphism f on an infra-solvmanifold M of type R, then M is
an infra-nilmanifold.

Proof. Let f be a homeomorphism on an infra-solvmanifold
M = Π\S of type R. We may assume that f has an affine map as
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

a homotopy lift. There is a special solvmanifold N = Λ\S which
covers M finitely and on which f has a lift f̄ , which is induced by a
Lie group automorphism D on the solvable Lie group S . We have
an averaging formula for Reidemeister numbers:

R(f n) =
1

[Π : Λ]

∑
ᾱ∈Π/Λ

R(ᾱf̄ n).

Assume now that f defines the Reidemeister zeta function. Then
R(f n) <∞ for all n > 0. The above averaging formula implies that
R(f̄ n) <∞ for all n. We have

R(f̄ n) = N(f̄ n) = |L(f̄ n)| > 0.
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Functional Equation

Since L(f̄ n) = det(I − Dn
∗ ) 6= 0 for all n > 0, this would imply that

the differential D∗ of D has no roots of unity. By Borel theorem, S
must be nilpotent.
Results obtained for continuous maps motivate the following

Conjecture

Reidemeister zeta function is a rational function for endomorphisms
of polycyclic-by-finite groups.
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Functional Equation

Functional Equation

To write down a functional equation for the Reidemeister and the
Nielsen zeta function, we recall the following functional equation for
the Lefschetz zeta function:
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Functional Equation

Lemma (Deligne,Fried)

Let M be a closed orientable manifold of dimension m and let
f : M → M be a continuous map of degree d. Then

Lf
( α
dz

)
= ε (−αdz)(−1)mχ(M) Lf (αz)(−1)m

where α = ±1 and ε ∈ C is a non-zero constant such that if
|d | = 1 then ε = ±1.
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Functional Equation

Proof.
In the Lefschetz zeta function formula, we may replace f∗ by
f ∗ : H∗(M;Q)→ H∗(M;Q). Let βk = dimHk(M;Q) be the kth
Betti number of M. Let λk,j be the (complex and distinct)
eigenvalues of f∗k : Hk(M;Q)→ Hk(M;Q). Via the natural
non-singular pairing in the cohomology
Hk(M;Q)⊗ Hm−k(M;Q)→ Q, the operators f ∗m−k and d(f ∗k ) are
adjoint to each other. Hence since λk,j is an eigenvalue of f ∗k ,
µ`,j = d/λk,j is an eigenvalue of f ∗m−k = f ∗` . Furthermore,
βk = βm−k = β`.
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Functional Equation

Consequently, we have

Lf
( α
dz

)
=

m∏
k=0

βk∏
j=1

(
1− λk,j

α

dz

)(−1)k+1

=
m∏

k=0

βk∏
j=1

(
1− d

λk,j
αz
)(−1)k+1 (

−αdz
λk,j

)(−1)k

=
m∏
`=0

βm−`∏
j=1

(1− µ`,jαz)(−1)m−`+1
m∏

k=0

βk∏
j=1

(
−αdz
λk,j

)(−1)m−`

=

 m∏
`=0

β∏̀
j=1

(1− µ`,jαz)(−1)`+1
m∏

k=0

βk∏
j=1

(
−αdz
λk,j

)(−1)`
(−1)m

=
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Functional Equation

= Lf (αz)(−1)m · (−αdz)
∑m
`=0(−1)`β` ·

m∏
k=0

βk∏
j=1

λ
(−1)k+1

k,j =

= Lf (αz)(−1)m ε(−αdz)(−1)mχ(M).
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Functional equation for endomorphisms of finitely generated Abelian groups

Here,

ε =
m∏

k=0

βk∏
j=1

λ
(−1)k+1

k,j = ±
m∏

k=0

det(f ∗k ).
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Functional equation for endomorphisms of finitely generated Abelian groups

Functional equation for endomorphisms of finitely generated
Abelian groups

Functional equation of a convolution Let X (z) and Y (z) be
rational functions satisfying the following functional equations

X
(

1
d1.z

)
= K1z−e1X (z)f1 , Y

(
1

d2.z

)
= K2z−e2Y (z)f2 ,

with di ∈ C×, ei ∈ Z ,Ki ∈ C× and fi ∈ {1,−1}. Suppose also
that X (0) = Y (0) = 1.
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Functional equation for endomorphisms of finitely generated Abelian groups

Then the rational function X ∗ Y has the following functional
equation:

(X ∗ Y )

(
1

d1d2z

)
= K3z−e1e2(X ∗ Y )(z)f1f2 (23)

for some K3 ∈ C×.

Lemma (Functional equation for the torsion free part )
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Functional equation for endomorphisms of finitely generated Abelian groups

Let φ : Z k → Z k be an endomorphism. The Reidemeister zeta
function Rφ(z) has the following functional equation:

Rφ

(
1
dz

)
= ε1.Rφ(z)(−1)k . (24)

where d = detφ and ε1 is a constant in C×.

Proof Via the natural nonsingular pairing
(ΛiZ k)⊗ (Λk−iZ k)→ C the operators Λk−iφ and d .(Λiφ)−1 are
adjoint to each other.
We consider an eigenvalue λ of Λiφ. By lemma above , this

contributes a term
(

(1− λσ
dz )(−1)i+1

)(−1)r

to Rφ
( 1
dz

)
. We rewrite
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Functional equation for endomorphisms of finitely generated Abelian groups

this term as

((
1− dσz

λ

)(−1)i+1 (
−dz
λσ

)(−1)i
)(−1)r

and note that d
λ is an eigenvalue of Λk−iφ. Multiplying these terms

together we obtain,

Rφ

(
1
dz

)
=

 k∏
i=1

∏
λ(i)∈spec Λiφ

(
1

λ(i)σ

)(−1)i
(−1)r

× Rφ(z)(−1)k .
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Functional equation for endomorphisms of finitely generated Abelian groups

The variable z has disappeared because

k∑
i=0

(−1)i dimΛiZ k =
k∑

i=0

(−1)i iCk = 0.

Lemma (Functional equation for the finite part)
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Functional equation for endomorphisms of finitely generated Abelian groups

Let φ : G → G be an endomorphism of a finite, abelian group G.
The Reidemeister zeta function Rφ(z) has the following functional
equation:

Rφ

(
1
z

)
= (−1)pzqRφ(z), (25)

where q is the number of periodic elements of φ in G and p is the
number of periodic orbits of φ in G .

Proof This is a simple calculation.
We begin with formula for Reidemeister zeta of finite abelian
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Functional equation for endomorphisms of finitely generated Abelian groups

group.

Rφ

(
1
z

)
=

∏
[γ]

1
1− z−#[γ]

=
∏
[γ]

z#[γ]

z#[γ] − 1

=
∏
[γ]

−z#[γ]

1− z#[γ]

=
∏
[γ]

−z#[γ] ×
∏
[γ]

1
1− z#[γ]

=
∏
[γ]

−z#[γ] × Rφ(z).
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Functional equation for endomorphisms of finitely generated Abelian groups

The statement now follows because
∑

[γ] #[γ] = q.

Theorem (Functional equation, F.- R. Hill, 1994)

Let φ : G → G be an endomorphism of a finitely generated abelian
group G. If G is finite the functional equation of Rφ is described in
lemma above. If G is infinite then Rφ has the following functional
equation:

Rφ

(
1
dz

)
= ε2.Rφ(z)(−1)rankG . (26)

where d = det (φ∞ : G∞ → G∞) and ε2 is a constant in C×.

Proof We have Rφ(z) = R∞φ (z) ∗ Rfinite
φ (z). In the previous two

lemmas we have obtained functional equations for the functions
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Functional equation for endomorphisms of finitely generated Abelian groups

R∞φ (z) and Rfinite
φ (z). Convolution lemma now gives the functional

equation for Rφ(z).

Theorem (F.- Jong Bum Lee, 2013)
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Functional equation for endomorphisms of finitely generated Abelian groups

Let f be a continuous map on an orientable infra-solvmanifold
M = Π\S of type R with an affine homotopy lift (d ,D). Then the
Reidemeister zeta function, whenever it is defined, and the Nielsen
zeta function have the following functional equations:

Rf

(
1
dz

)
=

{
Rf (z)(−1)mε(−1)p+n

when Π = Π+;
Rf (z)(−1)mε−1 when Π 6= Π+

where d is a degree f , m = dimM, ε is a constant in C×,
σ = (−1)n, p is the number of real eigenvalues of D∗ which are
> 1 and n is the number of real eigenvalues of D∗ which are < −1.
If |d | = 1 then ε = ±1.
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Functional equation for endomorphisms of finitely generated Abelian groups

Theorem

Let f be a continuous map on an infra-solvmanifold of type R
induced by an affine map. Then AMf (z) = Nf (z), i.e., AMf (z) is a
rational function with functional equation.
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Reidemeister torsion

Like the Euler characteristic, the Reidemeister torsion is
algebraically defined.
Roughly speaking, the Euler characteristic is a graded version of the
dimension, extending the dimension from a single vector space to a
complex of vector spaces. In a similar way, the Reidemeister torsion
is a graded version of the absolute value of the determinant of an
isomorphism of vector spaces.
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Let d i : C i → C i+1 be a cochain complex C ∗ of finite dimensional
vector spaces over C with C i = 0 for i < 0 and large i . If the
cohomology H i = 0 for all i we say that C ∗ is acyclic. If one is
given positive densities ∆i on C i then the Reidemeister torsion
τ(C ∗,∆i ) ∈ (0,∞) for acyclic C ∗ is defined as follows:

Definition

Consider a chain contraction δi : C i → C i−1, i.e., a linear map such
that d ◦ δ + δ ◦ d = id. Then d + δ determines a map
(d + δ)+ : C+ := ⊕C 2i → C− := ⊕C 2i+1 and a map
(d + δ)− : C− → C+. Since the map (d + δ)2 = id + δ2 is
unipotent, (d + δ)+ must be an isomorphism. One defines
τ(C ∗,∆i ) := | det(d + δ)+|.
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Reidemeister torsion is defined in the following geometric setting.
Suppose K is a finite complex and E is a flat, finite dimensional,
complex vector bundle with base K . We recall that a flat vector
bundle over K is essentially the same thing as a representation of
π1(K ) when K is connected. If p ∈ K is a base point then one may
move the fibre at p in a locally constant way around a loop in K .
This defines an action of π1(K ) on the fibre Ep of E above p. We
call this action the holonomy representation ρ : π → GL(Ep).
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Conversely, given a representation ρ : π → GL(V ) of π on a finite
dimensional complex vector space V , one may define a bundle
E = Eρ = (K̃ × V )/π. Here K̃ is the universal cover of K , and π
acts on K̃ by covering transformations and on V by ρ. The
holonomy of Eρ is ρ, so the two constructions give an equivalence
of flat bundles and representations of π.
If K is not connected then it is simpler to work with flat bundles.
One then defines the holonomy as a representation of the direct
sum of π1 of the components of K . In this way, the equivalence of
flat bundles and representations is recovered.
Suppose now that one has on each fibre of E a positive density
which is locally constant on K . In terms of ρE this assumption just
means | det ρE | = 1. Let V denote the fibre of E . Then the
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cochain complex C i (K ;E ) with coefficients in E can be identified
with the direct sum of copies of V associated to each i-cell σ of K .
The identification is achieved by choosing a basepoint in each
component of K and a basepoint from each i-cell. By choosing a
flat density on E we obtain a preferred density ∆i on C i (K ,E ). A
case of particular interest is when E is an acyclic bundle, meaning
that the twisted cohomology of E is zero (H i (K ;E ) = 0). In this
case one defines the R-torsion of (K ,E ) to be
τ(K ;E ) = τ(C ∗(K ;E ),∆i ) ∈ (0,∞). It does not depend on the
choice of flat density on E .
The Reidemeister torsion of an acyclic bundle E on K has many
nice properties. Suppose that A and B are subcomplexes of K .
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Then we have a multiplicative law:

τ(A ∪ B;E ) · τ(A ∩ B;E ) = τ(A;E ) · τ(B;E ) (27)

that is interpreted as follows. If three of the bundles
E |A ∪ B, 〉E |A ∩ B, 〉E |A, 〉E |B are acyclic then so is the fourth and
the equation (27) holds.
Another property is the simple homotopy invariance of the
Reidemeister torsion. In particular τ is invariant under subdivision.
This implies that for a smooth manifold, one can unambiguously
define τ(K ;E ) to be the torsion of any smooth triangulation of K .
In the case K = S1 is a circle, let A be the holonomy of a generator
of the fundamental group π1(S1). One has that E is acyclic if and
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only if I − A is invertible and then

τ(S1;E ) = | det(I − A)|

Note that the choice of generator is irrelevant as
I − A−1 = (−A−1)(I − A) and | det(−A−1)| = 1.
These three properties of the Reidemeister torsion are the
analogues of the properties of Euler characteristic (cardinality law,
homotopy invariance and normalization on a point), but there are
differences. Since a point has no acyclic representations (H0 6= 0)
one cannot normalize τ on a point as we do for the Euler
characteristic, and so one must use S1 instead. The multiplicative
cardinality law for the Reidemeister torsion can be made additive
just by using log τ , so the difference here is inessential.
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More important for some purposes is that the Reidemeister torsion
is not an invariant under a general homotopy equivalence: as
mentioned earlier this is in fact why it was first invented.
It might be expected that the Reidemeister torsion counts
something geometric (like the Euler characteristic). D. Fried
showed that it counts the periodic orbits of a flow and the periodic
points of a map. We will show that the Reidemeister torsion counts
the periodic point classes of a map (fixed point classes of the
iterations of the map).
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Some further properties of τ describe its behavior under bundles.
Let p : X → B be a simplicial bundle with fiber F where F ,B,X
are finite complexes and p−1 sends subcomplexes of B to
subcomplexes of X over the circle S1. We assume here that E is a
flat, complex vector bundle over B . We form its pullback p∗E over
X . Note that the vector spaces H i (p−1(b),C) with b ∈ B form a
flat vector bundle over B , which we denote H iF . The integral
lattice in H i (p−1(b),R) determines a flat density by the condition
that the covolume of the lattice is 1. We suppose that the bundle
E ⊗ H iF is acyclic for all i . Under these conditions D. Fried has
shown that the bundle p∗E is acyclic, and

τ(X ; p∗E ) =
∏
i

τ(B;E ⊗ H iF )(−1)i .
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Mapping torus of map f. Let f : X → X be a homeomorphism of a
compact polyhedron X . Let Tf := (X × I )/(x , 0) ∼ (f (x), 1) be
the mapping torus of f .
We shall consider the bundle p : Tf → S1 over the circle S1. We
assume here that E is a flat, complex vector bundle with finite
dimensional fibre and base S1. We form its pullback p∗E over Tf .
Note that the vector spaces H i (p−1(b),C) with b ∈ S1 form a flat
vector bundle over S1, which we denote H iF . The integral lattice
in H i (p−1(b),R) determines a flat density by the condition that the
covolume of the lattice is 1. We suppose that the bundle E ⊗ H iF
is acyclic for all i . Under these conditions the bundle p∗E is acyclic,
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and we have

τ(Tf ; p∗E ) =
∏
i

τ(S1;E ⊗ H iF )(−1)i . (28)

Let g be the preferred generator of the group π1(S1) and let
A = ρ(g) where ρ : π1(S1)→ GL(V ). Then the holonomy around
g of the bundle E ⊗ H iF is A⊗ (f ∗)i . Since
τ(S1;E ) = | det(I − A)| it follows from (28) that

τ(Tf ; p∗E ) =
∏
i

| det(I − A⊗ (f ∗)i ) |(−1)i .

We now consider the special case in which E is one-dimensional, so
A is just a complex scalar λ of modulus one. Then in terms of the
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rational function Lf (z) we have :

τ(Tf ; p∗E ) =
∏
i

| det(I − λ(f ∗)i ) |(−1)i =| Lf (λ) |−1 (29)

This means that the special value of the Lefschetz zeta function is
given by the Reidemeister torsion of the corresponding mapping
torus.
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Theorem (F. - Jong Bum Lee, 2013)

Let f : M → M be a homeomorphism of an infra-nilmanifold M.
Assume that N(f ) = |L(f )|. Then

τ(Tf ; p∗E ) =| Lf (λ) |−1=| Nf (σλ) |(−1)r+1
=| Rf (σλ) |(−1)r+1

where σ = (−1)p, p is the number of real eigenvalues of F ∗ in the
region (−∞,−1) and r is the number of real eigenvalues of F ∗

whose absolute value is greater that 1.
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Theorem (F. - Jong Bum Lee, 2013)

Let f be a homeomorphism on an infra-nilmanifold Π\G with an
affine homotopy lift (d ,D). Then

|Rf ((−1)nλ)(−1)p+n | = |Rφ((−1)nλ)(−1)p+n | = |Nf ((−1)nλ)(−1)p+n |

=

{
|Lf (λ)| = τ(Tf ; p∗E )−1 when Π = Π+;
|Lf+(λ)Lf (λ)−1| = τ(Tf ; p∗E )τ(Tf+ ; p∗+E )−1 when Π 6= Π+,

where p is the number of real eigenvalues of D∗ which are > 1 and
n is the number of real eigenvalues of D∗ which are < −1.
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Theorem (F.- Jong Bum Lee, 2013)

Let f be a homeomorphism on an infra-solvmanifold Π\S of type R
with an affine homotopy lift (d ,D). Then

|Nf ((−1)nλ)(−1)p+n |

=

{
|Lf (λ)| = τ(Tf ; p∗E )−1 when Π = Π+;
|Lf+(λ)Lf (λ)−1| = τ(Tf ; p∗E )τ(Tf+ ; p∗+E )−1 when Π 6= Π+,

where p is the number of real eigenvalues of D∗ which are > 1 and
n is the number of real eigenvalues of D∗ which are < −1.
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Gauss congruences

Theorem (F. - Jong Bum Lee, 2013)

Let f be any continuous map on an infra-solvmanifold of type R
such that all R(f n) are finite. Then we have∑

d |n

µ(d) R(f n/d ) =
∑
d |n

µ(d) N(f n/d ) ≡ 0 mod n

for all n > 0.
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Topological Entropy and Asymptotic Nielsen number

Asymptotic behavior of the sequence {N(f k)}

The growth rate of a sequence an of complex numbers is defined by

Growth(an) := max
{
1, lim sup

n→∞
|an|1/n

}
.

We define the asymptotic Nielsen number and the asymptotic
Reidemeister number to be the growth rate
N∞(f ) := Growth(N(f n)) and R∞(f ) := Growth(R(f n))
correspondingly. These asymptotic numbers are homotopy type
invariants.
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Topological Entropy and Asymptotic Nielsen number

We denote by sp(A) the spectral radius of the matrix or the
operator A, sp(A) = limn

n
√
‖An‖| which coincide with the largest

modulus of an eigenvalue of A. We denote by
∧

F∗ :=
⊕m

`=0
∧` F∗

a linear operator induced in the exterior algebra∧∗Rm :=
⊕m

`=0
∧`Rm of G considered as the linear space Rm.

Theorem

Let f be a continuous map on an infra-solvmanifold of type R with
an affine homotopy lift (d ,D). Then we have

N∞(f ) = sp(
∧

D∗)

provided that 1 is not in the spectrum of D∗.
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Topological Entropy and Asymptotic Nielsen number

Theorem (F.- J.B. Lee, 2014)

Let f be a continuous map on an infra-solvmanifold M of type R
with an affine homotopy lift (d ,D). If 1 is not in the spectrum of
D∗, then

h(f ) ≥ log(sp(f )).

If f̄ is the map on M induced by the affine map (d ,D), then

h(f ) ≥ h(f̄ ) ≥ log sp(f ),

h(f̄ ) = log sp(
∧

D∗) = logN∞(f̄ ) = logN∞(f ).

Hence f̄ minimizes the entropy in the homotopy class of f .
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Topological Entropy and Asymptotic Nielsen number

We denote by R the radius of convergence of the zeta functions
Nf (z) or Rf (z).

Theorem (F.- J.B. Lee, 2014)
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Topological Entropy and Asymptotic Nielsen number

Let f be a continuous map on an infra-nilmanifold with an affine
homotopy lift (d ,D). Then the Nielsen zeta function Nf (z) and
the Reidemeister zeta function Rf (z), whenever it is defined, have
the same positive radius of convergence R which admits following
estimation

R ≥ exp(−h) > 0,

where h = inf{h(g) | g ' f }.
If 1 is not in the spectrum of D∗, the radius R of convergence of
Rf (z) is

R =
1

N∞(f )
=

1
exp h(f̄ )

=
1

sp(
∧

D∗)
.
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Essential periodic orbits

Essential periodic orbits

Nf (z) is a rational function with coefficients in Q.
On the other hand, since Nf (0) = 1 by definition, z = 0 is not a
zero nor a pole of the rational function Nf (z). Thus we can write

Nf (z) =
u(z)

v(z)
=

∏
i (1− βiz)∏
j(1− γjz)

=
r∏

i=1

(1− λiz)−ρi

with all λi distinct nonzero algebraic integers and ρi nonzero
integers.This induces

N(f k) =

r(f )∑
i=1

ρiλ
k
i . (N1)

Note that r(f ) is the number of zeros and poles of Nf (z).
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Essential periodic orbits

We define λ(f ) := max{|λi | | i = 1, · · · , r(f )}. If r(f ) = 0, i.e., if
N(f k) = 0 for all k > 0, then Nf (z) ≡ 1 and 1/R = 0. In this
case, we define customarily λ(f ) = 0.
In this section, we study the asymptotic behavior of the Nielsen
numbers of iterates of maps on infra-solvmanifolds of type R.

Theorem (F.- J.B. Lee, 2014)
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Essential periodic orbits

For a map f of an infra-solvmanifold of type R, one of the
following three possibilities holds:
(1) λ(f ) = 0, which occurs if and only if Nf (z) ≡ 1.
(2) The sequence {N(f k)/λ(f )k} has the same limit points as a

periodic sequence {
∑

j αjε
k
j } where αj ∈ Z, εj ∈ C and εqj = 1

for some q > 0.
(3) The set of limit points of the sequence {N(f k)/λ(f )k}

contains an interval.
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Essential periodic orbits

In this section, we shall give a linear lower bound for the number of
essential periodic orbits of maps on infra-solvmanifolds of type R,
which sharpens well-known results of Shub and Sullivan for periodic
points and of Babenko and Bogaty̌ı for periodic orbits.
We denote by O(f , k) the set of all essential periodic orbits of f
with length ≤ k . Thus O(f , k) = {〈F〉 |
F is a essential fixed point class of f m with m ≤ k}.

Theorem (F. - Jong Bum Lee, 2014)
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Let f be a map on an infra-solvmanifold of type R. Suppose that
the sequence N(f k) is unbounded. Then there exists a natural
number N0 such that

k ≥ N0 =⇒ #O(f , k) ≥ k − N0

r(f )
.

Using Reidemeister/Nielsen zeta function we can also study the set
of (homotopy) minimal periods of maps f on infra-nilmanifolds and
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on infra-solvmanifolds of type R.

R∞ groups: examples

Definition

A group G is an R∞-group if for any automorphism φ the number
R(φ) is infinite.

In contrast with the case of automorphisms, we have a plenty of
classes of groups and endomorphisms for which the Reidemeister
zeta function is well defined, also among groups with R∞ property.
The problem of determining which classes of discrete infinite groups
have the R∞ property is an area of active research initiated in 1994.
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Later, it was shown by various authors that the following groups
have the R∞-property:

non-elementary Gromov hyperbolic groups (F., Levitt-Lustig);
relatively hyperbolic groups (F.);

Baumslag-Solitar groups BS(m, n) except for BS(1, 1)
(F.–D.Gonçalves), generalized Baumslag-Solitar groups, that
is, finitely generated groups which act on a tree with all edge
and vertex stabilizers infinite cyclic (Levitt); the solvable
generalization Γ of BS(1, n) given by the short exact sequence
1→ Z[ 1

n ]→ Γ→ Zk → 1, as well as any group
quasi-isometric to Γ (Taback–Wong);
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R∞ groups: examples

a wide class of saturated weakly branch groups (including the
Grigorchuk group and the Gupta-Sidki-Sushchanskyy groups)
(F. - Yu.Leonov - E.T.), Thompson’s group F (Bleak – F. –
Gonçalves); generalized Thompson’s groups Fn, 0 and their
finite direct products (Gonçalves – Kochloukova);
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R∞ groups: examples

symplectic groups Sp(2n,Z), the mapping class groups ModS
of a compact oriented surface S with genus g and p boundary
components, 3g + p − 4 > 0, and the full braid groups Bn(S)
on n > 3 strings of a compact surface S in the cases where S
is either the compact disk D, or the sphere S2 (Damani – F. –
Gonçalves);
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R∞ groups

extensions of SL(n,Z), PSL(n,Z), GL(n,Z), PGL(n,Z),
Sp(2n,Z), PSp(2n,Z), n > 1, by a countable abelian group,
and normal subgroup of SL(n,Z), n > 2, not contained in the
centre (Mubeena – Sankaran);
GL(n,K ) and SL(n,K ) if n > 2 and K is an infinite integral
domain with trivial group of automorphisms, or K is an
integral domain, which has a zero characteristic and for which
Aut(K ) is torsion (Nasybullov);
irreducible lattice in a connected semi simple Lie group G with
finite center and real rank at least 2 (Mubeena-Sankaran);
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Dynamic representation theory zeta functions

Suppose, φ is an endomorphism of a discrete group Γ. Generally the
correspondence φ̂ : ρ 7→ ρ ◦ φ does not define a dynamical system
(an action of the semigroup of positive integers) on the unitary
dual Γ̂ or its finite-dimensional Γ̂f part, or finite Γ̂ff part, because in
contrast with the authomorphism case, the representation ρ ◦ φ
may be reducible. Here the unitary dual is the space of equivalence
classes of unitary irreducible representations of Γ, equipped with the
hull-kernel topology, Γ̂f is its subspase formed by finite-dimensional
representations, and Γ̂ff is formed by finite representations.
Nevertheless we can consider representations ρ such that ρ ∼ ρ ◦ φ.
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Definition

A representation theory Reidemeister number RT (φ) is the
number of all [ρ] ∈ Γ̂ such that ρ ∼ ρ ◦ φ. Taking [ρ] ∈ Γ̂f
(respectively [ρ] ∈ Γ̂ff ) we obtain RT f (φ) (respectively RTff (φ)).
Evidently RT (φ) ≥ RT f (φ) ≥ RTff (φ).

Definition
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If these numbers are finite for all powers of φ, we define the
corresponding dynamic representation theory zeta functions

RTφ(z) := exp

( ∞∑
n=1

RT (φn)

n
zn
)
, RT f

φ (z) := exp

( ∞∑
n=1

RT f (φn)

n
zn
)
,

RTff
φ (z) := exp

( ∞∑
n=1

RTff (φn)

n
zn
)
.

The importance of these numbers is justified by the following
dynamical interpretation. The following “dynamical part” of the
dual space, where φ̂ and all its iterations φ̂n define a dynamical
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system, was defined [F.-Troitsky].

Definition

A class [ρ] is called a φ̂-f -point, if ρ ∼ ρ ◦ φ (so, these are the
points under consideration in above definitions).

Definition

An element [ρ] ∈ Γ̂ (respectively, in Γ̂f or Γ̂ff ) is called
φ-irreducible if ρ ◦ φn is irreducible for any n = 0, 1, 2, . . . .
Denote the corresponding subspaces of Γ̂ (resp., Γ̂f or Γ̂ff ) by Γ̂φ

(resp., Γ̂φf or Γ̂φff ).
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Lemma

Suppose, the representations ρ and ρ ◦ φn are equivalent for some
n ≥ 1. Then [ρ] ∈ Γ̂φ.

Corollary

Generally, there is no dynamical system defined by φ̂ on Γ̂ (resp.,
Γ̂f , or Γ̂ff ). We have only the well-defined notion of a φ̂n-f-point.
A well-defined dynamical system exists on Γ̂φ (resp, Γ̂φf , or Γ̂φff ). Its
n-periodic points are exactly φ̂n-f-points.

The following statement evidently follows from the definitions.
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Proposition

Suppose, φ : Γ→ Γ is an endomorphism and R(φ) <∞. If TBFT
(resp., TBFTf ) is true for Γ and φ, then R(φ) = RT (φ) (resp,
R(φ) = RT f (φ) = RTff (φ)).
If the suppositions keep for φn, for any n, then Rφ(z) = RTφ(z)
(resp., Rφ(z) = RT f

φ (z) = RTff
φ (z)).

Theorem (F. - E.Troitsky - M. Zietek, 2018)
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Suppose, TBFT (resp., TBFTf ) is true for Γ and φn; and
R(φn) <∞ for any n. If Rφ(z) is rational, then RTφ(z) (resp.,
RT f

φ (z) = RTff
φ (z)) is rational. In particular, RT f

φ (z) = RTff
φ (z) is

rational in the following cases:
1. Γ is a finitely generated abelian group;
2. Γ is a finitely generated torsion free nilpotent group;
3. Γ is a crystallographic group with diagonal holonomy Z2 and φ

is an automorphism.
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