Mathematisches Institut Prof. Dr. R. Braun

Düsseldorf, den 26.04.2019 Blatt 3

Übungen zu Funktionalanalysis II

1. (10P) Sei $\mathbb{D} := \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$. Wegen Theorem 6.11 hat das Dirichletproblem

$$\Delta u = 1$$
, in \mathbb{D} , $u = 0$, in $\partial \mathbb{D}$.

eine eindeutig bestimmte schwache Lösung in $H^1_0(\mathbb{D})$. Geben Sie diese Lösung konkret an.

Hinweis: Verwenden Sie Polarkoordinaten.

- 2. Es sei $\nu > 0$, es sei $(B_{\nu})_F$ die Friedrichs-Erweiterung des Besselschen Differentialoperators und es sei u ein Eigenvektor von $(B_{\nu})_F$.
 - (a) (2P) Zeigen Sie, dass $u \in C^2([\epsilon, 1])$ für jedes $\epsilon > 0$. Hinweis: Verwenden Sie das Sobolew-Lemma.
 - (b) (3P) Es sei λ der Eigenwert zum Eigenvektor u und es sei $\mu = \sqrt{\lambda}$. Welche Differentialgleichung löst die durch $w(t) := u\left(\frac{t}{\mu}\right)$ gegebene Funktion?
 - (c) (5P) Beweisen Sie Satz 5.7 der Vorlesung. Hinweis: Verwenden Sie Aufgabe 4 von Blatt 2.
- 3. (10P) Zeigen Sie Satz 7.5 der Vorlesung, also Produktregel und partielle Integration für Differenzenquotienten.
- 4. Sei $\Omega \subset \mathbb{R}^n$ offen. Analog zu Definition 6.8 definieren wir $H^{-k}(\Omega)$ für $k \in \mathbb{N}$ als den Dualraum von $H_0^k(\Omega)$.
 - (a) (2P) Es sei $k \in \mathbb{N}$. Überlegen Sie sich, dass die Elemente von $H^{-k}(\Omega)$ Distributionen sind.
 - (b) (8P) Sei $k \in \mathbb{Z}$. Für $\alpha \in \mathbb{N}_0^n$ soll $\frac{\partial^{\alpha}}{\partial x^{\alpha}}$ als Distributionsableitung verstanden werden. Zeigen Sie, dass $\frac{\partial^{\alpha}}{\partial x^{\alpha}}$ den Raum $H^k(\Omega)$ nach $H^{k-|\alpha|}(\Omega)$ abbildet.

Abgabe: Fr. 03.05.2019, zu Beginn der Vorlesung

Besprechung: 6. Mai