JNIVERSITÄT DÜSSELDORF

Übungen zu Einführung in die Partiellen Differentialgleichungen

- 1. (10P) Für welche $\alpha \in \mathbb{R}$ ist die Funktion $u(x) = x^{\alpha}$ in $W^{1,p}(]0,1[)$?
- 2. Für n>1 werde $u\colon B_1^{(n)}(0)\to\mathbb{R}$ gegeben durch

$$u(x) = \log\left(\log\left(1 + \frac{1}{1+|x|}\right)\right).$$

Zeigen Sie, dass $u \in W^{1,p}(B_1(0))$ für jedes p mit $1 \le p < \infty$.

Hinweis: Gehen Sie ähnlich vor wie in Beispiel 16.8. 3. (10P) Die Funktion $u:]-1, 1[\to \mathbb{R}$ sei gegeben durch

$$u(x) = \begin{cases} \sqrt{x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

- (a) (3P) Zeigen Sie, dass $u \in W^{1,1}(]-1,1[)$.
- (b) (2P) Mit D^2u werde die zweite Ableitung von u im Distributionssinn bezeichnet und mit v_2 die Abbildung

$$v_2(x) = \begin{cases} u''(x), & x > 0, \\ 0, & x \le 0. \end{cases}$$

Zeigen Sie, dass v_2 nicht in $L^1_{loc}(]-1,1[)$ liegt.

(c) (5P) Geben Sie ein $\varphi \in \mathcal{D}(]-1,1[)$ mit $\varphi \leq 0$ an, so dass

$$\int_{[-1,1]} v_2 \varphi d\lambda_1 \neq \left\langle D^2 u, \varphi \right\rangle.$$

Hinweis: Da der Integrand des linken Integrals nicht negativ ist, ist der Wert des Integrals definiert, kann aber gleich ∞ sein.

- 4. (10P) Sei $1 \leq p < \infty$ und sei $U = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$. Dann $\partial U = \mathbb{R} \times \{0\}$ und das Oberflächenmaß auf ∂U ist das eindimensionale Lebesguemaß. Geben Sie eine Folge $(f_n)_{n \in \mathbb{N}}$ in $L^p(U) \cap C(\overline{U})$ mit den folgenden beiden Eigenschaften an
 - (a) die Folge $(f_n)_{n\in\mathbb{N}}$ konvergiert in $L^p(U)$,
 - (b) die Folge der Einschränkungen $(f_n|_{\partial U})_{n\in\mathbb{N}}$ konvergiert nicht in $L^p(\partial U)$.