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Abstract

Traditionally, actuaries make their predictions based on simple, robust methods. Stochastic models become
increasingly popular because they can enrich the point estimates with error estimates or even provide the
whole probability distribution. Here, we construct such a model for German inpatient health expenses per
age using the functional data approach. This allows us to see in which age groups the expenses change the
most and where predictions are most uncertain. Jumps in the derived model parameters indicate that three
years might be outliers. In fact, they can be explained by changes in the reimbursement system and must be
dealt with. As an application we compute the probability distribution of the total health expenses in the
upcoming years.
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1 Introduction

Short term prediction of health expenses is of enormous economic importance for a health insurance company
because it has to set the premiums in advance. Underestimation immediately results in underwriting loss,
overestimation in uncompetitive premiums. In the German health insurance market there are additional legal
requirements: In order to prevent adverse selection the lawgiver has set a financial barrier for the insured to
switch to another insurance company. Because this could potentially be exploited by the insurance company,
the insurance company has to justify its premium calculation to an independent auditor, called Treuhänder.
By law, §2 of KVAV (2017), a loading has to be added to the expected claims to make sure they are certainly
sufficient to cover the actual future claims. The independent auditor has to check that the loading is not
higher than necessary because that would be to the disadvantage of the insured.

Traditionally, point estimates for the age–dependent expected claims are obtained through simple robust
methods and an additive or relative loading is added by expert judgement. Here, stochastic models can
provide a justification for setting this loading: Because the premium has to be sufficient on tariff level, one
first needs to compute the claim distribution of the tariff as a whole. Then one chooses a risk measure and
determines the required capital based on the claim distribution. Finally, one spreads this risk capital in a
consistent manner as an additive or relative loading on the age–dependent expected claims.

In practice, the point estimates are obtained through the Rusam method. The basic underlying idea is that
all costs in a year increase by the same factor. To be precise let yt(x) be the average annual cost of a person
of age x in the year t. Fix a middle reference age x0 which has a large number of insured. It is assumed that

yt(x) ≈ yt(x0)k(x),

i.e., the costs are estimated as the product of a purely time–dependent factor yt(x0), which is simply the cost
at the reference age, and a purely age–dependent component k(x), called Profil, which is estimated by taking
the average across the last couple of years and normalizing at the reference age. Forecasts are obtained by
linear extrapolation.
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Figure 1: Graphical reprensentation of the available data in rainbow colors

Christiansen et al. (2018) fitted several stochastic models to inpatient health claims. Their best fitting model
was inspired by the mortality forecasting model of Lee & Carter (1992), but without the log transformation.
It can also be seen as a generalization of the Rusam method. They assume

yt(x) = µ(x) + κ(t)φ(x) + εt(x) with εt(x) ∼ N(0, σ2).

Thus, the average claim is the sum of a purely age–dependent level term µ(x), an age–time–interaction
term κ(t)φ(x), and an error term. The age–time–interaction term is simply the product of a time series κ(t)
and a sensitivity per age φ(x). The error is assumed to be normally distributed with a standard deviation
independent of age and time. The parameters are found by optimization with respect to the smallest σ.
Forecasting is based on the assumption that κ(t) follows a random walk with drift.

Here, we generalize this model by applying the functional data approach:

yt(x) = µ(x) +
J∑
j=1

κj(t)φj(x) + et(x) + εt(x) with et(x) ∼ N(0, v2(x)) and εt(x) ∼ N(0, σ2
t (x)).

Thus, the age–time–interaction term has now more components and the error distributions now depend
heavily on age and loosely on time, for details see Section 2. These components give us deeper insight into
the changes over time and allow a detailed prediction error estimation. We will also use random walk with
drift for the time series κj(t), but try Holt’s linear models as an alternative, as well. Because the functional
data model has so many parameters, they cannot be found by optimization technics alone, instead the basis
functions φj(x) and the coefficients κj(t) are determined through principal component analysis. This can be
easily realized with the R packages ftsa (Hyndman & Shang 2018) and demography (Hyndman 2017).

To keep the results here comparable to Christiansen et al. (2018), we use the same data set, the average
annual medical inpatient cost per privately insured male of age 20 to 80 in the years 1996 to 2011, see Figure 1
for plots in rainbow colors. This data is provided by the German insurance supervisor BaFin (2018) in order
to assist small private insurance companies in their premium calculation and is one of the few publically
available data sets of health expenses per age. The years 1996 to 2008 will be used for fitting, the remaining
years 2009 to 2011 for testing. Note the low occupancy at the lower and higher ages. This is likely the cause
for the volatility which we will later see at these ages.

The source code for this study is available at Piontkowski (2018).
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2 Functional data modelling approach

The functional data modelling approach for mortality rates was developed by Hyndman & Ullah (2007) and
later refined in Hyndman & Booth (2008) and Hyndman & Shang (2009). Our claims data can be treated
similarly to the migration data in Hyndman & Booth (2008).

The main idea is as follows: Let yt(x) be the observed average cost per male of age x in year t. It is assumed
that it is the realization of a smooth function ft(x) plus an observational error

yt(x) = ft(x) + εt(x) with εt(x) ∼ N(0, σ2
t (x)).

Note that the smoothing exploits the implicit assumption of a strong correlation between neighboring ages to
improve the quality of the model. The standard deviation σt(x) is either derived from theoretical considerations
like in the mortality case or empirically after the smoothing from the observed εt(x) = yt(x)− ft(x). The
latter requires additional assumptions on the time dependence of εt(x), e.g., linearity in t. The time dependent
smooth function ft(x) is decomposed as

ft(x) = µ(x) +
J∑
j=1

κj(t)φj(x) + et(x)

where µ(x) is the average level, φj(x) a set of orthonormal basis functions, and the coefficients κj(t) a
set of univariate time series. Finally, et(x) is the approximation error which results from this particular
representation. It is assumed to be serially uncorrelated and normally distributed with mean 0 and variance
v(x). Thus, the change of ft(x) in time is given by the term

∑
κj(t)φj(x). Because the φj(x) are orthonormal,

there is no interaction between them and it makes sense to model the time series κj(t) independently of each
other.

This model specializes to the Lee–Carter approach by setting J = 1 and dropping the assumption of a smooth
underlying function and thereby merging the errors εt(x) and et(x) into one.

The modelling process consists of six steps, for details see Hyndman & Ullah (2007):

1. Fix a smoothing procedure to obtain ft(x) from the data and estimate the observational standard
deviation εt(x). In our case, we are already given the smoothed data, so we can skip this step.
Unfortunately, this means that we cannot determine the observational error and have to neglect it.

2. Set the estimator µ̂(x) of µ(x) as the (possibly weighted) mean of the ft(x) across the years.

3. Find φj(x) and κj(t) through a principal component analysis of ft(x)− µ̂ and choose a appropriately
large number J of them for the model. Hyndman & Booth (2008) noted that the forecasts are in general
not getting worse with larger J . Compute the residuals et(x) and estimate v̂(x) from them.

4. Choose a time series model for each of the κj(t). In general, a random walk with drift is the first choice,
but more advanced models have been proven useful and we discuss one option for our data below.

5. Forecast as follows: Assume the last observed year is t = T . The time series model for the κj(t) provides
us with h–step forecasts κ̂k(T + h), which give us in turn the h–step forecasts

ŷT+h(x) = f̂T+h(x) = µ̂(x) +
J∑
j=1

κ̂j(T + h)φj(x).

6. Compute the forecast variance with the following explicit formula:

Var(ŷT+h(x)|I, {µ, φj}) = σ̂2
µ(x) +

J∑
j=1

uj(T + h)φ2
j (x) + v̂(x) + σ2

t (x),

where I stands for the data. σ̂µ(x) can be derived from the smoothing procedure, e.g., if µ̂(x) is the
mean of yt(x) across m years, then σ̂2

µ(x) is the sample variance of yt(x) divided by m. The coefficient
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variance uj(T + h) = Var(κj(T + h)|κj(T ), κj(T − 1), . . .) follows from the times series model. This
formula shows all the different sources of randomness in the model: smoothing method, time series
model, approximation error, and observational error.

Hyndman & Shang (2009) showed how to use nonparametric bootstrap methods in order to drop the normality
assumptions above.

3 Setting up the model

First, we have to decide whether we want to transform the data. The claim curves are rather steep, so a log
transformation might be useful. However, the values span only two powers of ten, which is far less than the
nine powers of ten in the case of mortality modelling. In addition, after a log transform we optimize the
relative error, while we are interested in the absolute error. These are most likely the reasons why the models
without a log transformation outperformed the models with one in Christiansen et al. (2018). Thus, we will
not apply a log transformation here.

The steps 2 and 3 of the modelling process, i.e., subtracting the mean across time from the data and performing
a principal component analysis of the remaining age–time–interaction term, can easily be done with function
fdm of R package demography. Figure 2 shows the mean µ̂ and the first four basis functions φ1, φ2, φ3, φ4 in
the top row and the corresponding coefficients κ1, κ2, κ3, κ4 in the button row. These components explain
90.6%, 7.0%, 1.5%, and 0.4% of the variance. Thus, at least the first two components should be considered in
the further modelling process.

The first basis function has a shape similar to mean (except at low ages). It represents a general increase
of all costs. Roughly, we get the Rusam model if we assume that they have the same shape and the higher
components are negligible. The best model of Christiansen et al. (2018), M1, acknowledges that they may be
different, but neglects the higher components as well. As the second component explains 7.0% of the variance,
we except a more precise prediction by incorporating it into the modelling process.

The second basis function models shifts of costs at lower and higher ages compared to the middle ages. The
third basis function describes the movement of costs at high ages. The fourth basis function models changes
in the ages around 30 and 70. However, it explains only 0.4% of the variance and the corresponding coefficient
looks like random noise, thus we will not consider it further.

Looking at the coefficients, we immediately notice the jump in the first coefficient from the year 1995 to 1996
and all coefficients seem to have exceptional behavior in the years 2003 and 2004. Outliers in health insurance
are most of the time due to changes in the reimbursement system for medical services. In fact, this is here the
case. From 1995 to 1996 the cost recovery principle was replaced by a lump compensation system, see Simon
(2000). In 2003 there was a voluntary switch to a new German Diagnosis Related Groups (G–DRG) system.
It was made obligatory in 2004, but many hospitals had problems with the switch and were unable to use the
system until 2005, see Böcking et al. (2005) and Ahrens et al. (2004). Thus, we will drop the data of the year
1995 because of the regime change and the data of the years 2003 and 2004 because it is certainly flawed.

We refit the model on the remaining data. This time the components explain 93.7%, 5.0%, and 0.8%, thus in
total 99.5% of the variance and are plotted in Figure 3. The increase of costs at the younger ages becomes
more prominent in the first basis function. The second basis function is mostly devoted to this and is now
missing the changes at higher ages. The third basis function is similar to the one before. Again the second
and third basis function together control the behavior at lower and higher ages. The residuals et(x) are
plotted on the left hand side of Figure 4. They are slightly less in younger ages, but do not exhibit a trend in
time.

It is very instructive to plot the full age–time–interaction, i.e., the data minus the mean across time. We
include the years that we want to predict as fat lines, see right hand side of Figure 4. Again, we note that
most changes happen at lower and higher ages. At higher ages we have a strong increase, which we can read
off the first basis function. At the lower ages there is an increase with some ups and downs, which is the
reason for shape of the second basis function besides the first. There have been hardly any changes for the
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Figure 2: Basis functions and associated coefficients of the functional data model
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Figure 4: Residuals and interactions in rainbow colors

ages from 34 to 53 in the data until 2008, which we use for fitting. But for our test years we see a bump
appearing at the ages 45 to 55. As these years are between the group from 35 to 44, which is still constant,
and the group above 55, which was always volatile, a change in the smoothing method is the most likely
explanation. Unfortunately, it is impossible to foresee the appreance of this bump because there was no
indication of it before.

4 Time series models for the coefficients κj

Because we have only few observation years, we should choose a simple and robust time series model, so
a random walk with drift (also known as a ARIMA(0,1,0) model with drift) is the natural choice. In this
case the one–step–ahead coefficient κj(t+ 1) arises as the sum of the previous one, a constant drift dj , and a
normal distributed error:

κj(t+ 1) = κj(t) + dj + εj(t), where εj(t) ∼ N(0, σ2
j ).

The parameters for the κj before and after outlier removal are estimated by minimizing the square error and
shown in Table 1. In both cases we have an obvious drift in the κ1, while there is no significant evidence for
a drift in κ2 and κ3. However, we have no reason to believe that they do not have a drift, so we keep the
best estimate. Note that d1 before outlier removal is much larger than after outlier removal, this is due to
the jump of κ1 from the year 1995 to 1996. Figure 5 shows the predictions in red together with yellow 90%
prediction intervals, the true values are given in black. Remember that the basis functions changed a bit
through the outlier removal and therefore the coefficients as well. Removing the outliers has roughly halved
the prediction intervals. The most dominating coefficient κ1 is predicted well with the exception of the jump
in 2010, which is at the border of the prediction interval in the case with outlier removal. The coefficients κ2
and κ3 do in fact look like random noise, but the slight trends improve the predictions and the prediction
intervals seem to be plausible. Note in particular that in case with outlier removal the trend of κ2 in the
years 2005 to 2008 breaks off immediately in 2009 as the random walk with drift predicts. However, this is
not what we would have expected.

The characteristic of the random walk model with drift is that each jump is fully added to all future values
and any two jumps are uncorrelated. Intuitively, we expect that a huge increase of costs to be followed by
a smaller one. Thus, we try a second time series model which potentially has the option to capture this,
namely the simplest form of exponential smoothing with a linear trend, Holt’s linear trend method (which
is equivalent to an ARIMA(0,2,2) model with restrictions on the coefficients). It can be formulated as a
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Table 1: Parameters for the random walk with drift time series

before outlier removal after outlier removal
j dj std. error of dj σj dj std. error of dj σj

1 220.04 170.50 639.86 128.78 77.23 255.08
2 -11.99 49.73 186.61 17.28 33.89 111.94
3 -20.00 21.03 78.93 -8.02 14.38 47.50

year

co
ef

fic
ie

nt
 1

1995 2000 2005 2010

−
10

00
10

00
30

00

year

co
ef

fic
ie

nt
 2

1995 2000 2005 2010

−
50

0
0

50
0

year

co
ef

fic
ie

nt
 3

1995 2000 2005 2010

−
20

0
−

50
50

random walk before outlier removal

year

co
ef

fic
ie

nt
 1

1995 2000 2005 2010

−
10

00
10

00
30

00

year

co
ef

fic
ie

nt
 2

1995 2000 2005 2010

−
50

0
0

50
0

year

co
ef

fic
ie

nt
 3

1995 2000 2005 2010

−
20

0
−

50
50

random walk after outlier removal

Figure 5: Forecasting the coefficents with a random walk with drift before and after outlier removal
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Table 2: Parameters for Holt’s linear model

unrestricted restricted
j αj βj σj αj βj σj

1 0.58 0.58 264.22 0.83 0.25 281.17
2 1.00 1.00 109.86 1.00 0.00 123.88
3 0.00 0.00 51.11 0.00 0.00 51.11

state space model with additive errors as follows, see Holt (2004), Hyndman et al. (2008), and Hyndman &
Athanasopoulos (2018):

κj(t+ 1) = lj(t) + bj(t) + εj(t), where εj(t) ∼ N(0, σ2
j )

level: lj(t+ 1) = lj(t) + bj(t) + αjεj(t) for 0 ≤ αj ≤ 1
growth: bj(t+ 1) = bj(t) + βjεj(t) for 0 ≤ βj ≤ αj

The model uses the two latent variables l(t), the trend, and b(t), the growth. In the absence of any randomness
l(t) and κ(t) describe a straight line with slope b(t). The parameters α and β determine how much of the
observed error is incorporated into the level resp. the slope. Interesting special cases are: α = β = 0 is a
linear regression; α = 1 and β = 0 is a random walk with drift b(t) = const.

One disadvantage of this model type is that the estimation of the parameters α and β is often unstable, see
Auger-Méthé et al. (2016). We estimate again with respect to the minimal mean square error. Unfortunately,
the error surface is not guaranteed to be convex, so several local minima may exist, see Chatfield & Yar
(1988). One particular problem is that often the trend gets overestimated, see Gardner & McKenzie (1985).
This means the growth/slope changes very fast, which is usually undesirable. We use Holt’s linear model only
for the functional data model after outlier removal. The parameters are given in the left hand side of Table 2
and the time series are plotted in top row of Figure 6. We do in fact see large β1 and β2, and the high jumps
of the second coefficient at the end are extrapolated into the future. While this may look plausible in the
figure, remember that it means in reality decreasing health cost at lower ages (even after taking the other
components into account) which cannot be true in the long run. We follow the advice of Chatfield & Yar
(1988) and restrict β to small values. For the β1 ≤ 0.23 respectively β2 ≤ 0.5, the models for κ1 and κ2
become the known random walks with drift. So, we require β ≤ 0.25, which is on the one hand the nearly
minimal restriction to get a new model and on the other hand still an acceptable rate of change for the trend.
Thus, κ1 has an interesting new model, κ2 follows a random walk, and κ3 is modeled by a linear regression,
see right hand side of Table 2 and bottom row of Figure 6.

5 Forecasting

In the preceding sections we defined all the components for three stochastic models — our favorite model is
the one after outlier removal with random walk with drift as time series model, as an alternative we use Holt’s
linear model with restricted β coefficient as the time series model; finally, we have for comparison the model
based on the whole data set with random walk with drift. We are now ready to produce point–forecasts as
well as prediction intervals.

Figure 7 shows the age–time–interaction term for the years 2009 to 2011, i.e., it it corresponds to right hand
side of Figure 4. To get the total claims one has to add the purely age–dependent average level µ(x). It is
left out in order to show the time–dependence more clearly. Adding it one gets a graph like the left hand side
of Figure 1, which is dominated by the steepness of µ(x).

The black lines are the actual interaction terms. The fat red lines are the predicted ones. The gray lines show
the best approximation possible to the actual data with the chosen basis functions. The thin red lines are the
90% prediction intervals based on the variance formula of Section 2 and normality assumption. Finally, the
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Figure 6: Forecasting the coefficents with Holt’s linear trend method, unrestricted and restricted.

10



Table 3: Rooted mean square error (RMSE) and the mean absolute error (MAE) for the models

2009 2010 2011
model MAE RMSE MAE RMSE MAE RMSE
random walk with drift 27.2 31.7 50.9 73.3 56.7 64.6
Holt’s 27.4 32.0 43.6 60.4 62.8 73.6
with outliers 30.0 40.3 41.7 53.6 64.3 78.5
M1 24.3 34.5 51.7 79.6 67.7 88.3

yellow shaded areas are the prediction intervals based on Monte Carlo simulation, where the unknown error
distributions are simulated by the bootstrap method of Hyndman & Shang (2009). The latter is implemented
in the simulate function of the R package demography.

A gap between the black and the gray curve tells us that the claim curve has a new shape feature that has
not been important before. This is here the case for the middle ages. We expected this already while looking
at the interaction terms in Figure 4. There we saw an increase of the claim amounts for these ages, which
have been nearly constant in all the years before. A gap between the gray curve and the red curve indicates
errors in the time series prediction. Here, we note in particular that we underestimate the development at the
young ages in 2011. This corresponds to the sharp drop of coefficient 2 in Figure 5 resp. 6. The behavior of
coefficient 2 is rather erratic and therefore hard to predict. The reason for this is most likely the low exposure
in this age group, see Figure 1, which in turn means that this age group is economically less important.
Another widening gap appears at the ages between 55 and 70. However, this error switches signs between
2010 and 2011, thus need not be systematic. Also, the prediction intervals are rather large in this age group,
so precise predictions are difficult here. In fact, for this age group the predictions of the models differ the
most. Forecasting with Holt’s linear method is better compared to random walk with drift in 2010, but worse
in 2011.

Turning to the prediction intervals we immediately notice the huge intervals if we do not remove the outliers.
But even these cannot capture the beforehand unseen change in the middle ages. With the removal of the
outliers the prediction intervals become very narrow. The gray curves stay inside, this follows essentially
from the fact that time series predictions stay inside their prediction intervals in Figure 5 resp. 6, but
the actual claim curve in black moves outside these bound while it evolves into beforehand unseen shapes.
The computationally less expensive approximation of the prediction intervals by the variance formula and
normality assumption is most of the time good, exceptions occur when the intervals are very wide — at the
younger ages and for the lower bounds in the case without outlier removal.

Standard quality measures in form of the rooted mean square error (RMSE) and the mean absolute error
(MAE) are given in Table 3. For comparison the best model of Christiansen et al. (2018), M1, is included.
Note that for the model M1 outlier removal was not performed. As we have already seen in Figure 7 the
model with Holt’s linear trend method is better in 2010, but worse in 2011 than the model with the random
walk with drift. Both give slightly better predictions than the M1 model. However, the main improvement of
the models here compared to M1 is the more refined error structure. Firstly, we use here an age–dependent
approximation and observation error with variance v(x) resp. σ2

t (x). Secondly, we use more components for
the age–time–interaction and take the uncertainties of the time series prediction for the coefficients κj(t) into
account, which were neglected in the M1 model. Together this leads to more age–specific prediction intervals.

As one application of the stochastic model we predict the distribution of the total claim expenses of all insured
in the years 2009 to 2011, see Figure 8. Again, we see how strongly the removal of the outliers influences
the uncertainty of the predictions. In 2009 and 2011 the actual expenses are close to the maximum of the
distribution, while for 2010 the total expenses are underestimated due to the previously unseen increase of
expenses in the middle ages. In 2011 this is compensated by a reduction of expenses in the age group from 60
to 70.

11



20 30 40 50 60 70 80

−
10

0
0

10
0

30
0

50
0

random walk 2009

age

20 30 40 50 60 70 80
−

10
0

0
10

0
30

0
50

0

random walk 2010

age

20 30 40 50 60 70 80

−
10

0
0

10
0

30
0

50
0

random walk 2011

age

20 30 40 50 60 70 80

−
10

0
0

10
0

30
0

50
0

restricted Holt's 2009

age

20 30 40 50 60 70 80

−
10

0
0

10
0

30
0

50
0

restricted Holt's 2010

age

20 30 40 50 60 70 80

−
10

0
0

10
0

30
0

50
0

restricted Holt's 2011

age

20 30 40 50 60 70 80

−
10

0
0

10
0

30
0

50
0

with outliers 2009

age

20 30 40 50 60 70 80

−
10

0
0

10
0

30
0

50
0

with outliers 2010

age

20 30 40 50 60 70 80

−
10

0
0

10
0

30
0

50
0

with outliers 2011

age

Figure 7: Forecasts of the interaction terms for the years 2009 to 2011 (black = actual, fat red = prediction,
thin red = 90% prediction intervals based on the variance formula, yellow shaded areas = 90% prediction
intervals based on nonparametric bootstrap methods, gray = best approximation given the chosen basis
functions)
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Figure 8: Forecasted total expenses

6 Conclusion and outlook

The functional data approach gave us deeper insight into the data. The first three basis functions had obvious
meanings: an overall increase of expenses and special trends at the younger resp. older ages. The jumps in
the coefficients led us to suspect outliers, which were in fact caused by legal changes. For forecasting the
coefficient time series the canonical choice was random walk with drift, which worked well. As an alternative
we discussed the use of Holt’s linear model. It is more flexible, the drift can adapt over time. However, it
is difficult to fit because parameter estimates become more uncertain. The reason is that Holt’s model is
equivalent to an ARIMA(0,2,2) model, i.e., second order differences have to be computed. As our data covers
only a few years and contains lots of noise, those get unstable and lead to uncertain parameters. Thus, Holt’s
linear model should be used with caution. From the functional data model we obtained detailed prediction
error estimates, which helped us to analyse the test cases.

For this particular claim data set the analysis revealed again the main obstacles for a precise prediction of
health expenses: Firstly, legal and administrative changes introduce outliers or even regime changes, which
make the data before them less informative. Secondly, changes in the data collection or smoothing method
over time cause further inconsistencies.

This suggests a direction for future research: Develop the functional data approach further to allow a weighted
influence of the years on the model, outlier years or years before a regime change should have less influence
than the more recent years. The ideas of Hyndman & Shang (2009) will be a good starting point.

Further, the methods here should be applied to the individual tariffs of an insurance company. There one
has the raw data and can choose the smoothing method oneself. However, because inpatient claims are very
volatile and the number of insured is only in the tens of thousands, one faces a large observational error.
Hence, credibility methods should be developed, i.e., the data of all available tariffs should be used to make
the prediction for each individual tariff more robust.
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