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Abstract

Let C be a reduced curve singularity. C is called of finite self–dual type

if there exist only a finitely many isomorphism classes of indecomposable,

self–dual, torsion–free modules over the local ring of C. In this paper

it is shown that the singularities of finite self–dual type are those which

dominate a simple plane singularity.

Let R be a local ring of a reduced curve singularity C, i.e., R is a one–
dimensional, reduced quotient ring of a formal or convergent power series ring.
We will always assume that the residue field k = R/m has characteristic 0.
Let R̃ be the normalization of R in the total quotient ring K. The local ring
R′ of another reduced curve singularity C′ dominates R iff R ⊆ R′ ⊆ R̃ or
equivalently iff there is a birational morphism C′ → C. We will consider only
finitely generated modules over R. Such a module M is called torsion–free, iff
for each non–zero divisor r ∈ R the left multiplication map λr : M → M is
injective. For these rings the torsion–free modules are precisely the maximal
Cohen–Macaulay modules.

The above assumptions on R imply that R is a Cohen–Macaulay ring, thus
there exists a dualizing module ω. Setting M∗ = HomR(M,ω) for any R–
module M , the characterizing property of ω is M∗∗ ∼= M for all modules M . A
module M is called self–dual iff M∗ ∼= M .

This paper is devoted to proving the following

Theorem. Let R be the local ring of a reduced curve singularity C, then the
following statements are equivalent:

1. There are only finitely many indecomposable, self–dual, torsion–free mod-
ule over R (up to isomorphism.)

2. For any n ≥ 1 there are only finitely many indecomposable, self–dual,
torsion–free module over R of rank n over R.

3. For some n ≥ 1 there are only finitely many indecomposable, self–dual,
torsion–free module over R of rank n over R.

4. R dominates a plane simple curve singularity, i.e., plane ADE–
singularity.
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5. C is either a plane ADE–singularity or a space D−

l , E
−

6 , E
−

7 , E
−

8 singu-
larity. (See [AGV] for a description of the plane ADE–singularities and
[Co, 2.4] for the space singularities.)

Greuel and Knörrer proved the same theorem without the restriction to self–
dual modules [GK], the equivalence of 4) and 5) is only implicitely there and
was made explicit by Cook [Co, 2.4]. Due to their Theorem it is enough to
construct families of indecomposable, self–dual, torsion–free modules of rank n
over the local ring of any singularity not listed in 5). The corresponding task
was also the difficult part in the proof of Greuel and Knörrer. While their main
construction idea still works in our case, the families have to be selected more
carefully and explicitely, because they must be self–dual and we must be able
to prove it. In fact, for a fixed ring R a family of pairwise non–isomorphic Mλ,
λ ∈ k, is selected such that M∗

λ and partially ω can be computed at the same
time, based on the fact that the M∗

λ must be pairwise non–isomorphic as well.

The author’s interest in self–dual modules was raised by the question how
many theta–characteristics a singular curve posses. A theta–characteristic on C
is a torsion–free sheaf F of rank 1 with F ∼= Hom(F , ω). Theta–characteristics
have been extensively studied, for example by Riemann, Atiyah, Mumford, and
Harris [A, M, H]. Their uses include finding contact curves and representations
of the equation of a plane curve as the determinants of symmetric matrices
with polynomial entries or classifying nets of quadrics [B, C, D, He, W]. Our
theorem implies that there are only finitely many theta–characteristics on a
singular curve iff all its singularities are of the types listed in 5), see [P]. This
answers a question of Sorger [S].

The Proof

By the Theorem of Greuel and Knörrer we know that for the singularities
listed in 5) there are only finitely many isomorphism classes of indecomposable,
torsion–free modules, thus in particular there are only finitely many self–duals
ones. Therefore, it is enough to construct for the local ring of any other sin-
gularity infinitely many pairwise non–isomorphic modules of rank n which are
torsion–free and self–dual. We give the proof in detail only for n = 1 — this
being the most important case — and indicate at the end the changes necessary
to construct modules of higher rank.

Let us recall a few facts about torsion–free modules [GK, p. 414]. A torsion–
free module of rank 1 can always be embedded into R̃ as an R–module. From
now on we will consider every torsion–free module to be embedded in R̃ in
some fixed way. Then the homomorphisms between two torsion–free modules
of rank 1 are given by

HomR(M,N) = {u ∈ K | uM ⊆ N}.

The dualizing module ω of R is also a torsion–free module of rank 1, hence
M∗ = {u ∈ K | uM ⊆ ω}. For an embedded module M ⊆ R̃ we define the
conductor to be

C(M) = AnnR(R̃ ·M/M) = HomR(R̃ ·M,M) = {r ∈ K | rR̃M ⊆M}.
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Obviously, C(M) is independent of the chosen embedding M ⊆ R̃ and not only
a R–module, but also a R̃–module. For notational convenience we will always
embed ω ⊆ R̃ such that R̃ω = R̃.

We proceed by considering rings which describe curve singularities which are
not listed in 5). For those we have the following list, where for each entry we
assume that the ring is not of a type considered before [GK, Lemma 2]:

1. unibranched singularities, R̃ = k[[t]]

(a) R ⊆ k + t4R̃, unibranched singularities of multiplicity ≥ 4

(b) R ⊆ k + kt3 + t6R̃, unibranched singularities of multiplicity 3, not
E6, E8, E

−

6 , or E−

8

2. bibranched singularities, R̃ = k[[t]]2

(a) R ⊆ k + t2R̃, two branches of multiplicity ≥ 2

(b) R ⊆ k+ k(t3, t)R̃, one branch of multiplicity 3 and a smooth branch

(c) R ⊆ k+k(t2, t)+(t4, t2)R̃, a A2δ, δ ≥ 2, singularity with a tangential
smooth branch

3. tribranched singularities, R̃ = k[[t]]3

(a) R ⊆ k + (t2, t, t)R̃, three branches, at least one of which is singular

(b) R ⊆ k+k(t, t, t)+t2R̃, three smooth branches with a common tangent

4. singularities with four or more branches, R ⊆ R̃ = k[[t]]n for n ≥ 4

Now the proof has to be done case by case. While the arguments are similar
in each case, there seems to be no way to unify some cases because we need very
specific knowledge about the dual module in each case.

Case 1a. Here R = k[[ϕi]] ⊂ k[[t]] = R̃ with ordϕi ≥ 4. We show that

Mλ =
〈

1, t2 + λt3
〉

+ t4R̃ ⊂ R̃

is a family of pairwise non–isomorphic modules, which are self–dual for nearly
all λ ∈ k.

Assume Mλ
∼= Mµ, i.e., uMλ = Mµ for some u ∈ K. Because 1 is an element

of minimal order in Mλ as well asMµ, we get u ∈ R̃∗. From u = u1 ∈Mµ we get
u = α1+β(t2+µt3)+. . . with α 6= 0. Finally, u(t2+λt3) = α(t2+λt3)+. . . ∈Mµ

implies λ = µ.

We compute the dual of Mλ,

M∗

λ = {u ∈ K | uMλ ⊆ ω} = {u ∈ ω | u(t2 + λt3) ∈ ω, ut4R̃ ⊆ ω}.

Since we do not know ω, we have to partially determine it at the same time!
Choose c ∈ N such that C(ω) = tcR̃. Let u ∈ M∗

λ . From ut4R̃ ⊆ ω, we get

u ∈ t−4C(ω) = tc−4R̃. As obviously C(ω) ⊆M∗

λ , we may compute M∗

λ modulo

C(ω) and assume that u =
∑4

i=1 uit
c−i.
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We claim that ω contains an element tc−2 + ϑtc−1 for some ϑ ∈ k. We
cannot have M∗

λ ⊆ tc−3R̃ for nearly all λ, because otherwise the condition
(t2 + λt3)u ∈ ω — and thus M∗

λ — is independent of λ. Hence, we can find a

z ∈ M∗

λ \ tc−3R̃ ⊆ tc−4R̃ for general λ and z(t2 + λt3) ∈ ω will be the desired
element after multiplication by a suitable element of k∗.

Using the element tc−2+ϑtc−1 ∈ ω and tc−1 6∈ ω, the condition u(t2+λt3) =
u4t

c−2+(u3+λu4)t
c−1 ∈ ω is equivalent to u3+λu4 = ϑu4 or u3 = (ϑ−λ)u4, i.e.,

u = u4t
c−4 +u4(ϑ−λ)t

c−3 + . . .. Now we know that the above element z can be
taken to be z = tc−4+(ϑ−λ)tc−3+. . .. Since obviouslyM∗

λ∩t
c−2R̃ = ω∩tc−2R̃,

we find
M∗

λ =
〈

z, tc−2 + ϑtc−1
〉

+ tcR̃.

Multiplying M∗

λ by z−1,

z−1M∗

λ =
〈

1, (t4−c − (ϑ− λ)t5−c)(tc−2 + ϑtc−1)
〉

+ t4R̃

=
〈

1, t2 + λt3
〉

+ t4R̃ = Mλ,

proves that Mλ is self–dual for nearly all λ.

Case 1b. This time R = k[[t3, ϕi]] ⊂ k[[t]] = R̃ with ordϕi ≥ 7. We claim
that

Mλ =
〈

1, t3, t4 + λt5
〉

+ t6R̃ ⊂ R̃

is a family of pairwise non–isomorphic modules, which are self–dual for nearly
all λ ∈ k.

Assume that Mλ
∼= Mµ, i.e., there exist an u ∈ K such that uMλ = Mµ.

As 1 ∈ Mλ,Mµ ⊆ R̃, we get u ∈ R̃∗. Since u = u1 ∈ Mµ we find u =
α1 + βt3 + γ(t4 + µt5) + . . . with α, β, γ ∈ k and α 6= 0. Finally, u(t4 + λt5) =
α(t4 + λt5) + . . . ∈Mµ implies λ = µ.

Now we compute the dual of Mλ,

M∗

λ = HomR(Mλ, ω) = {u ∈ K | uMλ ⊆ ω}

=
{

u ∈ ω | ut3, u(t4 + λt5) ∈ ω, ut6R̃ ⊆ ω
}

⊇ C(ω).

Choose c ∈ N such that C(ω) = tcR̃ and let u ∈ M∗

λ . From ut6R̃ ⊆ ω, we find

u ∈ tc−6R̃. We compute M∗

λ modulo C(ω) and assume u =
∑6

i=1 uit
c−i.

We claim that ω ∩ tc−3R̃ =
〈

tc−3 + σtc−1, tc−2 + ϑtc−1
〉

for some σ, ϑ ∈ k.

As tc−1 6∈ ω, ω∩ tc−3R̃ modulo C(ω) must have dimension less than 3. Further,
we must have M∗

λ 6⊆ tc−5R̃ for nearly all λ, because otherwise the restriction
u(t4 + λt5) ∈ ω on u — and with it M∗

λ — does not depend on λ. Now if

z ∈M∗

λ \ tc−5R̃ ⊂ tc−6R̃ then t3z, (t4 +λt5)z ∈ ω are the desired elements after
some normalization.

Knowing a basis for ω∩ tc−3R̃ modulo C(ω), the computation of M∗

λ is easy.
From

ut3 = u6t
c−3 + u5t

c−2 + u4t
c−1 ∈ ω

u(t4 + λt5) = u6t
c−2 + (u5 + λu6)t

c−1 ∈ ω
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we get u4 = σu6 + ϑu5 and ϑu6 = u5 + λu6, i.e., u5 = (ϑ − λ)u6, u4 =
(σ + ϑ2 − λϑ)u6, and

u = u6t
c−6 + u6(ϑ− λ)tc−5 + u6(σ + ϑ2 − λϑ)tc−4 + . . . .

We already argued above for the existence of an element z ∈M∗

λ \ tc−5R̃ ⊂

tc−6R̃ for nearly all λ. Now we know that it can be taken to be

z = tc−6 + (ϑ− λ)tc−5 + (σ + ϑ2 − λϑ)tc−4 + . . .

and all other elements of a basis of M∗

λ/C(ω) can be taken out of tc−3R̃ ∩M∗

λ .

Using the obvious M∗

λ ∩ tc−3R̃ = ω ∩ tc−3R̃, we find

M∗

λ =
〈

z, tc−3 + σtc−1, tc−2 + ϑtc−1
〉

+ tcR̃ =
〈

z, t3z, tc−2 + ϑtc−1
〉

+ tcR̃.

Multiplying M∗

λ with z−1 ∈ K, we get

z−1M∗

λ =
〈

1, t3, (t6−c − (ϑ− λ)t7−c)(tc−2 + ϑtc−1)
〉

+ t6R̃

=
〈

1, t3, t4 + λt5
〉

+ t6R̃ = Mλ,

showing that Mλ is self–dual for nearly all λ.

Case 2a. The local ring is R = k[[(ϕi, ψi)]] ⊆ R̃ = k[[t]]2 with
ord (ϕi), ord (ψi) ≥ 2. We will show that

Mλ = 〈1 = (1, 1), (t, λt)〉 + t2R̃ ⊆ R̃

is a family of pairwise non–isomorphic modules, whose general member is self–
dual.

AssumeMλ
∼= Mµ by multiplication by an element u ∈ K. By 1 ∈Mλ,Mµ ⊂

R̃ we find u ∈ R̃∗. From 1 ∈ Mλ we get u = u1 ∈Mµ, thus u = α1+β(t, µt)+. . .,
α 6= 0. Finally, u(t, λt) = α(t, λt) + . . . ∈Mµ implies λ = µ.

We start computing the dual module of Mλ

M∗

λ = {(u, v) ∈ K ⊂ k((t))2 | (u, v)Mλ ⊆ ω}

= {(u, v) ∈ ω | (ut, vλt) ∈ ω, (u, v)t2R̃ ⊆ ω} ⊇ C(ω).

Choose c1, c2 ∈ N with C(ω) = (tc1 , tc2)R̃ and compute modulo C(ω). The
condition (u, v)t2R̃ ⊆ ω is equivalent to (u, v) ∈ t−2C(ω) = (tc1−2, tc2−2)R̃.
We claim that ω contains an element (tc1−1, ϑtc2−1) with ϑ 6= 0. We note that
M∗

λ 6⊆ (tc1−1, tc2−1)R̃ for nearly all λ, because otherwise (ut, vλt) ∈ ω imposes
no restriction on (u, v) and M∗

λ would be independent of λ. Hence, for general λ

we find an element z ∈ M∗

λ \ (tc1−1, tc2−1)R̃ ⊆ (tc1−2, tc2−2)R̃, and multiplying
it by (t, λt) we get the desired element, recalling that (tc1−1, 0), (0, tc2−1) 6∈ ω
by the definition of c1 and c2.

Now it is easy to determine the elements

(u, v) = (u2t
c1−2 + u1t

c1−1, v2t
c2−2 + v1t

c2−1) ∈M∗

λ .
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(ut, vλt) = (u2t
c1−1, v2λt

c2−1) ∈ ω is equivalent to u2ϑ = v2λ, i.e.,

(u, v) =
(

v2
λ
ϑ
tc1−2 + u1t

c1−1, v2t
c2−2 + v1t

c2−1
)

.

In particular, the above element z may be taken to be z = (λ/ϑ · tc1−2 +
z1t

c1−1, tc2−2 + z̄1t
c2−1) and all additional elements for a basis of M∗

λ/C(ω)

can be found in (tc1−1, tc2−1)R̃. Using the obvious ω ∩ (tc1−1, tc2−1)R̃ = M∗

λ ∩

(tc1−1, tc2−1)R̃, we obtain

M∗

λ =
〈

z, (tc1−1, ϑtc2−1)
〉

+ (tc1 , tc2)R̃.

Clearly, z−1M∗

λ = Mλ for nearly all λ, thus Mλ is self–dual.

Case 2b. Here the ring is R = k[[(ϕi, ψi)]] ⊂ R̃ = k[[t]]2 with ordϕi ≥ 3,
ordψi ≥ 1. We show that

Mλ =
〈

1, (t+ λt2, 1)
〉

+ (t3, t)R̃

is a family of pairwise non–isomorphic, self–dual modules.

Let Mλ
∼= Mµ, i.e., uMλ = Mµ for an element u ∈ K. By 1 ∈Mλ,Mµ ⊆ R̃

we find u ∈ R̃∗. From u1 ∈ Mµ we know u = α1 + β(t + µt2, 1) + . . . with
α 6= 0. At last, from u(t+ λt2, 1) = (αt+ (αλ+ β)t2, α+ β) + . . . ∈Mµ we get
α = α+ β and αλ + β = αµ, in particular λ = µ.

Let us compute the dual of Mλ,

M∗

λ = {(u, v) ∈ K ⊂ k((t))2 | (u, v)Mλ ⊆ ω}

= {(u, v) ∈ ω | (u(t+ λt2), v) ∈ ω, (ut3, vt)R̃ ⊆ ω} ⊇ C(ω).

Choose again c1, c2 ∈ N such that C(ω) = (tc1 , tc2)R̃, and compute modulo
C(ω). From (t3u, tv)R̃ ⊆ ω we get (u, v) ∈ (tc1−3, tc2−1)R̃.

Our first task is — as always — to determine the canonical module partially.
We claim that

(tc1−3, σtc2−1), (tc1−2, ϑtc2−1), (tc1−1, ̺tc2−1) for some σ, ϑ, ̺ ∈ k, ̺ 6= 0

is a basis for (ω ∩ (tc1−3, tc2−1)R̃)/C(ω). First, we note that for nearly all λ,
M∗

λ 6⊆ (tc1−2, tc2−1)R̃, because otherwise the condition (u(t + λt2), v) ∈ ω —
and hence M∗

λ — does not depend on λ. Therefore, for some λ we can find an
element

ξ = (tc1−3 + ξ2t
c1−2 + ξ1t

c1−1, ξ̄1t
c2−1) ∈M∗

λ ⊆ ω.

Multiplying by (t+ λt2, 1) ∈Mλ, we find the following element in ω

ζ = (tc1−2 + (ξ1 + λ)tc1−1, ξ̄1t
c2−1) ∈ ω.

Next, we note that M∗

λ modulo C(ω) cannot be a one–dimensional vector space,
because otherwise multiplication of M∗

λ with the inverse of a basis element of
M∗

λ/C(ω) that is chosen with non–zero components of the smallest possible
order shows that the M∗

λ are all isomorphic to a finite collection of modules,
which is impossible. From dimM∗

λ/C(ω) ≥ 2 we deduce the existence of an
element

̺ = (tc1−1, ¯̺tc2−1) ∈ ω,
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because either M∗

λ ⊆ ω contains such an element ̺ or M∗

λ contains (tc1−2 +
. . . , . . .) and we obtain ̺ as the product of this element with (t+λt2, 1). Because
(tc1−1, 0) 6∈ ω, the triple (ξ, ζ, ̺) is a basis of (ω∩ (tc1−3, tc2−1)R̃)/C(ω). A base
change proves the claim.

Now the computation of dual module M∗

λ is straight forward. Since (u, v) ∈

ω ∩ (tc1−3, tc2−1)R̃, it is a linear combination of the above basis elements, i.e.,

(u, v) = (αtc1−3 + βtc1−2 + γtc1−1, (ασ + βϑ+ γ̺)tc2−1).

The condition

(u(t+ λt2), v) = (αtc1−2 + (αλ + β)tc1−1, (ασ + βϑ+ γ̺)tc2−1) ∈ ω

is equivalent to ασ+βϑ+γ̺ = αϑ+(αλ+β)̺ or γ = (ϑ−σ+λ̺)/̺·α+(̺−ϑ)/̺·β.
Therefore,

M∗

λ =
〈

(tc1−3 + ϑ−σ+λ̺
̺

tc1−1, (ϑ+ λ̺)tc2−1), (tc1−2 + ̺−ϑ
̺
tc1−1, ̺tc2−1)

〉

+ C(ω)

=
〈

z := (tc1−3 + ̺−ϑ−λ̺
̺

tc1−2 + . . . , ̺tc2−1), (tc1−2 + ̺−ϑ
̺
tc1−1, ̺tc2−1)

〉

+ C(ω)

and z−1M∗

λ = Mλ shows that Mλ is self–dual.

Case 2c. We may assume that the overring R is

R = k[[(t2, t), (t2δ+1, ϕ1), (0, ϕi)]] with δ ≥ 2, ordϕ1, ordϕi ≥ 2.

This time
Mλ =

〈

1, (t2, t), (t2 + λt3, 0)
〉

+ (t4, t2)R̃

is a family of pairwise non–isomorphic modules, which are self–dual for nearly
all λ ∈ k.

Assume Mλ
∼= Mµ by multiplication by u ∈ K. The usual argument yields

u ∈ R̃∗ and Mµ ∋ u = u1 = α1 + β(t2, t) + . . . with α 6= 0. Therfore, u(t2 +
λt3, 0) = α(t2 + λt3, 0) + . . . ∈Mµ yields λ = µ.

We find the dual module as

M∗

λ = {(u, v) ∈ K ⊂ k((t))2 | (u, v)Mλ ⊆ ω}

= {(u, v) ∈ ω | (u(t2 + λt3), 0) ∈ ω, (ut4, vt2)R̃ ⊆ ω} ⊇ C(ω).

Again, choose c1, c2 ∈ N with C(ω) = (tc1 , tc2)R̃ and compute modulo C(ω).
The condition (ut4, vt2)R̃ ⊆ ω implies M∗

λ ⊆ (tc1−4, tc2−2)R̃.

We need to get a grip on ω ∩ (tc1−2, tc2−1)R̃. We claim that a basis of it
modulo C(ω) is given by two elements

(tc1−1, σtc2−1), (tc1−2 + ϑtc1−1, 0) for some σ, ϑ ∈ k, σ 6= 0.

We note that M∗

λ 6⊆ (tc1−3, tc2−2)R̃ for nearly all λ, because otherwise the con-
dition (u(t2 +λt3), 0) ∈ ω — and thus M∗

λ — does not depend on λ. Therefore,
we find an element z = (tc1−4 + z3t

c1−3 + . . . , z̄2t
c2−2 + z̄1t

c2−1) ∈M∗

λ and

ζ = (t2, t)z = (tc1−2 + z3t
c1−1, z̄2t

c2−1) ∈M∗

λ ⊆ ω as well as

̺ = (t2 + λt3, 0)z = (tc1−2 + (z3 + λ)tc1−1, 0) ∈ ω.
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As the vector space (ω∩(tc1−2, tc2−1)R̃)/C(ω) has dimension at most three and
(tc1−1, 0) 6∈ ω, the elements ζ, ̺ are a basis of it. A base change proves the
claim.

We proceed with the computation of the dual module. Let (u, v) =

(
∑4

i=1 uit
c1−i,

∑2
i=1 vit

c2−i) ∈M∗

λ. The requirements

(t2, t)(u, v) = (u4t
c1−2 + u3t

c1−1, v2t
c2−1) ∈ M∗

λ ⊆ ω

(t2 + λt3, 0)(u, v) = (u4t
c1−2 + (u3 + λu4)t

c1−1, 0) ∈ ω

imply v2 = σ(u3 − ϑu4) and u3 + λu4 = ϑu4 or equivalently v2 = −σλu4 and
u3 = (ϑ− λ)u4, thus elements of M∗

λ look like

(u, v) = (u4t
c1−4 + u4(ϑ− λ)tc1−3 + . . . ,−u4σλt

c2−1 + . . .).

In particular, we may take the above mentioned element z as

z = (tc1−4 + (ϑ− λ)tc1−3 + . . . ,−σλtc2−1 + . . .),

and z together with some elements of (tc1−1, tc2−1)R̃ form a basis of M∗

λ/C(ω).

Now with the obvious M∗

λ ∩ (tc1−2, tc2−1)R̃ = ω ∩ (tc1−2, tc2−1)R̃, we get for
nearly all λ

M∗

λ =
〈

z, (tc1−1, σtc2−1), (tc1−2 + ϑtc1−1, 0)
〉

+ C(ω)

=
〈

z, (t2, t)z, (tc1−2 + ϑtc1−1, 0)
〉

+ C(ω).

Multiplication of M∗

λ with z−1,

z−1M∗

λ =
〈

1, (t2, t), (t2 + λt3, 0)
〉

+ (t4, t2)R̃ = Mλ,

reveals that Mλ is self–dual for nearly all λ.

Case 3a. We assume that the first branch is singular, thus

R = k[[(ϕi, ψi, ̺i)]] ⊂ k[[t]]3 with ordϕi ≥ 2, ordψi, ̺i ≥ 1.

This time
Mλ = 〈1, (λt,−1, 1)〉+ (t2, t, t)R̃

will be a family of pairwise non–isomorphic modules, which are self–dual for
nearly all λ.

Let Mλ
∼= Mµ by multiplication by an element u ∈ K. By the usual

arguments u = α1 + β(µt,−1, 1) + . . . with α 6= 0. From u(λt,−1, 1) =
α(λt,−1, 1) + . . . ∈Mµ we conclude λ = µ.

The dual module of Mλ is

M∗

λ = {(u, v, w) ∈ K ⊂ k((t))3 | (u, v, w)Mλ ⊆ ω}

= {(u, v, w) ∈ ω | (λtu,−v, w) ∈ ω, (ut2, vt, wt)R̃ ⊆ ω} ⊇ C(ω).

Choose c1, c2, c3 ∈ N with C(ω) = (tc1 , tc2 , tc3)R̃ and compute modulo C(ω).
From the condition (ut2, vt, wt)R̃ ⊂ ω, i.e., (ut2, vt, wt) ∈ C(ω), we obtain
(u, v, w) = (u2t

c1−2 + u1t
c1−1, v1t

c2−1, w1t
c3−1) mod C(ω).
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We claim that ω ∩ (tc1−1, tc2−1, tc3−1)R̃ has modulo C(ω) a basis

(tc1−1, 0, σtc3−1), (0, tc2−1, ϑtc3−1) for some σ, ϑ ∈ k \ {0}.

To prove this, we note first that dimM∗

λ/C(ω) ≥ 2 for general λ, because
there are only finitely many non–isomorphic modules with dimM∗

λ/C(ω) ≤ 1.
Namely, M∗

λ = C(ω) can at most hold for one special λ. If dimM∗

λ/C(ω) = 1,
we can choose a z ∈ M∗

λ \ C(ω) ⊂ k[[t]]3 where all components of z are non–
zero and of the smallest possible order. Write z = z∗z̄ with z∗ ∈ R∗ and z̄ ∈
{tc1−2, tc1−1, tc1} × {tc2−1, tc2} × {tc3−1, tc3}, then (z∗)−1M∗

λ = kz̄ + (t2, t, t)R̃.

Multiplying the elements of M∗

λ/C(ω) by (λt,−1, 1) yields elements of

ω ∩ (tc1−1, tc2−1, tc3−1)R̃/C(ω). If one non–zero element y ∈ M∗

λ/C(ω) were
mapped to zero by this multiplication, then y must be y = (y1t

c1−1, 0, 0) +
C(ω) ⊆M∗

λ +C(ω) ⊆ ω, which contradicts the definition of C(ω). This implies

that the vector space ω∩(tc1−1, tc2−1, tc3−1)R̃/C(ω) is at least two dimensional.
However, since (tc1−1, 0, 0), (0, tc2−1, 0), (0, 0, tc3−1) are not contained in ω, this
vector space must be of dimension two; in particular, we can find a basis like
the above claimed one.

Now we attack the computation of the dual moduleM∗

λ . The above condition
(λtu,−v, w) ∈ ω is now seen to be equivalent to w1 = σλu2−ϑv1. We note that
M∗

λ 6⊆ (tc1−1, tc2−1, tc3−1)R̃ for nearly all λ, because otherwise the condition
(λtu,−v, w) ∈ ω — and thus M∗

λ — does not depend on λ. Therfore, for a

general λ we find a z̃ ∈M∗

λ \ (tc1−1, tc2−1, tc3−1)R̃ of the form

z̃ = (tc2−1 + z1t
c1−1, z2t

c2−1, (σλ− ϑz2)t
c3−1).

The remaining basis elements of M∗

λ/C(ω) can be found inside M∗

λ ∩

(tc1−1, tc2−1, tc3−1)R̃/C(ω). Due to M∗

λ ⊆ ω they are all of the form

(u1t
c1−1, v1t

c2−1, (u1σ + v1ϑ)tc3−1).

The product of such an element with (λt,−1, 1),

(0,−v1t
c2−1, (u1σ + v1ϑ)tc3−1)

must lie inside ω, i.e., −v1ϑ = u1σ + v1ϑ or equivalently u1 = −2ϑ/σ · v1.
Therefore, M∗

λ ∩ (tc1−1, tc2−1, tc3−1)R̃/C(ω) is generated by

y := (−2ϑ
σ
tc1−1, tc2−1,−ϑtc3−1).

In the whole we find

M∗

λ = 〈z̃, y〉 + C(ω) =
〈

z̃ +
(

−z2 + σλ
2ϑ

)

y,−σλ
2ϑ
y
〉

+ C(ω)

=
〈

z :=
(

tc1−2 + . . . , σλ
2ϑ
tc2−1, σλ

2 t
c3−1

)

,
(

λtc1−1,−σλ
2ϑ
tc2−1, σλ

2 t
c3−1

)〉

+ C(ω).

Multiplication by z−1,

z−1M∗

λ =
〈

1, (λtc1−1,−tc2−1, tc3−1)
〉

+ C(ω) = Mλ,

reveals that Mλ is self–dual for nearly all λ.
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Case 3b. The local ring may be taken to be

R = k[[(t, t, t), (0, ϕi, ψi)]] ⊂ R̃ = k[[t]]3 with ordϕi, ψi ≥ 2.

Here
Mλ = 〈1, (t, t, t), (0, t, λt)〉 + t2R̃

will be a family of pairwise non–isomorphic modules, which are self–dual for
nearly all λ.

Let Mλ
∼= Mµ by multiplication by u ∈ K. By the usual argument µ =

α1 + β(t, t, t) + . . . for α 6= 0. From u(0, t, λt) = α(0, t, λt) + . . . ∈ Mµ, we get
λ = µ.

The dual module of M∗

λ is

M∗

λ = {(u, v, w) ∈ K ⊂ k((t))3 | (u, v, w)Mλ ⊆ ω}

= {(u, v, w) ∈ ω | (0, tv, λtw) ∈ ω, (u, v, w)t2R̃ ⊂ ω} ⊇ C(ω).

As always we choose c1, c2, c3 ∈ N with C(ω) = (tc1 , tc2 , tc3)R̃ and compute
modulo C(ω). The condition (u, v, w)t2R̃ ⊂ ω is equivalent to (u, v, w) ∈
(tc1−2, tc2−2, tc3−2)R̃.

We claim that (ω ∩ (tc1−1, tc2−1, tc3−1)R̃)/C(ω) has a basis

(tc1−1, 0, σtc3−1), (0, tc2−1, ϑtc3−1) for some σ, ϑ ∈ k \ {0}.

M∗

λ cannot be contained in (tc1−2, tc2−2, tc3−1)R̃ for nearly all λ, because oth-
erwise the condition (0, tv, λtw) ∈ ω — and thus M∗

λ — does not depend on λ.
Therefore, for general λ we find a z = (z1t

c1−2+. . . , z2t
c2−2+. . . , z3t

c3−2+. . .) ∈
M∗

λ \ (tc1−2, tc2−2, tc3−1)R̃, i.e., z3 6= 0, and further

(t, t, t)z = (z1t
c1−1, z2t

c2−1, z3t
c3−1) ∈M∗

λ ⊆ ω

(0, t, λt)z = (0, z2t
c2−1, z3λt

c3−1) ∈ ω.

Since (0, 0, tc3−1) 6∈ ω, the above vectors must be linearly independent and z1, z2
must be non–zero — at least for λ 6∈ {0, 1}. A coordinate change takes these
vector to the above described vectors. By the definition of C(ω) the vector
space (ω ∩ t−1C(ω))/C(ω) cannot be t−1C(ω)/C(ω) itself, hence it is at most
two–dimensional and the two linear independent vectors in question form a
basis.

Now the computation of M∗

λ is straight forward. Let (u, v, w) ∈M∗

λ , it must
satisfy the conditions

(tu, tv, tw) = (u2t
c1−1, v2t

c2−1, w2t
c3−1) ∈ ω

(0, tv, λtw) = (0, v2t
c2−1, w2λt

c3−1) ∈ ω.

Using the above basis, they are equivalent to w2 = u2σ + v2ϑ and w2λ = v2ϑ
or u2 = (1 − λ)/σ · w2 and v2 = λ/ϑ · w2, i.e.,

(u, v, w) =
(

w2
1−λ

σ
tc1−2 + . . . , w2

λ
ϑ
tc2−2 + . . . , w2t

c3−2 + . . .
)

.
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Hence, the above mentioned vector z can be taken to be the above vector with
w2 = 1 and all further elements of a basis of M∗

λ/C(ω) can be found in t−1C(ω).
Using the obvious M∗

λ ∩ t−1C(ω) = ω ∩ t−1C(ω) we get

M∗

λ =
〈

z, (tc1−1, 0, σtc3−1), (0, tc2−1, ϑtc3−1)
〉

+ (tc1 , tc2 , tc3)R̃

=
〈

z, (t, t, t)z, (0, tc2−1, ϑtc3−1)
〉

+ (tc1 , tc2 , tc3)R̃.

Multiplication by z−1 yields z−1M∗

λ = Mλ, thus Mλ is self–dual for nearly all λ.

Case 4. In the last case we only assume that the singularity has b ≥ 4
branches, i.e., R ⊆ k[[t]]b and R/tR̃ = 〈1〉. For notational convenience we treat
only the case b = 4, the general case is the same — the occurring elements only
need to be extended in the obvious way. We will show that

Mλ = 〈1, (0, 1, 2, λ)〉+ (t, t, t, t)R̃

is a family of pairwise non–isomorphic modules which are self–dual for nearly
all λ.

Let Mλ
∼= Mµ by multiplication by u ∈ K. The usual argument yields

u ∈ R̃∗. From u = u1 ∈ Mµ we get u = α1 + β(0, 1, 2, µ) + . . .. The condition
u(0, 1, 2, λ) = α(0, 1, 2, λ) + . . . ∈Mµ implies λ = µ.

We start with the computation of the dual module of Mλ,

M∗

λ = {(u, v, w, x) ∈ K ⊂ k((t))4 | (u, v, w, x)Mλ ⊆ ω}

= {(u, v, w, x) ∈ ω | (0, v, 2w, λx) ∈ ω, (ut, vt, wt, xt)R̃ ⊆ ω} ⊇ C(ω).

Choose ci ∈ N with C(ω) = (tc1 , tc2 , tc3 , tc4)R̃ and compute modulo C(ω).
The condition (ut, vt, wt, xt)R̃ ⊆ ω is equivalent to (u, v, w, x) ∈ t−1C(ω) or
(u, v, w, x) = (u1t

c1−1, v1t
c2−1, w1t

c3−1, x1t
c4−1).

We claim that the vector space (ω ∩ t−1C(ω))/C(ω) is three–dimensional
and thus possesses a basis

(tc1−1, 0, 0, σtc4−1), (0, tc2−1, 0, ϑtc4−1), (0, 0, tc3−1, ̺tc4−1)

for some σ, ϑ, ̺ ∈ k \ {0}. First the vector space cannot be four–dimensional,
because in that case t−1C(ω) ⊆ ω which contradicts the definition of C(ω).
If the vector space has dimension d ≤ 2, the condition (u, v, w, x) ∈ ω im-
poses 4 − d homogeneous linear relations on u1, v1, w1, x1. The condition
(0, v, 2w, λx) ∈ ω must impose at least one further relation on u1, v1, w1, x1,
because otherwise there would be no restriction on (u, v, w, x) depending on λ.
Therefore, there would be at least three relations and dimM∗

λ/C(ω) ≤ 1. An
argument like in the case 3a shows that this is impossible. Hence, the vector
space (ω∩t−1C(ω))/C(ω) is three–dimensional and recalling that (tc1−1, 0, 0, 0),
(0, tc2−1, 0, 0), (0, 0, tc3−1, 0), (0, 0, 0, tc4−1) 6∈ ω, we can obviously find a base
like above.

Now we can proceed with the computation of M∗

λ . The conditions

(u, v, w, x) = (u1t
c1−1, v1t

c2−1, w1t
c3−1, x1t

c4−1) ∈ ω

(0, v, 2w, λx) = (0, v1t
c2−1, 2w1t

c3−1, λx1t
c4−1) ∈ ω
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are now seen to be equivalent to x1 = u1σ + v1ϑ+ w1̺ and λx1 = v1ϑ+ 2w1̺
or u1 = (̺w1 +(1−λ)x1)/σ and v1 = (−2̺w1 +λx1)/ϑ. Plugging in (w1, x1) =
(λ(λ − 1), 2̺) resp. (2λ(λ − 1), 2̺λ), we obtain a basis for M∗

λ modulo C(ω),
namely

M∗

λ =
〈

z :=
(

̺(λ−2)(λ−1)
σ

, 2̺λ(2−λ)
ϑ

, λ(λ− 1), 2̺
)

,
(

0, 2̺λ(2−λ)
ϑ

, 2λ(λ− 1), 2̺λ
)〉

+ C(ω).

Multiplying M∗

λ by z−1 yields Mλ, showing that Mλ is self–dual.

Higher Rank. We obtain modules of higher rank by using the ideas of Greuel
and Knörrer. Let E be the identity matrix of size n and Jλ the Jordan matrix
of size n consisting of only one block with eigenvalue λ ∈ k. The following table
contains families of indecomposable, torsion–free, self–dual modules of rank n

Case Mλ ⊆ R̃n

1a Rn + (t2E + t3Jλ)Rn + t4R̃n

1b Rn + (t4E + t5Jλ)Rn + t6R̃n

2a Rn + ((t, 0)E + (0, t)Jλ)Rn + t2R̃n

2b Rn + ((t, 1)E + (t2, 0)Jλ)Rn + (t3, t)R̃n

2c Rn + ((t2, 0)E + (t3, 0)Jλ)Rn + (t4, t2)R̃n

3a Rn + ((0,−1, 1)E + (t, 0, 0)Jλ)Rn + (t2, t, t)R̃n

3b Rn + ((0, t, 0)E + (0, 0, t)Jλ)Rn + t2R̃n

4 Rn + ((0, 1, 2, 0)E + (0, 0, 0, 1)Jλ)Rn + tR̃n

The modules are of rank n and torsion–free, because they contain Rn and
are contained in R̃n. They are pairwise nonisomorphic and indecomposable by
the same arguments as in the proof of [GK, Lemma 4]. It remains to show that
they are self–dual. The computation of the dual module

M∗

λ = {u ∈ Kn | ut ·Mλ ⊆ ω}

is notationally more inconvenient as in the rank 1 case, but easier because we
now know ω already — at least partially. Finding the isomorphism between
Mλ and M∗

λ is more difficult as before, but not too hard, since it is given by a
multiplication by an matrix of GL(n,K).
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