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Abstract

On a smooth curve a theta–characteristic is a line bundle L with square
that is the canonical line bundle ω. The equivalent conditionHom(L, ω) ∼=
L generalizes well to singular curves, as applications show. More pre-
cisely, a theta–characteristic is a torsion–free sheaf F of rank 1 with
Hom(F , ω) ∼= F . If the curve has non ADE–singularities then there
are infinitely many theta–characteristics. Therefore, theta–characteristics
are distinguished by their local type. The main purpose of this article
is to compute the number of even and odd theta–characteristics (i.e. F
with h0(C,F) ≡ 0 resp. h0(C,F) ≡ 1 modulo 2) in terms of the geometric
genus of the curve and certain discrete invariants of a fixed local type.

Mathematics Subject Classification (2000). 14H60, 14H42,
14H40.

A theta–characteristic on a smooth projective curve C over C is a line
bundle L whose square is the canonical bundle K. Let Θ be the set of all
theta–characteristics. If g is the genus of the curve, then there are 22g theta–
characteristics on C. Naturally, one would like to know the dimension of the
linear systems |L|, L ∈ Θ. However, these dimensions depend not only on the
genus alone, but also on the complex structure of the curve. Nevertheless, using
the his theory of theta–functions Riemann proved that the dimension modulo 2
depends only on the genus. If

Θ+ = {L ∈ Θ | h0(L) is even.}
Θ− = {L ∈ Θ | h0(L) is odd.}

are the even resp. odd theta–characteristics, then there are 2g−1(2g + 1) even
and 2g−1(2g − 1) odd theta–characteristics.

Atiyah gave another analytic proof of this, and Mumford the first algebraic
one [A, M]. Mumford’s ideas were refined and extended by Harris to include
singular curves into the theory — at least Gorenstein curves, for example plane
curves [H]. On a singular curve a line bundle is defined to be a locally free sheaf
of rank 1. Harris showed that the number of even and odd theta–characteristics
can be computed in terms of the genus of the curve and certain discrete invari-
ants of the singularaties. He also remarked that it would be desirable to be able
to treat torsion–free sheaves of rank 1 alongside with the line bundles. This is
what we want to do in this article.
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Let C be a connected, reduced Gorenstein curve with structure sheaf O and
(locally free) canonical sheaf ω. It makes no sense to call a torsion–free sheaf F
of rank 1 a theta–characteristic if F⊗F = ω, because this condition implies that
F is locally free. On a smooth curve L2 = K is equivalent to L = Hom(L,K),
and this generalizes well:

Definition A theta–characteristic on C is a torsion–free sheaf F of rank 1
which is isomorphic to HomO(F , ωC). The set of all theta–characteristics on
C is denoted by Θ.

We will see below that the curve C possesses infinitely many theta–
characteristics as soon as it has a singularity worse than an ADE–singularity.
Therefore, we will fix the local type of F :

Definition Let F be a torsion–free sheaf of rank 1, then the local type of F is
the collection of modules T = (Fp)p∈Sing C . The set of theta–characteristics of
type T is denoted by ΘT .

Since the stalk of a torsion–free sheaf at a smooth point is free, the above
definition captures all the local information. In particular, F is a line bundle iff
its local type is (Ox)x∈Sing C .

In Section 1 we will show that for any collection T = (Fp)p∈Sing C of self–
dual Op–modules at the singular points of an integral curve C, there exists a
theta–characteristic of type T . Further, we introduce the action of the line
bundles of order 2 on ΘT . Finally, the theta–characteristics on C are related
to the theta–characteristics on a partial normalization of C. These results will
be sufficient to deal with the curves with only ADE–singularities in Section 3.
In Section 2 we solve the main problem which was posed above: Compute the
number of even and odd theta–characteristics of a fixed local type T in terms of
the geometric genus of the curve and certain discrete invariants of the type T .

Among the applications of this article are the following: In [S] Sorger
asked which singular curves on a smooth surface have finitely many theta–
characteristics. For an integral curve C Proposition 1.3 together with the results
on the number of self–dual modules over a curve singularity [Pi2] imply that
these are precisely the curves with only ADE–singularities. We can compute
their number of theta–characteristics by using the tables given in Section 3.

Theta–characteristics in our general sense are used to find contact curves
to plane curves or to obtain symmetric determinantal representations of plane
curves. These ideas go back to Hesse for cubics and Dixon (1903) for smooth
curves of arbitrary degree. Modern surveys are contained in [B2, M–B]. The
generalized theta–characteristics correspond to systems of contact curves to the
original curve. The notion of the local type provides an easy way to describe
them. Previously, some authors classified these contact systems by examining
the behavior of their base points in certain blow–ups. For the above correspon-
dence it is essential to know the dimension of the linear system H0(F) of a
theta–characteristic F . Section 2 helps by computing the number of even and
odd theta–characteristics of a fixed local type. For a curve of small degree or by
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using some another additional information the number of theta–characteristics
with a linear system of a fixed dimension can be recovered.

Certain systems of contact curves yield nets of quadrics whose discriminant
is the original curve. In [W1] Wall studied these nets, in particular on C4. In
the third section he describes mostly conjecturally the relation between these
nets and points of the compactified Jacobian of plane quartics. At least for
integral curves these conjectures can be extended from quadrics with only A–
singularities to all quartics and proved by first using Theorem [B2, 4.2] to relate
the nets of quadrics to theta–characteristics and then using the results and
tables of Section 3.

Finally, in Section 4 we give an application to the question in how many
different ways a plane quartic can be written as the sum of three squares of
conics.

1 Preliminary results

Our first aim is to ensure the existence of theta–characteristics with prescribed
local type. We start with the following remark about torsion–free sheaves of
rank 1. Here and in the following K will denote the function field sheaf on C.

Lemma 1.1 Let C be a reduced curve.

1. For any p ∈ SingC let Fp be a torsion–free Op–module of rank 1. Then
there exists a torsion–free subsheaf F of K of rank 1 whose local type is
T = (Fp)p∈Sing C .

2. Let F be a torsion–free sheaf of rank 1. Then for any line bundle L the
tensor product F ⊗ L is a torsion–free sheaf of rank 1 and the same local
type as F .

3. Two torsion–free sheaves F ,G of rank 1 and the same local type differ by
the multiplication with some line bundle, i.e., G ∼= F ⊗ L for some line
bundle L.

Proof. The sheaf F in the first statement must have the stalks Op at the smooth
points of C. Further, we may assume that Op ⊆ Fp ⊆ Kp, because any torsion–
free module can be embedded in this way. These stalks can be glued together
as

F(U) =
{
f ∈ K(U) | f |U\Sing C ∈ O(U \ SingC), lim

−→
f ∈ Fp

}
,

see [Coo, 3.1.1 a]. The second statement is obvious. Third follows from the fact
that isomorphisms between torsion–free sheaves are given locally by multiplying
with elements of K∗. These local multiplications define the line bundle L, see
[Coo, 3.1.3]. 2

All line bundles of degree 0 on every component of C are collected in the
generalized Jacobian JC. It possesses a natural structure of an algebraic group,
in fact we have:

Lemma 1.2 The generalized Jacobian is a divisible group.
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Proof. Compare [B1, 2.2]. Let π : C̃ → C be the normalization of C and Õ
the push forward of the structure sheaf of C̃. From the long exact sequence
associated to

1 → O∗ → Õ∗ →
∏

p∈Sing C

Õ∗p/O∗p → 1

we get

0 →

 ∏
p∈Sing C

Õ∗p/O∗p

 /(H0(Õ∗)/H0(O∗)) → JC
π∗→ JC̃ → 0.

The first group is a product of multiplicative and additive groups, hence divis-
ible. Since JC̃ is a product of complex tori, it is divisible as well. Thus JC is
divisible. For future reference we note that the sequence splits as a sequence of
Abelian groups. 2

Now we can prove the existence of theta–characteristics of a prescribed local
type.

Proposition 1.3 Let C be an reduced curve.

1. Let F be a theta–characteristic on C. Then the local type of F , T =
(Fp)p∈Sing C , is a collection of self–dual modules, i.e., Hom(Fp, ωp) ∼= Fp.

2. Any theta–characteristic F has degree ga − 1, where ga is the arithmetic
genus.

3. Let C be irreducible, and for any p ∈ SingC let Fp be a self–dual torsion–
free Op–module of rank 1. Then there exists a theta–characteristic F of
local type T = (Fp)p∈Sing C .

Proof. 1) This follows from the fact that the localization of the dualizing sheaf
of C at a point is the dualizing module of Op [Coo, 3.1.6].

2) The isomorphism F ∼= Hom(F , ω) implies by [Coo, 3.1.6]

degF = degHom(F , ω) = (2ga − 2)− degF .

3) By Lemma 1.1.1 we find a torsion–free sheaf G of local type T . By
assumption Hom(G, ω) has the same local type as G, hence there exists a line
bundle L such that Hom(G, ω) ∼= G ⊗L by Lemma 1.1.3. By [Coo, 3.1.6/7] the
degree of the line bundle L is

degL = degHom(G, ω)− deg G = −2 deg G + 2ga − 2 = 2(ga − deg G − 1).

Set d = ga − deg G − 1 and let p ∈ C be a smooth point. Then the line bundle
L(−2dp) has degree 0 and by Lemma 1.2 there exists a line bundle M with
M2 ∼= L(−2dp). Setting F = G ⊗M(dp), we get [Ha, II, Ex. 5.1 / III, 6.7]

Hom(F , ω) = Hom(G ⊗M(dp), ω) ∼= Hom(G, ω)⊗M∗(−dp)
∼= G ⊗ L ⊗M∗(−dp) ∼= G ⊗M(dp) = F . 2
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By [Pi2] the number of self–dual modules of rank 1 over the local ring of
a singularity is finite if and only if the singularity is an ADE–singularity or
a partial resolution of it. Therefore, the proposition implies that there exist
infinitely many theta–characteristics of any irreducible curve as soon as it has
a singularity worse than an ADE–singularity.

The irreducibility assumption in the last statement cannot be dropped. As
an example let C = L1 ∪ L2 be the union of two distinct lines in P2. We claim
that C does not posses a locally free theta–characteristic. Namely, assume that
F is such. Then Hom(F , ω) ∼= F is equivalent to F2 ∼= ω. Restricting to a line
yields (F |L1)

2 ∼= ω |L1 and

2 degF |L1= degω |L1= degωL1 + L1 · L2 = −2 + 1 = −1

by [C, Lemma 1.12], which is a contradiction. From now on we will always
assume that there exists at least one theta–characteristic of the type in question.

Lemma 1.1 implies that JC acts on the torsion–free sheaves of rank 1. If F is
a theta–characteristic, we cannot expect that F⊗L is also a theta–characteristic
for every line bundle L. However, it works for line bundles of order 2, we denote
them by J2C ⊆ JC.

Proposition 1.4 The group J2C acts on ΘT .

Proof. Let F be a theta–characteristic and L ∈ J2C. By Lemma 1.1 we only
need to show that F ⊗ L is a theta-characteristic. From L∗ ∼= L we get

Hom(F ⊗ L, ω) ∼= L∗ ⊗Hom(F , ω) ∼= L∗ ⊗F ∼= F ⊗ L. 2

This action is transitive, but in general not faithful. To prove this and more,
recall the following way to construct a partial normalization of a curve C:

Let A be an O–algebra sheaf on C that is finitely generated as an O–module.
Then there exists a unique partial normalization π̌ : Č → C such that the
push–down of the structure sheaf Ǒ := OČ is A. The functor π̌∗ induces an
equivalence of categories from the category of quasi–coherent Ǒ–modules on Č
to the category of quasi–coherent A–modules on C [Ha, II, Ex. 5.17]. For an
A–module sheaf F on C we denote by F̌ or π̌!F the sheaf on Č with π̌∗(F̌) = F .
Further, there are natural isomorphisms Hi(Č, F̌) ∼= Hi(C,F) [Ha, III, Ex. 4.1].
Finally, we recall the following lemma of Beauville [B1, 2.1]:

Lemma 1.5 Let F be a torsion–free sheaf of rank 1 on C and A = End(F).
Let L be a line bundle on C. Then F ⊗ L ∼= F if and only if π̌∗L is trivial.

Proposition 1.6 The group J2C acts transitively on the theta–characteristics
of a fixed local type T , ΘT .

Proof. For the transitivity let F ,G be two theta–characteristics of the same
type. By Lemma 1.1.3 there exists a line bundle L with G ∼= F ⊗ L. From the
theta–characteristic property of F ⊗ L and F we get

F ⊗ L ∼= Hom(F ⊗ L, ω) ∼= L∗ ⊗Hom(F , ω) ∼= L∗ ⊗F
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or F ∼= F ⊗ L2. By Lemma 1.5 the line bundle π̌∗L2 = (π̌∗L)2 is trivial, i.e.,
π̌∗L ∈ J2Č. With the same arguments as in the proof of Lemma 1.2 one shows
that JC is in a non–canonical way the direct product of JČ and another Abelian
group G, JC ∼= JČ × G, and hence J2C ∼= J2Č × G2. Therefore, we can find
an element M∈ J2C such that π̌∗M = π̌∗L. Lemma 1.5 and π̌∗(L⊗M∗) = Ǒ
implies

G ∼= G ⊗ L ⊗M∗ ∼= F ⊗M∗,

showing that G ∼= F ⊗M lies in the J2C–orbit of F . 2

We will apply the above construction to the sheaf A = End(F) for several
F of the same local type. For this the following lemma is essential:

Lemma 1.7 Let F be a torsion–free sheaf of rank 1 and local type T . The
O–algebra AT = End(F) depends only on the local type of F .

In particular, the partial normalization of C, π̌ : Č → C, determined by
End(F) depends only on the local type of F .

Proof. By Lemma 1.1.3 any other sheaf G of the same local type as F is of the
form F ⊗ L for a line bundle L, thus

End(G) = Hom(F ⊗ L,F ⊗ L) ∼= L∗ ⊗Hom(F ,F)⊗ L ∼= End(F). 2

Definition 1.8 Let A be an O–algebra on C like above. Let T = (Fp)p∈Sing C

be a collection of Op–modules which posses a structure as Ap–modules as well.
Then the corresponding collection of Ǒ–modules Ť = (F̌q)q∈π̌−1(Sing C) on Č is
the collection chosen such that Fp =

∏
q∈π̌−1(p) F̌q.

Here we slightly extended our notion of local type for notational convenience
by allowing the q to run through some smooth points as well.

Proposition 1.9 Let T be a local type on a reduced curve C, A its induced
algebra sheaf and π̌ : Č → C the partial normalization constructed out of it.

Then π̌∗ induces a bijection between the theta–characteristics of type T on
C and the theta–characteristics of type Ť on Č, which preserves the dimension
of the homology groups of the theta–characteristics.

Proof. It remains to show that a torsion–free sheaf F on C is a theta–
characteristic iff F̌ is a theta–characteristic on Č. Recall [Ha, III, Ex. 7.2]
that the dualizing sheaf ω̌ on Č is π̌!HomO(π̌∗Ǒ, ω) = π̌!HomO(A, ω). Let
F = π̌∗F̌ be a theta–characteristic on C of local type T , in particular it is an
A–module. We want to show that F̌ is a theta–characteristic on Č. We have
the isomorphisms

HomA(F , π̌∗ω̌) = HomA(F ,HomO(A, ω)) ∼= HomO(F , ω) ∼= F ;

here the middle isomorphism is given by locally evaluating at 1 ∈ A; its inverse
is given by assigning to ψ ∈ HomO(F , ω) the map ϕ(f)(a) := ψ(af).

Using the category equivalence induced by π̌∗, we find HomǑ(F̌ , ω̌) ∼= F̌ ,
i.e., F̌ is a theta–characteristic on Č.
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Now, if F̌ is a theta–characteristic on Č, the above argument can be reversed.
F̌ ∼= HomǑ(F̌ , ω̌) implies

F = π̌∗F̌ ∼= HomA(π̌∗F̌ , π̌∗ω̌) = HomA(F ,HomO(A, ω)) ∼= HomO(F , ω). 2

On Č we have End(F̌) = Ǒ and in this situation the action of J2Č on the
theta–characteristics is as beautiful as possible.

Proposition 1.10 Assume that for a fixed local type T on C the algebra sheaf
AT is trivial and ΘT is non–empty. Then J2C acts regularly on the theta–
characteristics of type T .

In particular, the number of theta–characteristics of type T equals the number
of elements of J2C.

Proof. The freeness of the action follows from Lemma 1.5, because here π̌ is the
identity. Transitivity was proved above. 2

The last two propositions are already sufficient to study the even–/oddness of
the theta–characteristics of curves with only ADE–singularities, see Section 3.
The reader only interested only in those curves may skip the next section.

Unfortunately, this partial normalization construction has a drawback. The
curve Č — even while being a partial normalization of C — may be worse than
C in the sense that even if C is Gorenstein, Č need not be Gorenstein.

Example Let C be a curve with the Gorenstein singularity x4 − y5, i.e., the
complete local ring at this point is R = C[[t4, t5]] ⊆ R̃ = C[[t]]. The module
M = 〈1, t〉 + t4R̃ is self–dual, thus we can find a theta–characteristic F whose
stalk at this singular point is M . However, the endomorphism ring of M , A =
〈1〉 + t4R̃, is not Gorenstein. See [E, Ex. 21.11] for methods to compute the
homomorphisms and dualizing modules in this case.

2 Even and odd theta–Characteristics

In this section we determine how many of the theta–characteristics of some
fixed local type are even respectively odd. Harris solved this problem for the
locally free theta–characteristics; we will improve his method such that other
local types can be treated as well.

Fix a local type T for the theta–characteristics on the reduced curve C. We
will assume throughout the whole section that ΘT is non-empty, for example
this is the case if C is irreducible (Proposition 1.3). We define

Θ+
T = {F ∈ ΘT | h0(F) is even.}

Θ−
T = {F ∈ ΘT | h0(F) is odd.}

We will study the transitive action of J2C on the theta–characteristic of this
local type T . First, we search for an element L in J2C such that the action of
L on ΘT interchanges the even and odd theta–characteristics, i.e., LΘ+

T = Θ−
T .

In particular, there are the same number of even and odd theta–characteristics
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in this case. However, we will not search in the whole group J2C for such an
L, but only in the subgroup Γ2 consisting of the line bundles whose pullback to
the normalization C̃ is trivial.

Before we start we fix some additional notation. The normalization map is
again denoted by π : C̃ → C. We denote the structure sheaf of C̃ by Õ and its
canonical sheaf by ω̃. Further, we denote the push–down π∗Õ of Õ to C by Õ
as well. There will be no confusion, because it will always be clear whether we
are working on C or C̃, and the homology groups are canonically isomorphic
(see remarks after Proposition 1.4). Now we have the following picture: From

0 −→ O∗ −→ Õ∗ −→
∏

p∈Sing C

Õ∗p/O∗p −→ 0

we get the short exact sequence for the Jacobian

0 −→ Γ :=

 ∏
p∈Sing C

Õ∗p/O∗p

 /(H0(Õ∗)/H0(O∗)) −→ JC
π∗−→ JC̃ −→ 0.

Because this sequence splits (see Lemma 1.2 and its proof), we obtain an exact
sequence on the 2–torsion elements

0 −→ Γ2 −→ J2C
π∗−→ J2C̃ −→ 0.

J2C may not act faithfully on ΘT , but by Lemma 1.5, the subgroup Γ̌2 acting
trivially on ΘT can be computed as

Γ̌2 = {L ∈ J2C | π̌∗L is trivial.} ⊆ Γ2,

where π̌ is defined as before Lemma 1.5. We set Γ̄2 = Γ2/Γ̌2, then J2C/Γ̌2 and
Γ̄2 act regularly on ΘT . Γ̄2

∼= (Z/2Z)k for some k ∈ N. Since J2C̃ ∼= (Z/2Z)2g,
there are 2k+2g theta–characteristics. We will show that the number of even or
odd theta–characteristics is either 2k+2g−1, 2k+g−1(2g + 1) or 2k+g−1(2g − 1).

We start the computation of Γ2 at a point p ∈ SingC. The 2–torsion ele-
ments of Γp := Õ∗p/O∗p are easily described [H, 2b]: If C has bp branches in p ∈ C
then the canonical map {±1}bp/{±(1, . . . , 1)} → Γp,2 is an isomorphism, in par-
ticular Γp,2

∼= (Z/2Z)bp−1. We have a natural map Γp,2 → Γ2. For q ∈ π−1(p)
we denote by eq the line bundle in Γ2 which is given by the section of Õ∗/O∗
that is −1 in a neighborhood of q and 1 in a neighborhood of the other points
of π−1(SingC). Obviously, the eq, q ∈ π−1(p), generate the Z/2Z–vector space
Γp,2 subject to the relation

∑
q∈π−1(p) eq = 0, and Γ2 is generated by the Γp,2

modulo the relations
∑

q∈C′ eq = 0 for every irreducible component C ′ of C̃.

We find the subgroup Γ̌2 generated by the subgroups

Γ̌p,2 := {e ∈ Γp,2 | e · Fp = Fp viewing Fp ⊆ Kp}.

The computation of the groups is purely local, thus it depends only on the
local type of F and is easily executed.
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Before stating the theorem we need some additional definitions. Recall that
the adjoint ideal I ⊆ O of the map π : C̃ → C is the annihilator AnnO(Õ/O) =
HomO(Õ,O). It is in fact an Õ–ideal, and its pullback π∗I to C̃ defines the
adjoint divisor D on C̃ by π∗I = Õ(−D). If C is a Gorenstein curve — we
assume that from now on, the δ–invariant is

δ = dim Õ/O = dimO/I = 1
2 dim Õ/I,

in particular degD = 2δ.

Now we extend these notions to torsion–free sheaves of rank 1 on C. We
view the sheaf F again as being embedded into the sheaf of rational function
K ⊇ Õ on C. We define the adjoint ideal of F to be

IF := AnnO(Õ · F/F) = HomO(Õ · F ,F) ⊆ K.

Clearly, IF is an Õ–ideal, independent of the chosen embedding F ⊆ K, and
IF ⊇ I due to I · Õ · F ⊆ O · F = F . We define the adjoint divisor DF on C̃
to be the divisor with π∗IF = Õ(−DF ). Finally, we set δ(F) = dim Õ · F/F .

For F = O these definitions reduce to the classical ones.

Lemma 2.1 Let C be a reduced Gorenstein curve and F a theta–characteristic,
then

δ(F) = dim Õ · F/F = dimF/IF · F = 1
2 dim Õ/IF ,

in particular degDF = 2δ(F).

Proof. As the statement is of local nature, we may verify the result for every
point p ∈ C separately. For notational convenience we suppress the subscript p.
Since Õ · F ∼= Õ and the statement of the lemma does not depend on the
embedding of F in K, we may assume that Õ · F = Õ and thus IF · F = IF as
well as I ·F = I. Because C is Gorenstein at the point p ∈ C we may use O as a
dualizing module, thus dim Õ/F = δ(F) implies that Hom(F ,O)/Hom(Õ,O) =
Hom(F ,O)/I has the same dimension δ(F). As F is self–dual, we get

dim Õ ·Hom(F ,O)/Hom(F ,O) = δ(F)

by the definition of δ(F) and further

dim Õ ·Hom(F ,O)/I = dim Õ ·Hom(F ,O)/Hom(F ,O) + dim Hom(F ,O)/I
= 2δ(F).

We make the following

Claim. AnnOÕ ·Hom(F ,O)/I = IF .

The lemma immediately follows from this claim: Because F ⊂ K is of rank 1,
Hom(F ,O) ⊂ K is of rank 1 as well and Õ ·Hom(F ,O) isomorphic to Õ; hence,
the claim implies

Õ ·Hom(F ,O)/I ∼= Õ/IF .

We computed the dimension of the left hand side to be 2δ(F) and thus
dimF/IF = dim Õ/IF − dim Õ/F = δ(F), thereby finishing the proof of the
lemma.
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To prove the claim, let r be an element of the annihilator ideal, i.e., rÕ ·
Hom(F ,O) ⊂ I. Hence,

rÕ ⊆ Hom(Õ ·Hom(F ,O), I) = Hom(Õ ·Hom(F ,O),O)

⊆ Hom(Hom(F ,O),O) = F ;

hereby, the first equality follows from the fact that any Õ–submodule of
O — in particular the image of Õ · Hom(F ,O) — is contained in I and
the last equality follows from the obvious F ⊆ Hom(Hom(F ,O),O) and
dimF/I = dim Hom(Hom(F ,O),O)/I, which one obtains by applying the du-
alizing functor Hom( ,O) twice to Õ ⊇ F ⊇ I. The displayed formula says
r ∈ Hom(Õ,F) = IF which proves the inclusion of the annihilator ideal in the
adjoint ideal.

For the reverse inclusion let r ∈ IF = Hom(Õ,F), i.e., rÕ ⊆ F . Recalling
that we consider Hom(F ,O) as a subset of K acting by multiplication, we find

rÕ ·Hom(F ,O) ⊆ Hom(F ,O) · F ⊆ O.

Since rÕ·Hom(F ,O) is an Õ–submodule of O, we have in fact rÕ·Hom(F ,O) ⊆
I or equivalently r ∈ AnnO(Õ ·Hom(F ,O)/I). 2

Obviously, the above definitions depend only on the stalks of F or even their
completion. Therefore, for a theta–characteristic F of local type T the objects
IF , δ(F), DF depend only on T and the notions of IT , δ(T ) = δT , DT are
well–defined.

Theorem 2.2 Let T be a local type for a theta–characteristic on a connected,
reduced Gorenstein curve C and DT its adjoint divisor on C̃. Further, let q ∈ C̃
be a point mapping to a singular point p = π(q) ∈ C and eq ∈ J2C be the line
bundle on C constructed from it.

If multqDT is even then the action of eq on the theta–characteristics ΘT pre-
serves the sets of even and odd theta–characteristics, otherwise it interchanges
them.

In particular, if multqDT is odd for some q ∈ π−1(SingC) then the number
of even and odd theta–characteristics of local type T is 2k+2g−1.

Proof. The proof follows Harris’ proof for the locally free case [H, 2.12], but some
steps become more involved. Let F be a theta–characteristic and F ′ = eq ⊗ F
its image under the action of eq. We define F̃ := π∗F/tor. = Õ · π∗F to be
the pullback of F or F ′ modulo torsion and identify the sections of F , F ′ with
sections of π∗F̃ , i.e., H0(F),H0(F ′) ⊆ H0(π∗F̃) = H0(F̃). We continue our
abuse of notation like writing Õ for Õ on C̃ itself as well as π∗Õ on C, we will
write F̃ for F̃ on C̃ itself as well as π∗F̃ on C. Mathematically, this is justified
by the remarks after Proposition 1.4, because F̃ is an Õ–module.

We must show that

h0(F̃ ′)− h0(F̃) ≡ multqDT mod 2.
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Since any section of F̃(−DT ) is a section of F as well as F ′, we compute
modulo F̃(−DT ). Setting

V = H0(F̃/F̃(−DT ))

Λ = H0(F/F̃(−DT )) ⊆ V

Λ′ = H0(F ′/F̃(−DT )) ⊆ V

Σ = Im (H0(F̃) → V ) ⊆ V

we find
h0(F ′)− h0(F) = dim(Λ′ ∩ Σ)− dim(Λ ∩ Σ).

Now, we want to define a symmetric bilinear form Q on V . We claim that
on C̃

F̃ ∼= Hom(F̃ , ω̃(DT )).

In the locally free case this is obvious, since then F̃2 ∼= (π∗F)2 ∼= π∗(F2) ∼=
π∗ω ∼= ω̃(D). The general case of torsion–free sheaves is more involved.

From the exact sequence on C

0 −→ F −→ F̃ −→ T −→ 0,

where T is a torsion sheaf, we get by applying Hom( , ω)

0 = Hom(T , ω) −→ Hom(F̃ , ω) −→ Hom(F , ω).

Therefore,

0 −→ Õ · Hom(F̃ , ω) −→ Õ · Hom(F , ω) −→ C −→ 0,

where the cokernel C is supported on SingC, because F̃x = Fx for x ∈ C\SingC.
Thus we may compute the cokernel C locally at a point x ∈ SingC. As during
the proof of Lemma 2.1 we suppress the index x and use the identification F̃ = Õ
and ω = O. Because F̃ and thus Hom(F̃ , ω) have an Õ–module structure

Õ · Hom(F̃ , ω) = Hom(F̃ , ω) = Hom(Õ,O) = I.

In the proof of Lemma 2.1 we showed that Õ · Hom(F ,O)/I ∼= Õ/IT , i.e.,
the cokernel C is the structure sheafODT

ofDT . Therefore, on the normalization
C̃, where we are dealing only with line bundles on a smooth curve, this means

π!(Õ · Hom(F , ω)) ∼= π!Hom(π∗F̃ , ω)⊗ Õ(DT ).

Finally, with Hom(F , ω) ∼= F and the duality theorem [Ha, III, Ex. 7.2]

F̃ = π!(Õ · F) ∼= π!Hom(π∗F̃ , ω)⊗ Õ(DT ) ∼= Hom(F̃ , ω̃)⊗ Õ(DT )
∼= Hom(F̃ , ω̃(DT )).

Now define the symmetric bilinear form Q on V by

Q(σ, τ) =
∑

p∈π−1(Sing C)

Resp(στ).

11



The same argument as in [H] shows that Q is non–degenerate and Λ,Λ′,Σ are
isotropic subspaces. In fact, they are all maximal isotropic subspaces of V ;
namely, by Lemma 2.1 the dimension of V is 2δT and the dimensions of Λ and
Λ′ are δT ; using F̃ ∼= Hom(F̃ , ω̃(DT )) on C̃ and

degC̃ F̃ = degF − (δ − δ(F)) = ga(C)− 1− δ + δ(F) = g(C̃)− 1 + δT

by [Coo, 3.2.4], the dimension of Σ can be computed with Riemann–Roch on C̃
as

dim Σ = h0(F̃)− h0(F̃(−DT )) = h0(F̃)− h0(Hom(F̃ , ω̃))

= degC̃ F̃ − g(C̃) + 1 = δT .

We follow Harris’ proof further: by [H, 2.19]

h0(F ′)− h0(F) = dim(Λ′ ∩ Σ) + dim(Λ ∩ Σ) = dim(Λ′ ∩ Λ) + δT .

Λ′ ∩ Λ can be computed locally, it depends only on Fp. As we are considering
in the following all objects localized at the point p, we drop the supscript p
for notational convenience. Denote by b the number of branches of C in p. We
number the branches such that the first branch, ∆1, is the one with q ∈ π−1(∆1).
Let ∆0 be the sum of the remaining branches. Then a section (σ1, . . . , σb) ∈ π∗F̃
lies in F ∩F ′ = Λ′ ∩Λ mod π∗F̃(−DT ) if (σ1, . . . , σb) and (−σ1, σ2 . . . , σb) are
in F or equivalently if (σ1, 0, . . . , 0) and (0, σ2 . . . , σb) are in F . Denoting by Ai

the subspaces of sections of V that vanish on ∆i we have Λ ∩ Λ′ = A0 ⊕A1.

We must compute the dimension of A0 ⊕ A1. Let Ji be the kernel of the
restriction map

resi : F −→ F |∆i
= F ⊗O/I(∆i),

where I(∆i) is the vanishing ideal of ∆i. In particular, we have F |∆i= F/Ji.
The space Ai is Ji modulo IT · F = F̃(−DT ). Clearly, J0 ∩ J1 = 0, i.e., the
restriction map resi is injective when restricted to J1−i, and we may identify
J1−i with its image in F |∆i .

We define the intersection multiplicity of ∆0 and ∆1 with respect to F to
be

mF (∆0 ·∆1) := dimF/J0 ⊕ J1.

Since IT · F is an Õ–module, IT · F ⊆ J0 ⊕ J1, thus

dim Λ ∩ Λ′ = dimA0 ⊕A1 = dimJ0 ⊕ J1/IT · F
= dimF/IT · F − dimF/J0 ⊕ J1 = δT −mF (∆0 ·∆1).

We will show the following generalization of Hironaka’s lemma [JP, 5.4.11]

δ(F) = δ(F |∆0) + δ(F |∆1)−mF (∆0 ·∆1).

We denote by πi : ∆̃i → ∆i the normalization of the curve germs ∆i and by
F̃i the pullback of F |∆i via πi modulo torsion. By definition

δ(F |∆i) = dim(πi)∗F̃i/F |∆i= dim(πi)∗F̃i/J1−i − dimF |∆i /J1−i.
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Using F̃ = π∗F̃ = (π0)∗F̃0 ⊕ (π1)∗F̃1 and F |∆i
/J1−i

∼= (F/Ji)/J1−i
∼=

F/(J0 ⊕ J1), we obtain Hironaka’s lemma

δ(F |∆0) + δ(F |∆1) = dim((π0)∗F̃0 ⊕ (π1)∗F̃1)/(J1 ⊕ J0)− 2 dimF/(J0 ⊕ J1)

= dim F̃/(J0 ⊕ J1)− 2 dimF/(J0 ⊕ J1)

= dim F̃/F − dimF/(J0 ⊕ J1) = δT −mF (∆0 ·∆1).

With F = O the above reduces to the standard results. The other way
around, with the help of the above formulas we may substitute O by F and I
by J in [H, 5.3–5.6] and obtain

multq(DT ) = 2δ(F |∆1) +mF (∆0 ·∆1).

Finally, putting everything together

h0(F ′)− h0(F) = δT + dim Λ ∩ Λ′ = 2δT −mF (∆0 ·∆1)

= 2(δT + δ(F |∆1))−multq(DT ) ≡ multq(DT ) mod 2. 2

For the determination of the number of even and odd theta–characteristics
we may now assume that the action of Γ2 on the theta–characteristics of local
type T perserves the even– and oddness of the theta–characteristics.

Because of Theorem 2.2 we know that the divisor DT is divisible by 2, set

ET :=
1
2
DT and ε(F) := dim(F/(F ∩ F · Õ(−ET ))).

The multiplication takes place in K, where the sheaves F and Õ(−ET ) are
embedded. Obviously, the definition depends only on the stalks of F in the
singular points of C, thus we will use ε(T ) = εT as well.

Theorem 2.3 Let T a local type for a theta–characteristic on a connected,
reduced Gorenstein curve, such that ΘT is non–empty. Assume that the action
of Γ2 on the theta–characteristics of local type T perserves the even– and oddness
of the theta–characteristics.

Then the number of even theta–characteristics of local type T is

2k+g−1(2g + 1) if εT is even,

2k+g−1(2g − 1) otherwise

Proof. Let F be one of the theta–characteristics in question. We have shown
during the proof of Theorem 2.2 that F̃2 ∼= ω̃(DT ), i.e., the line bundle M =
F̃(−ET ) is a theta–characteristic on C̃. In this way we get a #Γ̄2 = 2k to 1
map ΘT (C) → Θ(C̃). Due to our assumption on the action of Γ2, all theta–
characteristics in a fiber of this map are either even or odd. Since C̃ is smooth,
C̃ has 2g−1(2g + 1) even and 2g−1(2g − 1) odd theta–characteristics, thus it is
enough to show that

h0(F) = h0(M) + εT .

This can be done precisely as in [H, 2.22], one only needs to replace the notions
for O by our more general notions for the torsion–free sheaf F . 2
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3 Curves with ADE–singularities

The results of the introductory section are sufficient to count the theta–
characteristics on irreducible curves with only ADE–singularities.

First we study the local situation. Since all irreducible torsion–free modules
over the one–dimensional ADE–singularities are known ([GK],[Coo, 2.4.2] or
[Y, 9]), we can list the self–dual modules.

Theorem 3.1 All torsion–free self–dual modules over the one–dimensional
ADE–singularities together with their endomorphism ring are listed in the fol-
lowing table. Since the endomorphism ring of the self–dual module over a sin-
gularity is always isomorphic to the local ring of a partial resolution of the
singularity, we list in the last column only the singularity type of this partial
resolution. We use the symbol A0 for one smooth branch and A−1 for two
disjoint smooth branches.

singularity, local ring self–dual modules endo. ring
A2δ−1 Mi =

〈
1, (tδ−i, 0)

〉
A2δ−1−2i

R = C[[(t, t), (tδ, 0)]] i = 0, . . . , δ
A2δ Mi =

〈
1, t2δ+1−2i

〉
A2δ−2i

R = C[[t2, t2δ+1]] i = 0, . . . , δ
D2δ−2 M0 = R, N = 〈1, (1, 0, 0)〉 D2δ−2, A1 ×A0

R = C[[(t, t, 0), N ′ = 〈1, (0, 1, 0)〉 A1 ×A0

(tδ−2, 0, t)]] Mi =
〈
1, (0, 0, 1), (tδ−i−1, 0, 0)

〉
A2δ−2i−3 ×A0

i = 1, . . . , δ − 1
D2δ−1 M0 = R, N = 〈1, (t, 0)〉 D2δ−1, A1

R = C[[(t2, 0), Mi =
〈
1, (1, 0), (t2δ−2i−1, 0)

〉
A2(δ−i−1) ×A0

(t2δ−3, t)]] i = 1, . . . , δ − 1
E6 M0 = R, M1 =

〈
1, t2

〉
E6, A2

R = C[[t3, t4]] M2 = C[[t]] A0

E7 M0 = R, M1 = 〈(1, 0), (0, 1)〉 E7, A2 ×A0

R = C[[(t2, t), (t3, 0)]] M2 =
〈
1, (t, 0), (t2, 0)

〉
A1

M3 = C[[t]]2 A−1

E8 M0 = R, M1 =
〈
1, t2, t4

〉
E8, A2

R = C[[t3, t5]] M2 = C[[t]] A0

In particular, End(M) ∼= M as R–modules for all the above modules.

Because of End(M) ∼= M , M is a free A := End(M)–module, and Proposi-
tion 1.9 is very useful in this case. We formulate this case as a corollary.

Corollary 3.2 Let C be a reduced curve with only ADE–singularities. Fix a
local type T , and let be A its induced algebra sheaf and π̌ : Č → C the partial
normalization constructed of it.

Then π̌∗ induces a bijection between the theta–characteristics of type T on C
and the locally free theta–characteristics on Č, which preserves the dimension
of the homology groups of the theta–characteristics.

The number and the parity type of the locally free theta–characteristics were
determined by Harris [H], thereby we are able to determine the number and the
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parity type of the theta–characteristics of any local type for the ADE–case.
We recall Harris’ results and compute the missing invariants for the ADE–
singularities.

Theorem 3.3 Let C be an integral curve of geometric genus g with only ADE–
singularities. Let bp the number of branches of the curve C in a singular point
p ∈ SingC. Set k =

∑
p(bp − 1).

Then the number of locally free theta–characteristics of C is 22g+k. The num-
ber of even theta–characteristics of these, i.e., locally free theta–characteristics
F with h0(F) ≡ 0 mod 2, is

22g+k−1 if C has an A4l+1, D4l+2, or E7 singularity

2g+k−1(2g + 1) if C has no A4l+1, D4l+2, or E7 singularity
and an even number of A8l+2, A8l+3, A8l+4,
D8l+3, D8l+4, D8l+5, or E6 singularities

2g+k−1(2g − 1) otherwise

Proof. By [H] there are 22g+k locally free theta–characteristics and either
22g+k−1, 2g+k−1(2g + 1), or 2g+k−1(2g − 1) of them are even. The first case
of 22g+k−1 even locally free theta–characteristics can only occur if C has a
multibranched singularity; more precisely, it occurs iff the adjoint divisor of
the singularity on the normalization of C contains a point with odd multiplic-
ity. For the multibranched ADE–singularities the multiplicities of the adjoint
divisor are:

singularity A2δ−1 D2δ−2 D2δ−1 E7

multiplicities δ, δ δ − 1, δ − 1, 2 2δ − 2, 2 5, 3

Therefore, there are 22g+k−1 even theta–characteristics iff the curve has an
A4l+1, D4l+2, or E7 singularity.

Now assume that the curve has none of these singularities then we have to
decide whether there are 2g+k−1(2g + 1) or 2g+k−1(2g − 1) even locally free
theta–characteristics. For this we have to compute the ε–invariants, which are
for the ADE–singularities:

A2δ−1, gcd(2, δ) = 2 A2δ D2δ−2, gcd(2, δ) = 1 D2δ−1 E6 E8

δ
2

⌈
δ
2

⌉ ⌊
δ
2

⌋ ⌊
δ
2

⌋
1 2

C has 2g+k−1(2g + 1) even locally free theta–characteristics if and only if the
sum of the ε–invariants is even. By the table this equivalent to the statement
that the curve has an even number of A8l+3, A8l+2, A8l+4, D8l+4, D8l+3, D8l+5,
or E6 singularities. 2

With these results the computation of the number of all and the even theta–
characteristics of any local type is easy: Take an irreducible curve C with only
ADE–singularities and fix some local type T . Compute the geometric genus
of C. Replace the singularities of C formally by the singularity types of the
endomorphism rings of the self–dual modules in T using Theorem 3.1. Finally,
use Theorem 3.3 to compute the number of all and the even locally free theta–
characteristics of this new curve, which correspond to the theta–characteristics
of type T on C by Corollary 3.2.
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As an example we complete the example [H, 3b] of the unicursal quartics,
i.e., the rational quartics with only nodes and cusps. In the following table let
i, j, k ∈ {0, 1} and s := i+ j + k. The case of i = j = k = 1 is the original case
of Harris.

SingC local type Sing Č theta–char. even
3A1 (Mi,Mj ,Mk) (3− s)A1 23−s b22−sc

A1A1A2 (Mi,Mj ,Mk) (2− i− j)A1(1− k)A2 22−i−j b21−i−jc
A1A2A2 (Mi,Mj ,Mk) (1− i)A1(2− j − k)A2 21−i b2−ic

3A2 (Mi,Mj ,Mk) (3− s)A2 1 0

In the computation of all possible theta–characteristics of any type one has to
consider all possible choices for the (Mi,Mj ,Mk), for example for the quartics
with three nodes we find 8 + 3 · 4 + 3 · 2 + 1 = 27 theta–characteristics, of which
4 + 3 · 2 + 3 · 1 + 0 = 13 are even.

The above results immediately extend to the reducible case if the existence
of at least one theta–characteristic can be ensured — only k has to be computed
as in Section 2. However, we have seen in Section 1 that not all local types are
always possible on reducible curves.

4 Application: Quadratic representations

In the context of Hilbert’s seventeenth problem Hilbert himself proved that a
real homogeneous polynomial F ∈ R[x, y, z] of degree 4 which is non–negative
on the reals is the sum of three squares of quadratic forms [Hi]. Recently, Rudin
and Swan gave modern proofs of this theorem and Pfister, Powers and Reznick
began constructive approaches to this theorem [R, Sw, P, PR]. One of the
partially open questions is in how many essentially different ways F can be
written as the sum of three squares. We will discuss the complex version of this
question; to be precise we make the following definition:

Definition 4.1 A quadratic representation of a plane quartic V (F ) ⊂ P2 is an
expression

F = p2 + q2 + r2

where p, q, r are homogeneous polynomials of degree 2.

Having found one quadratic representation we obtain another F = (p′)2 +
(q′)2+(r′)2 by setting (p′, q′, r′) = (p, q, r)·A for any element A of the orthogonal
group O(3,C). Such representations are called equivalent.

Coble showed that on a smooth quartic the equivalence classes of quadratic
representations are in one–to–one correspondence with the non–trivial 2–torsion
points of the Jacobian of the quartic, in particular there are 63 representations
[Cob]. Wall generalized this to irreducible singular quartics; however, he studied
only basepoint–free quadratic representations of F , i.e., p, q, r have no common
zero [W2]. Powers, Reznick, Scheiderer, and Sottile determined which of those
are real [PRSS]. Here we want of drop the assumption of the base point freeness
in the complex case.
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Theorem 4.2 Let C = V (F ) ⊆ P2 be an irreducible plane quartic then there is
a one–to–one correspondence between the set of equivalence classes of quadric
representations of F and the set

Ξ =

{
F |

F globally generated torsion–free sheaf of rank 1 with

F ∼= Hom(F ,OC(2)) and F 6∼= OC(1)

}
.

Proof. We will reformulate the question of the existence of a quadratic rep-
resentation until we can apply a theorem of Beauville and Catanese. Let
Q(x, y, z) = x2 + y2 + z2 be the standard quadratic form on C3, thus we can
rewrite a quadratic representation F = p2 + q2 + r2 as F = Q(p, q, r). We
define another quadratic form of rank 3 by Q′(x, y, z) = xy − z2. We might
now ask for representations of F as F = Q′(p, q, r), calling two representations
F = Q′(p, q, r) and F = Q′(p′, q′, r′) equivalent iff (p′, q′, r′) = (p, q, r) · A for
some element A of the orthogonal group with respect to the quadratic form Q′.
However, since over C any two quadratic forms of the same rank are equivalent,
we can derive one representation from the other:

Q(p, q, r) = Q′(p+ iq, p− iq, ir) and Q′(p, q, r) = Q(p+q
2 , p−q

2 , ir).

Clearly, this bijection of representations preserves the notion of equivalence.

Now, we note that Q′ is the determinant of the symmetric matrix
(
x z
z y

)
,

i.e., we are searching for representations of F as the determinant of a symmetric
matrix whose entries are homogeneous polynomials of degree 2. Here, the notion
of equivalence appears to be different. Two matricesM =

(
p r
r q

)
andM ′ =

(
p′ r′

r′ q′

)
are equivalent if there exists an A ∈ G := {B ∈ GL(2,C) | detB = ±1} such
that M = AM ′At. Nevertheless, G is a 2 to 1 covering of O(3,C) and equivalent
quadratic representations correspond to equivalent matrices. (See [FH, 7.16/17]
and replace in Exercise 7.17 traceless matrices by symmetric matrices and gAg−1

by gAgt.)

Let M be a matrix like above. By [B2, Theorem B] we obtain as the cokernel
of M in the sequence

0 −→ OP2(−2)2 M−→ O2
P2 −→ F −→ 0

a torsion–free sheaf of rank 1 on C with F ∼= Hom(F ,OC(2)). This short exact
sequence is the minimal resolution of F as a sheaf on P2, and therefore unique
up to isomorphism. In particular, F 6∼= OC(1), because OC(1) has the resolution
0 → O(−3) → O(1) → OC(1) → 0.

Finally, assume we are given a torsion–free sheaf F 6∼= OC(1) of rank 1 with
F ∼= Hom(F ,OC(2)). Because the support of F is one–dimensional, F is arith-
metically Cohen–Macaulay. Further, the bilinear form F ⊗F → OC(2) induced
by F ∼= Hom(F ,OC(2)) is symmetric, because thinking of F as embedded in K
any bilinear map F ⊗F → OC(2) is locally given by (f1, f2) 7→ λf1f2 for some
λ ∈ K. Hence, by [B2, Theorem B] there is a symmetric minimal resolution of
F of the form

0 −→
l⊕

j=1

OP2(−dj − 2) M−→
l⊕

j=1

OP2(dj) −→ F −→ 0
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with M = M t and F = detM , thus 2l +
∑

2dj = degF = 4. Because F is
globally generated, all di are non–negative. For l = 1 we get d1 = 1 and F is the

cokernel of 0 → O(−3)
(F )→ O(1), i.e., F ∼= OC(1), contradicting our assumption.

Therefore, we must have l = 2 and d1 = d2 = 0, showing that M is a symmetric
matrix whose entries are homogeneous of degree 2. 2

The set Ξ can now be examined with the help of the theta–characteristics:
The canonical sheaf on a plane quartic is ω = OC(1). Let L be a line bundle
with L2 = ω (Lemma 1.2). Then we have a bijection

Φ : Θ −→ {F | F torsion–free sheaf of rank 1 with F ∼= Hom(F ,OC(2))}

F 7−→ F ⊗ L.

By definition Φ(L) = L2 = OC(1). Thus the set Ξ consists of the globally
generated sheaves of Φ(Θ \ {L}). Since irreducible plane quartics have only
ADE–singularities, the results of Section 3 can be applied to compute Θ. That
only the globally generated sheaves of Φ(Θ \ {L}) lead to quadratic representa-
tions was pointed out to me by Claus Scheiderer. He is preparing an article in
which he, among other things, describes the not globally generated sheaves of
Φ(Θ \ {L}) and thereby computes the cardinality of Ξ.
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