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Abstract

We study projective varieties whose image of Gauss map has dimension

less or equal to four and which are smooth outside the hyperplane at

infinity. We describe their geometric structure, and show in particular

that they are uniruled by linear spaces which are larger than a priori

expected.
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Let X ⊂ PN be an irreducible projective variety of dimension n. Its Gauss
map is the rational map

γ : X −− → G(n, N), x 7−→ TxX,

which assigns to every smooth point of X its projective tangent space as a point
of the Grassmannian of n–planes in PN . The variety X is called developable if
the dimension of the image of the Gauss map — the Gauss rank r of X — is
less than n.

In this article we wish to study smooth affine varieties X ⊂ CN , which are
developable. However, to describe their geometric structure it will be necessary
to consider their behavior at infinity. Therefore, we view X as a projective
variety in PN which is smooth outside the hyperplane at infinity H∞. We will
call such a variety affinely smooth.

The fundamental result about developable varieties is that a general fiber of
the Gauss map is a linear space of dimension d = n − r. X is singular along a
hypersurface of a Gauss fiber F , the focal hypersurface of F . The closure of the
union of all these focal hypersurfaces is the focal variety Xf of X .

The affine smoothness of X forces the focal hypersurfaces to be the inter-
section of the Gauss fiber and the hyperplane at infinity, in particular the focal
variety lies in H∞. For Gauss rank 1 Hartman and Nirenberg proved the fol-
lowing theorem which was reproven and extended in various geometric settings
by several authors [HN, A, NP, O].
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Theorem. An affinely smooth developable variety of Gauss rank 1 is a cone
over a smooth curve whose vertex lies in the hyperplane at infinity.

Akivis and Goldberg proved that an affinely smooth developable variety
whose second fundamental form has a regular pencil of quadrics with distinct
eigenvalues is always a cone [AG3]. In contrast to this, Bourgain and Wu worked
out an example of Gauss rank 2 which is not a cone [W]. Later, Akivis and Gold-
berg showed that this example is projectively equivalent to an earlier example
of Sacksteder [AG1, S]. Vitter as well as Dajczer and Gromoll proved that an
affinely smooth developable variety of Gauss rank 2 is a union of (n− 1)–planes
if it is not a cone [DG, V]. This was refined in [P1] to the following statement.

Theorem. Let X ⊂ PN be an affinely smooth developable variety of dimen-
sion n and Gauss rank 2 which is not a cone. Then there exists a unique curve
C in the hyperplane at infinity such that X is the union of a one–dimensional
family of (n − 1)–planes that contain the (n − 2)–th osculating planes of the
curve C.

Vitter also introduced the following concept: Let F be a general Gauss fiber
and V its intersection with the hyperplane at infinity H∞. Then the closure of
the union of the linear Gauss fibers which intersect H∞ in V is the Gauss fiber
cone with vertex V . The (n − 1)–planes in the above theorem are in fact the
Gauss fiber cones. Wu and Zheng proved the existence of nontrivial Gauss fiber
cones for r = 3, 4 [WZ].

Theorem. Let X be an affinely smooth developable variety of dimension n and
Gauss rank r less or equal to four. Then X has nontrivial Gauss fiber cones,
i.e., they are of dimension greater than d = n − r.

A priori these Gauss fiber cones are only cones with a (d − 1)–dimensional
vertex. Here we want to show that very often these Gauss fiber cones are linear
spaces. Wu and Zheng gave also a criterion for this, but it applies in only a few
cases [WZ, Theorem 2]. From our structure theorems we obtain in particular
the following generalization of the theorem of Vitter and Dajczer–Gromoll.

Theorem. Let X ⊂ P
N be an affinely smooth developable variety of dimen-

sion n and Gauss rank less or equal to four which is not a cone. Then X is a
union of (d + 1)–planes, where d = n − r.

Unfortunately, the above mentioned method of Wu and Zheng for construct-
ing a counter example cannot be modified to provide also a counter example to
this theorem for r ≥ 5, since it only produces quadrics which are necessarily
uniruled by large linear subspaces. However, analyzing the 7–dimensional ex-
ample X ⊂ P8 for Gauss rank r = 5, one sees that the appearing (d + 1)–planes
are not the union of Gauss fibers which indicates that they are artifacts of X
being a quadric and a general affinely smooth developable variety X for r ≥ 5
will not have them.

The main purpose of this article is to describe the structure of affinely smooth
developable varieties of Gauss rank 3. We need to recall three definitions:

The dual variety X∗ of a developable variety with Gauss fiber dimension d
is degenerate if its dimension is less than the expected one, N − 1 − d.

At a general point of x ∈ X there exists a linear subspace A of nilpotent
matrices of the endomorphisms of the tangent space TxX modulo the linear
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Gauss fiber Fx through x. We call A ⊂ End(TxX/Fx) the fiber movement
system at infinity. Its invariants, l = max{rankA | A ∈ A}, the rank of a
general matrix, and b = dim

∑

A∈A
Im A, the dimension of the span of all images

of A ∈ A, were already used to show that the focal variety Xf has dimension
d + l − 1 ≤ n − 2 and Gauss rank b [P1, Theorem 3].

A variety X ⊂ PN of dimension n and Gauss rank r is a twisted (n − 1)–
plane of type (k1, . . . , kr) ∈ Nr with

∑

k̺ = n − r if it can be constructed in
the following way: There exist r curves C̺ ⊂ PN and a correspondence between
them, i.e., a curve C ⊆ C1×. . .×Cr which projects surjectively onto each factor,
such that X is the union of the one–dimensional family of (n − 1)–planes that
are the span of the k̺–th osculating spaces to the curves C̺ at corresponding
points. Hereby, we use that the zeroth osculating space is the point itself and
the first the tangent line.

Any variety that is the union of a one–dimensional family of codimension
one planes is a twisted plane of some type. Furthermore, the focal variety of a
twisted plane of type (k1, . . . , kr) is a twisted plane of type (k1 − 1, . . . , kr − 1)
over the same curves, where the possibly appearing negative numbers and the
corresponding directing curves have to be left out.

With this definition the affinely smooth developable varieties of Gauss rank 2
which are not cones are twisted (n− 1)–planes of type (0, n− 2) where the last
directing curve lies in H∞.

Finally, we can state our structure theorem for Gauss rank 3.

Theorem. Let X ⊂ PN be an affinely smooth developable variety of Gauss
rank 3 which is not a cone. With the fiber movement system A belonging to a
general point of X, we define the following invariants of X:

a = dimA

l = max{rankA | A ∈ A} = rank of general matrix of A.

According to the values of these invariants, we have the following geometric
descriptions of X:

l = 1, a = 1 : The focal variety Xf of X is the (n− 4)–th osculating scroll of a
unique curve C ⊂ H∞. X is the union of the one–dimensional family of
Gauss fiber cones that are (n − 1)–dimensional cones whose vertices are
the (n − 3)–th osculating spaces to the curve C.

If X has a degenerated dual variety, then X is a twisted (n − 1)–plane of
type (0, 0, n− 3) where the last directing curve lies in H∞.

l = 1, a = 2 : X is a twisted (n − 1)–plane of type (0, k2, k3) with k2, k3 ≥ 1
where the last two directing curves lie in H∞. Its Gauss fiber cones are
the (n − 1)–planes.

l = 2 : The focal variety of X has dimension n−2 and Gauss rank 2. Further, it
has an asymptotic (n−3)–plane in each tangent space. The variety X itself
is the union of the two–dimensional family G of the (n − 2)-dimensional
linear Gauss fiber cones, each of which contains an asymptotic plane of
Xf .

X can also be seen as the union of a one–dimensional family of Gauss
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rank 1 varieties. To be precise, let Y be an integral manifold of the asymp-
totic distribution on Xf and G′ be the one-dimensional subfamily of G
which contains the asymptotic (n − 3)–planes of Xf along Y . Define the
variety Z ⊆ X to be the union of the (n − 2)–planes of G′. Then Z has
dimension n− 1 and Gauss rank 1, and its Gauss fibers are the family G′.

If a = 1, then dimX = 4, otherwise dimX ≥ 5.

A direct computation shows that the descriptions in the above Theorem can
also be read as ways how to construct a variety of the corresponding type if the
occurring objects are chosen general enough. However, while the focal variety of
the constructed variety will lie in H∞, additional singularities — even outside
H∞ — may occur. Further, if in the l = 2 case the asymptotic submanifolds of
Xf , which is supposed to become the focal variety of X , are linear, additional
technical conditions must be imposed on the family G.

An analogous structure theorem for Gauss rank 4 shows that nine cases have
to be distinguished. An extended version of this article containing this theorem
and its proof can be obtained from the author.

1 The Setup

The structure theorems will be proven with the help of Cartan’s moving frame
method, for an introduction see the books [AG2, L]. We will use the notations
of [P1], which we will recall briefly.

Let X ⊂ PN be an irreducible variety which is smooth outside the hyperplane
at infinity H∞ ⊂ PN . Denote by n the dimension of X and by d the dimension
of a general Gauss fiber. We adapt the frame such that

{e0} is a general point of X,

{e0, . . . , ed} is the linear Gauss fiber F of X through {e0},

{e0, . . . , en} is the tangent space Te0
X of X in {e0},

{e1, . . . , eN} is the hyperplane at infinity H∞,

{e1, . . . , ed} is the Gauss fiber cone vertex.

Here we use the curly brackets to indicate the linear span of the enclosed
elements. Using the index ranges 1 ≤ δ, ε ≤ d, d + 1 ≤ i, j ≤ n, and
n + 1 ≤ µ, ν ≤ N , the infinitesimal movement of the frame is given by

de0 = ω0e0+ ωδeδ + ωiei

deδ = ωε
δeε + ωi

δei

dei = ωδ
i eδ + ωj

i ej + ωµ
i eµ

deµ = ωδ
µeδ + ωi

µei + ων
µeν .

Note that the Gauss fiber cone vertex {e1, . . . , ed} is fixed if deδ = 0 modulo
{e1, . . . , ed}, i.e., if ωi

δ = 0 for all δ, i. This distribution is integrable, and an
integral manifold is a Gauss fiber cone.
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By differentiating ωµ = ωµ
δ = 0 and using Cartan’s lemma, one finds func-

tions ai
δj , qµ

ij such that

ωi
δ = ai

δjω
j and ωµ

i = qµ
ijω

j .

Let Aδ = (ai
δj)

i
j , A = {Aδ}, Qµ = (qµ

ij)ij , and Q = {Qµ}. These invariantly
defined linear subspaces, A and Q, of the endomorphisms of Te0

X/F resp. of
bilinear forms on Te0

X/F are called the fiber movement system (at infinity) resp.
the (nondegenerated part of) the second fundamental form of X in {e0}. Due to
our assumption that X is smooth outside H∞, the matrices A ∈ A are nilpotent.
Furthermore, the matrices Q and QA for A ∈ A, Q ∈ Q are symmetric. This
holds for any developable variety and follows from the symmetry of the second
fundamental form along the Gauss fiber. Such linear systems A,Q were studied
by Wu and Zheng [WZ, Prop. 2 and 3] and their results were refined in [P1,
Prop. 2]. We will use the following:

Let l be the rank of a general matrix of A. Then for Gauss rank r = 3 there
exists a basis of C3 such that A is contained in the following linear systems of
matrices

l = 1 l = 2




0 0 s
0 0 ∗
0 0 0









0 s ∗
0 0 s
0 0 0





The linear system A always contains the matrix with s = 1 and the other
entry set to zero. In particular, the linear system A has a nontrivial common
kernel [WZ] . The systems Q which belong to the above systems A have also
been computed and will be recalled when needed.

Before we treat the different cases separately, we will show that if l ≥ 2,
dimA = 1, and X is not a cone, then dimX = r + 1. We adapt the frame such
that rankA1 = l and Aε = 0 for 2 ≤ ε ≤ d. Then we differentiate ωi

ε = 0 to
obtain

0 = dωi
ε = −ωi

1 ∧ ω1
ε .

Since there are l ≥ 2 linear independent 1–forms ωi
1, this implies ω1

ε = 0 and
deε = 0 mod {eε}. Therefore, {eε} is a fixed linear space and X — as the union
of the linear spaces {e1, eε} — is a cone over it. Thus if X is not a cone, we
must have d = 1 and dimX = r + 1.

2 The Proof for Gauss Rank 3

Now we treat the different cases — according to the invariants of the linear
system A at a general point — separately.

Case l = 1, a = 1. We adapt the frame such that

A1 =





0 0 1
0 0 0
0 0 0



 , Qn+1 =





0 0 1
0 qn+1

1 qn+1

2

1 qn+1

2 qn+1

3



 , Qµ =





0 0 0
0 qµ

1 qµ
2

0 qµ
2 qµ

3



 ,

and Aε = 0, where 2 ≤ ε ≤ d, n + 2 ≤ µ ≤ N . In particular, we have
ωn−2

ε = ωn−1
1 = ωn

1 = 0 and ωn−2
1 = ωn. We differentiate these equalities to
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obtain some useful relations:

0 = dωn−2
ε = −ωn−2

1 ∧ ω1
ε = −ωn ∧ ω1

ε ⇒ ω1
ε = f1ω

n

0 = dωn−1

1 = −ωn−1

n−2 ∧ ωn−2

1 = ωn ∧ ωn−1

n−2 ⇒ ωn−1

n−2 = f2ω
n

0 = dωn
1 = −ωn

n−2 ∧ ωn−2

1 = ωn ∧ ωn
n−2 ⇒ ωn

n−2 = f3ω
n

0 = d(ωn−2

1 − ωn) = −ωn−2

1 ∧ ω1
1 − ωn−2

n−2 ∧ ωn−2

1 + ωn ∧ ω0 + ωn
i ∧ ωi

= ωn−1 ∧ (−ωn
n−1) + ωn ∧ (. . .) ⇒ ωn

n−1 = f4ω
n−1 + f5ω

n

for some suitable functions f1, . . . , f5.

Now we can examine the focal variety Xf of X . Its dimension is n− 3 since
from

de1 = ωε
1eε + ωn−2

1 en−2 mod {e1}

and the fact that Xf contains the linear space {e1, . . . , ed}, we see that the
tangent space of Xf at the general point e1 is {e1, . . . , en−2}. The second
fundamental form of Xf is

IIXf ,e1
= d2e1 = ωn−2

1 (ωn−1
n−2en−1 + ωn

n−2en + ωn+1
n−2en+1)

= (ωn−2

1 )2(f2en−1 + f3en + en+1) mod {e1, . . . , en−2}.

Thus Xf has Gauss rank 1. Since X is not a cone, Xf is not a cone. Therefore
Xf has to be a (d − 1)–th osculating scroll of a unique curve C ⊂ H∞.

We turn to the one–dimensional family of Gauss fiber cones of X given by
the distribution ωi

δ = 0 for all i, δ, i.e. ωn = 0. Each of which is a priori a cone
with a (d − 1)–dimensional vertex, but we will show that it is a cone with a
d–dimensional vertex. Since

de0 = ω1e1 + ωεeε + ωn−2en−2 + ωn−1en−1 mod {e0, ω
n},

the tangent space of the Gauss fiber cone G at e0 is {e0, . . . , en−1}. The second
fundamental form of G — using the index range n − 2 ≤ k ≤ n − 1 — is

IIG,e0
= ωkωn

k en + ωkωn+1

k en+1 + ωn−1ωµ
n−1eµ

= (ωn−1)2(f4en + qn+1

1 en+1 + qµ
1 eµ) mod {e1, . . . , en−2, ω

n}.

Thus G has only Gauss rank 1, and its Gauss fibers are {e0, . . . , en−2}. The
linear space {e1, . . . , en−2}, which is the tangent space to Xf at any of the
smooth points of {e1, . . . , ed}, is fixed on G because

de1 = deε = den−2 = 0 mod {e1, . . . , en−2, ω
n}.

Therefore, the Gauss fiber cone is the union of a one–dimensional family of
(d + 1)–planes containing the d–th osculating space to the curve C; hence, it is
a cone with the d–th osculating space of C as vertex.

We treat the special case where X has a degenerate dual variety. This is
equivalent to the fact that the linear system Q of the second fundamental form
contains only matrices of rank less than 3 [L, 7.3], i.e., qn+1

1 = qµ
1 = 0, and due

to SingQ = 0 we may assume qn+1
2 = 0 and qµ

2 = 1. We claim that in this
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case the Gauss fiber cones are (n−1)–planes. This will be implied if the second
fundamental form of each Gauss fiber cone vanishes. By our above computations
it only remains to show that f4 = 0. We get this by differentiating ωn+1

n−1 = 0:

0 = dωn+1

n−1 = −ωn+1

n−2 ∧ ωn−2

n−1 − ωn+1
n ∧ ωn

n−1 − ωn+1
µ ∧ ωµ

n−1

= −f4ω
n−2 ∧ ωn−1 + ωn ∧ (. . .).

Summarizing the above computations, we see that X is the union of the one–
dimensional family of (n − 1)–planes, the linear Gauss fiber cones, containing
the d–th osculating space of the curve C ⊂ H∞.

Case l = 1, a = 2. Here we have ImA = kerA, and the statement follows from
[P1, Corollary 11] in view of [WZ, Theorem 2] or [P1, Theorem 6].

Case l = 2. We adapt the frame such that

A1 =





0 1 0
0 0 1
0 0 0



 , Aε =





0 0 tε
0 0 0
0 0 0



 , Qn+1 =





0 0 1
0 1 0
1 0 0



 ,

and Qµ =





0 0 0
0 0 qµ

1

0 qµ
1 qµ

2



 ,

where 2 ≤ ε ≤ d, n + 2 ≤ µ ≤ N and tε = 0 if a = 1.

The Gauss fiber cones of X are the integral manifolds of the distribution
ωi

δ = 0 for all δ, i, i.e., of the distribution ωn−1 = ωn = 0. We claim that
a Gauss fiber cone G is a linear space. It is enough to show that the second
fundamental form of G vanishes. On G we have

de0 = ω1e1 + ωεeε + ωn−2en−2 mod {e0, ω
n−1, ωn}

IIG,e0
= d2e0 = (ω1ωn−1

1 + ωn−2ωn−1

n−2)en−1 + ωn−2ωn
n−2en + ωn−2ωn+1

n−2en+1

mod {e0, . . . , en−2, ω
n−1, ωn}.

We know that ωn−1

1 = ωn+1

n−2 = ωn vanish on G. To compute ωn−1

n−2 and ωn
n−2,

we differentiate ωn
1 = 0, ωn−1

1 = ωn+1
n−2, and ωn−1

1 = ωn. With the index range
n − 2 ≤ k ≤ n − 1 we have

0 = dωn
1 = −ωn

k ∧ ωk
1 = ωn−1 ∧ ωn

n−2 + ωn ∧ ωn
n−1

0 = d(ωn−1
1 − ωn+1

n−2) = −ωn−1
1 ∧ ω1

1− ωn−1

k ∧ ωk
1 + ωn+1

i ∧ ωi
n−2+ ωn+1

n+1∧ ωn+1
n−2

= ωn−2 ∧ ωn
n−2 + ωn−1 ∧ (2ωn−1

n−2) + ωn ∧ (. . .)

0 = d(ωn−1
1 − ωn) = −ωn−1

1 ∧ ω1
1 − ωn−1

k ∧ ωk
1 + ωn ∧ ω0 + ωn

i ∧ ωi

= ωn−2 ∧ (−ωn
n−2) + ωn−1 ∧ (ωn−1

n−2 − ωn
n−1) + ωn ∧ (. . .).

From the first equation we get by Cartan’s Lemma

ωn
n−2 = f1ω

n−1 + f2ω
n and ωn

n−1 = f2ω
n−1 + f3ω

n.

From the second we obtain

2ωn−1
n−2 = f1ω

n−2 + f4ω
n−1 + f5ω

n.
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Plugging this into the third equation, we find f1 = 0; hence,

ωn
n−2 = f2ω

n, ωn
n−1 = f2ω

n−1 + f3ω
n, ωn−1

n−2 =
f4

2
ωn−1 +

f5

2
ωn.

All these terms vanish on the Gauss fiber cone G and therefore also the second
fundamental form of G, i.e., G is a linear space.

Now we turn to the irreducible focal variety Xf of X . The point e1 is a
general point of Xf , and the tangent space Te1

Xf is the image of

de1 = ωε
1eε + ωn−2

1 en−2 + ωn−1

1 en−1 mod {e1}.

Since Xf is the union of the linear spaces {e1, . . . , ed}, the tangent space Te1
Xf

must contain this linear space {e1, . . . , ed}. Because ωn−2

1 and ωn−1

1 are linear
independent, the tangent space Te1

Xf is {e1, . . . , en−1}, and hence the dimen-
sion of Xf is n − 2.

We can compute the second fundamental form of Xf easily as

IIXf ,e1
= ωn−2

1 (ωn
n−2en + ωn+1

n−2en+1) + ωn−1

1 (ωn
n−1en + ωn+1

n−1en+1 + ωµ
n−1eµ)

= (2f2ω
n−2

1 ωn−1

1 + f3(ω
n−1

1 )2)en + 2ωn−2

1 ωn−1

1 en+1 + qµ
1 (ωn−1

1 )2eµ

mod {e1, . . . , en−1}.

Thus Xf is of Gauss rank 2 and has {e1, . . . , ed} as Gauss fiber. Further, it
has the asymptotic space {e1, . . . , en−2} = {ωn−1

1 }⊥. This asymptotic space
is the intersection of the linear Gauss fiber cone G = {e0, . . . , en−2} with the
hyperplane at infinity. We can consider this asymptotic distribution ωn−1

1 =
0 ⇔ ωn = 0 on Xf as well as on X . By the Theorem of Frobenius it is
completely integrable on both varieties since

dωn−1

1 = −ωn−1

1 ∧ ω1
1 − ωn−1

n−2 ∧ ωn−2

1 − ωn−1

n−1 ∧ ωn−1

1

= −( f4

2
ωn−2

1 + f5

2
ωn−1

1 ) ∧ ωn−2

1 = 0 mod {ωn−1

1 }.

Now let Y and Z ⊃ Y be integral manifolds of this distribution on Xf resp.
X . Then Z is the union of the Gauss fiber cones G that contain the tangent
spaces of Y or equivalently the asymptotic planes of Xf along Y . It remains to
show that Z has Gauss rank 1 and has the Gauss fiber cones G as Gauss fibers.
We compute the second fundamental form of Z. On Z we have

de0 = ω1e1 + ωεeε + ωn−2en−2 + ωn−1en−1 mod {e0, ω
n}

IIZ,e0
= d2e0 = (ωn−2ωn

n−2 + ωn−1ωn
n−1)en + (ωn−2ωn+1

n−2 + ωn−1ωn+1
n−1)en+1

+ωn−1ωµ
n−1eµ = (ωn−1)2(f2en + en+1) mod {e0, . . . , en−1, ω

n}.

Clearly, the singular locus of IIZ,e0
is the linear space {e0, . . . , en−2}, the Gauss

fiber cone of X .
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