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The question which equations of hypersurfaces in the complex projective
space can be expressed as the determinant of a matrix whose entries are linear
forms is classical. In 1844 Hesse proved that a smooth plane cubic has three
essentially different linear symmetric representations [He]. Dixon showed in 1904
that for smooth plane curves linear symmetric determinantal representations
correspond to ineffective theta–characteristics, i.e., ineffective divisor classes
whose double is the canonical divisor [Di]. Barth proved the corresponding
statement for singular plane curves [B]. The general case for any hypersurface
was treated by Catanese [C], Meyer–Brandis [M–B], and Beauville [Be].

Any plane curve has a linear symmetric determinantal representation [Be,
4.4], but every linear symmetric determinantal surface is singular. Already
Salmon knew that such a surface of degree n possesses in general

(
n+1

3

)
nodes

[S, p. 495] and Cayley examined the position of these [Ca]. Catanese studied
these surfaces with only nodes in a more general context [C]. Here we are
dealing mainly with the question which combinations of singularities can occur
on a linear symmetric determinantal cubic or quartic surface. For the cubics
we find all their linear symmetric representations and obtain in particular the
following theorem.

Theorem. There are four types of linear symmetric determinantal cubic sur-
faces with isolated singularities. The combinations of their singularities are
given by the subgraphs of Ẽ6

• ◦ • ◦ •

◦

•
which are obtained by removing some of the white dots. In addition, all nonnor-
mal cubics with the exception of the union of a smooth quadric with a transversal
plane are linear symmetric determinantal cubics.

The combination of isolated singularities which occur on a linear symmetric
determinantal quartic can be described similarly — only with more Dynkin
diagrams as starting points for the splitting process.

The author’s original motivation for this study was the desire to understand
linear maps from a vector space V into the space of symmetric matrices, which
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occur for example in the examination of focal varieties, see for example [FP,
2.2.4]. Such a map can be understood as a symmetric matrix M whose entries
are linear forms on V and detM describes the locus of V which is mapped to
symmetric matrices of reduced rank. For dimV = 2 such maps are classified up
to the choice of coordinates classically [G, 12.6]. The case of n = 2 and arbitrary
dimension of V is easy and the case of n = 3 is treated in course of proving the
above Theorem. For n = 4 and dimV = 3 the classification can be obtained
with the methods used here if the linear symmetric determinantal quartic is a
normal rational surface. However, if the quartic has only rational singularities,
the below methods are not constructive because Torelli type theorems are used.
This corresponds to the fact that while every possible combination of rational
double points on a quartic is known by the work of Urabe and Yang [U1, U2, Y],
equations for most of these surfaces are unknown.

The author is indebted to Y.-G. Yang who sent his program for the enu-
meration of the combinations of rational singularities on quartics to the author.
Further, the author thanks J. Nagel and D. van Straten for several discussions.

1 General definitions and statements

Definition 1.1 Let M ∈ Sym(n, V ∗) be a symmetric n × n–matrix whose en-
tries are linear forms on a vector space V over C. If F := detM is not zero,
then it determines a linear symmetric (determinantal) hypersurface of degree n
in P(V ). Two matrix representations M and M ′ of F are equivalent if there is
a T ∈ GL(n, C) with M ′ = T tMT . A matrix representation M will be called
nondegenerate if the induced map V → Sym(n, C), v 7→ M(v), is injective.

We note that the hypersurface F of a degenerate matrix representation M
will be a cone over the kernel of the induced map.

Often M will be obtained by choosing some matrices A0, . . . , AN and set-
ting M :=

∑N
i=0 xiAi, where the xi are a basis of (CN+1)∗. The representation

M will be nondegenerate if the matrices A0, . . . , AN are linearly independent.
Choosing different generators A′

0, . . . , A
′
N of the space span{A0, . . . , AN} corre-

sponds to a projective transformation of PN . Thus the hypersurface F = detM
is determined up to projective equivalence by the choice of the linear space
A := span{Ai} ⊆ Sym(n, C). In fact, we may view F as the intersection of
P(A) ⊆ P(Sym(n, C)) with the general determinantal hypersurface V (det) or a
cone over such a construction, in case we started with a degenerate representa-
tion.

One might expect that the linear symmetric hypersurfaces form a Zariski–
closed subset of all hypersurfaces of degree n. However, this may be false because
the map

P(Sym(n, V ∗)) −− → P(polynomials of degree n), [M ] 7→ [detM ],

is only a rational map and not regular for n ≥ 2; hence, the set of linear
symmetric hypersurfaces is only constructible.

As it is well known, the locus of corank 1 matrices is precisely singular along
the locus of corank ≥ 2 matrices. Therefore, singularities of F appear if either
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P(A) intersects V (det) at a corank ≥ 2 matrix or tangentially at a corank 1
matrix. We use this in the following definition.

Definition 1.2 A singular point x ∈ F is called an essential singularity if the
corank of M(x) is greater or equal to 2, otherwise an accidental singularity.

The accidental singularities are difficult to control. Luckily, we can prove
that for small sizes of the matrix M only certain types of singularities can occur.

Proposition 1.3 Let F be a linear symmetric determinantal hypersurface of
degree n in PN . Then the isolated accidental singularities of F are of corank
less or equal to n−N − 1. (Here corank denotes the corank of the Hesse matrix
of F at the singular point.)

In particular, a linear symmetric cubic in P3 has no isolated accidental sin-
gularities, a quartic only nodes, and a quintic only Ak–singularities.

Before we start with the proof of the proposition, we show the following
lemma, which enables us to identify some of the nonisolated singularities of a
linear symmetric hypersurface. This statement was already known to Salmon
[S, p. 495].

Lemma 1.4 Let M = (mij) be a linear symmetric n×n–matrix with m11 = 0.
Then the hypersurface F = detM is singular along V (m12, . . . , m1n).

Proof. We expand the determinant F by the Leibniz formula. Then each sum-
mand of

∂F

∂xj

=
∑

σ∈S(n)

n∑

i=1

sgnσ · m1σ(1) · . . .
∂miσ(i)

∂xj

. . . · mnσ(n),

contains ∂m11

∂xj
= 0, m1σ(1), or mσ−1(1)1 = m1σ−1(1); hence, it vanishes on

V (m12, . . . , m1n). 2

Proof of Proposition 1.3. Assume that we are examining the point p = (1 : 0 :
. . . : 0). Because p is an accidental singularity, corank A0 = 1 and we can choose
coordinates on the Cr such that

A0 =




0 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1


 .

We set x0 = 1 and write

M =




f11 f12 f13 · · · f1n

f12 1 + f22 f23 · · · f2n

f13 f23
. . . f3n

...
...

. . .
...

f1n f2n f3n · · · 1 + fnn




with fij ∈ C[x1, . . . , xN ].
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Obviously, the linear part of F = det M is f11, which has to vanish for p to be
singular. Looking at

F = det M =
∑

σ∈S(n)

sgnσ · m1σ(1) · . . . · mnσ(n),

we see that the quadratic part of F is due to the summands where n− 2 of the
miσ(i) are of order 0, i.e., where σ is a transposition of 1 with i ∈ {2, . . . , n};
hence the quadratic part of F is

−
n∑

i=2

(f1i)
2.

The Hessian of F in p is the associated symmetric N × N–matrix S of this
quadric. Our task is to show that the rank of S is at least 2N − n + 1. By
Lemma 1.4 there are N linearly independent forms among f12, . . . , f1n because
the point p is an isolated singularity. Let us assume that f12, . . . , f1N+1 are
linearly independent, then the associated symmetric N × N–matrix S̃ of the
quadric −∑N+1

i=2 f2
1i has rank N . The symmetric matrices SN+2, . . . , Sn associ-

ated to f2
1N+2, . . . , f

2
1n have rank 1 or 0. From S̃ = S +

∑n
i=N+2 Si we find

N = rank S̃ ≤ rankS +
n∑

i=N+2

rankSi ≤ rankS + n − N − 1,

thus rankS ≥ 2N − n + 1. 2

Remark. We will see soon that an essential singularity of a linear symmetric
hypersurface can never be an A2k–singularity, but an accidental singularity may
as well be one. For example the quintic given as the determinant of the matrix




0 x y z
√
−1z

x w + z 0 0 0
y 0 w + y 0 0
z 0 0 w + x

√
−1z√

−1z 0 0
√
−1z w




has an A2–singularity at (1 : 0 : 0 : 0). It seems likely that as the size of the
matrix increases all types of singularities will occur as accidental singularities.

We turn to the examination of the essential singularities. First, we will count
them. The following statement was already known to Salmon [S, p. 495].

Proposition 1.5 The general linear symmetric determinantal hypersurface F
of degree n has only essential singularities and its singular locus has codimen-
sion 2 and degree

(
n+1

3

)
.

In particular, a general linear symmetric surface F ⊂ P3 has
(
n+1

3

)
essential

A1–singularities.

Proof. For the first statement we view F as V (det) ∩ P(A) ⊆ P(Sym(n, C)). A
general linear space P(A) ⊆ P(Sym(n, C)) intersects V (det) transversally, thus
there are no accidental singularities. The locus of corank ≥ 2 matrices has
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codimension 3 in P(Sym(n, C)) and degree
(
n+1

3

)
[HT]. As its intersection with

P(A) consists of the essential singularities of F , the first statement follows.

For the second statement one must show that a general essential singularity
is a node. This can be done with arguments similar to the ones in the proof of
Proposition 1.3. 2

Cossac studied these general linear symmetric surfaces in degree 4 taking
up ideas of Cayley. In particular, he pointed out their connection to Enriques
surfaces [Co]. In order to examine the essential singularities further we localize
our definitions.

Definition 1.6 A local symmetric matrix representation of a power series
f ∈ C[[x1, . . . , xN ]] is a symmetric matrix M ∈ Sym(r, C[[x1, . . . , xN ]]) with
detM = f . Two matrix representations M and M ′ are equivalent if there exists
a T ∈ GL(r, C[[x1, . . . , xN ]]) such that M ′ = T tMT . A matrix representation
M is essential if corankM(0) ≥ 2 and reduced if M(0) = 0.

If one considers the equation of the power series f only up to a choice of
holomorphic coordinates, it is convenient to extend the above definition of equiv-
alence by allowing changes of coordinates as well. It is enough to consider only
reduced matrix representations due to the following well–known lemma.

Lemma 1.7 Any local symmetric matrix representation M of a power series
f ∈ C[[x1, . . . , xN ]] is equivalent to




M̃ 0 · · · 0
0 1 0
...

. . .

0 0 1


 ,

where M̃ is a reduced local symmetric matrix representation of f .

Not every singularity has an essential local symmetric matrix representation.
For the ADE–singularities we have the following

Theorem 1.8 The surface singularities A2k, E6, E8 have no essential local
symmetric matrix representation. The reduced essential symmetric matrix rep-
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resentations for A2k+1, D2k, D2k+1, E7 are up to equivalence:

singularity X equation matrix representation M l(X)

A2k+1 (A•
2k+1) −x2 + y2 − z2k+2

(
y + zk+1 x

x y − zk+1

)
k + 1

D2k (D•
2k) −x2 + y2z − z2k−1

(
z x

x y2 − z2k−2

)
2

D2k (D±
2k)

(
y ± zk−1 x

x z(y ∓ zk−1)

)
k

D2k+1 (D•
2k+1) −x2 + y2z − z2k

(
z x

x y2 − z2k−1

)
2

E7 (E•
7 ) −x2 + z3 + zy3

(
z x

x z2 + y3

)
3

The symbols in brackets in the first column denote the specific matrix represen-
tation of the singularity from now on. The last column gives the length of the
first Fitting ideal, F1M , of the matrix representation of the singularity, which
is here the ideal generated by the entries of the matrix.

Proof. Let M be a local symmetric matrix representation of an ADE–
singularity, which is given by the equation f = detM . We set R =
C[[x, y, z]]/(f). Then M̂ = cokerM is a maximal Cohen–Macaulay module
of rank 1 [Yo, Chap. 7]. Due to the symmetry of M , we obtain a surjection
M̂ ։ HomR(M̂, R). Such a module M̂ is called a contact module. It deter-
mines the matrix M up to equivalence ([KU, §2] or [M–B, 3.34]). Over the
local ring of an ADE–surface singularity there exists only a finite number of
irreducible modules. This was proven by Auslander as follows: Recall that for
each of the ADE–surface singularities there exists a group G ⊂ GL(2, C) such
that the invariant subring C[[x, y]]G is isomorphic to the local ring R of the
singularity. Auslander exhibited a bijection between these irreducible modules
and the irreducible representations of G [Yo, Chap. 10].

Since a contact module has rank 1, we are only interested in the irreducible
rank 1 modules, not isomorphic to R. There are k for Ak, 3 for Dk, 2 for E6,
1 for E7, and none for E8 [Yo, p. 95]. This already proves the claim for D2k,
E7, and E8. For the other singularities one uses the Auslander’s bijection to
work out the following representation matrices for the irreducible modules of
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rank 1, besides the ones that occur in the above table:

singularity standard equation representation matrix

Ak −xy + zk+1 Mi =

(
zi y

x zk+1−i

)
for 1 ≤ i ≤ k

D2k+1 −x2 + zy2 + z2k M± =

(
zk ± x yz

y zk ∓ x

)

E6 x2 − y3 − z4 M± =

(
x ± z2 y2

y x ∓ z2

)

Kleiman and Ulrich showed that if an R–module of rank 1 represented by an r×
r–matrix M is a contact module then there exists a matrix T ∈ GL(r, C[[x, y, z]])
such that TM is symmetric [KU, 2.2]. As we are dealing only with 2×2-matrices,
this condition is very easy to check. Let

T =

(
g1 g2

f2 f1

)
with g1f1 − g2f2 ∈ C[[x, y, z]]∗.

For Ak the symmetry of TMi is equivalent to

xf1 + zif2 = yg1 + zk+1−ig2.

Clearly, we have f1(0) = g1(0) = 0, which implies f2(0) · g2(0) 6= 0 for T to be
invertible. Therefore, i = k + 1− i, i.e., k + 1 is even and i = (k + 1)/2. Hence,
there can be no contact module for A2k and only one for A2k+1. Completely
analogous arguments work for the matrices M± for D2k+1 and E6.

The computation of the length of the Fitting ideals is simple. Denoting
S := C[[x, y, z]] we have

l(A•
2k+1) = dimS/(x, y + zk+1, y − zk+1) = dimS/(x, y, zk+1) = k + 1

l(D•
2k) = dimS/(x, z, y2 − z2k−2) = dimS/(x, z, y2) = 2

l(D±
2k) = dimS/(x, y ± zk−1, z(y ∓ zk−1)) = dimS/(x, zk, y ± zk−1) = k

l(D•
2k+1) = dimS/(x, z, y2 − z2k−1) = dimS/(x, z, y2) = 2

l(E•
7) = dimS/(x, z, z2 + y3) = dimS/(x, z, y3) = 3

2

Often it does not make much sense to distinguish between the representations
D+

2k and D−
2k because the automorphism of the local ring of the singularity

induced by x 7→ −x, y 7→ −y swaps them. The above theorem restricts the
possible combinations of essential singularities on a linear symmetric surface
severely:
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Corollary 1.9 Let F be a linear symmetric determinantal surface of degree n
in P3 whose essential singularities X1, . . . , Xt are ADE–singularities. Then
Xi ∈ {A•

2k+1, D•
2k+1, D•

2k, D±
2k, E•

7} and

t∑

i=1

l(Xi) =

(
n + 1

3

)
.

Proof. This follows similarly to Proposition 1.5. We view F as P(A)∩V (det) ⊂
P(Sym(n, C)). Let Ii be the vanishing ideal of symmetric matrices of corank ≥ i.
Then we find the essential singularities as the intersection of P(A) and V (I2),
thus the sum of their intersection multiplicity is deg V (I2) =

(
n+1

3

)
. From

the above theorem we see that the essential ADE–singularities appear only at
corank 2 matrices and never at matrices of higher corank. As V (I2) is smooth
outside V (I3), the local intersection multiplicities of P(A) and V (I2) can be
found by computing locally the length of the sum of the ideal I2 and the van-
ishing ideal of P(A), i.e., by computing locally the length of the first Fitting
ideal of matrix representation. This was done for the various singularities in the
above theorem. 2

Remark. We will see later that linear symmetric cubics and quartics cannot
have D2k+1–singularities. However, here is a quintic with an essential D5–
singularity at x = y = z = 0, showing that essential D2k+1–singularities are in
fact possible.




0 665x −2y + z 3y + z 2y + 4z
665x 2y −2771x 6606x 7138x

−2y + z −2771x 26y − 6z 0 4z + w
3y + z 6606x 0 w 0
2y + 4z 7138x 4z + w 0 224y + 136z




A linear symmetric representation of F ⊂ P3 is closely related to the contact
surfaces of F ; a surface G is a contact surface if the intersection G ∩ F is
twice a curve C. These partially classical ideas, which are connected with the
Hilbert–Burch theorem, were recently refined by Beauville [Be], Catanese [C],
Eisenbud [Ei2], Kleiman and Ulrich [KU], and Meyer–Brandis [M–B]. The next
few pages are devoted to extend Catanese’s results for even sets of nodes to sets
of ADE–singularities.

While studying contact surfaces one also encounters nonlinear symmetric
matrices, thus the following definition will be useful.

Definition 1.10 A symmetric matrix M = (mij) ∈ Sym(r, C[x0, . . . , xN ]) is
homogeneous if all its entries are homogeneous polynomials and deg mii +
deg mjj = 2 deg mij for all i, j = 1, . . . , r. The degree of M is deg M :=
(d1, d2, . . . , dr), where di := deg mii. By permutation of the rows and columns
one can achieve that d1 ≤ d2 ≤ . . . ≤ dr. For a homogeneous matrix M the
determinant F = detM is a homogeneous polynomial of degree n =

∑r
i=1 di.

Such an F is called a symmetric (determinantal) hypersurface.

M is linear if and only if d1 = . . . = dr = 1. A consequence of the homogene-
ity of M is that the adjoint matrix, adjM , of M is homogeneous, too. From the
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adjoint matrix one obtains contact surfaces. Various versions of the following
well–known lemma have appeared in the literature, we repeat the proof for the
reader’s convenience.

Lemma 1.11 Let F = detM be a symmetric surface in P3 and mii a diagonal
entry of adjM . Assume that no component of divF (mii) is contained in the
essential singular locus of F . Then divF (mii) = 2C, where C is a Cartier
divisor outside the essential singularities of F .

Proof. The proof is based on the Laplace identity ([KU, 2.4] or [C, (1.3)]) which
states

Fmik,jl = mkjmil − mklmij ,

where mij are the entries of the adjoint matrix and mik,jl is (−1)i+j+k+l–times
the determinant of the matrix M with the rows i, k and columns j, l deleted.

Setting k = j, l = i, we have miimjj =
(
mij
)2

modulo F , thus

divF (mii) + divF (mjj) = 2divF (mij). (∗)

This formula also implies that at the zero locus of m11 = . . . = mrr = 0 on F all
mij and with them adjM vanish. Therefore, the divisors divF (mii) cannot have
a common component outside the essential singular locus, hence (∗) shows that
all components in divF (mii) occur with even multiplicity. Finally, miimjj =(
mij
)2

mod F shows that C is Cartier outside the essential singularities. 2

If one uses instead of only M all equivalent matrix representations of F ,
one obtains a whole system of contact surfaces [M–B, §2.1]. From now on we
restrict our attention to symmetric surfaces whose essential singularities are
ADE–singularities. To understand their contact surfaces it is important to
examine the local symmetric ADE–singularities, found in Theorem 1.8.

Definition 1.12 Let X ∈ {A•
2k+1, D

•
k, D±

2k, E•
7} be one of the essential sym-

metric surface singularities with equation f = detM . The Fitting cycle of X
on the minimal resolution π : X̃ → X is defined as

ZX := gcd{divX̃(π∗g) | for all g ∈ F1M}.

Let g be a local contact surface induced by M , for example one of the main
corank 1 minors. The parity diagram of X is the minimal resolution graph GX

of X where the vertices are marked as follows: A vertex of G is drawn as • if
the corresponding curve occurs with odd multiplicity in the total transform π∗g
of g, otherwise it is drawn as ◦.

The generalized Laplace identity [M–B, 2.2] implies that the parity diagrams
are the same for equivalent matrix representations and thus well–defined. Let
us compute them.

Proposition 1.13 The essential symmetric surface ADE–singularities have
the following parity diagrams and Fitting cycles: (The multiplicity of an excep-
tional rational curve in the Fitting cycle is noted near the vertex representing
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this curve in the Dynkin diagram.)

A•
2k+1 •

1

◦
2

•
3

◦
4

•
3

◦
2

•
1

D•
2k+1, D•

2k

• 1

•
1

◦
2

◦
2

◦
2

◦
2

◦
2

◦
2

D±
2k, k even

• k − 1

◦
k

◦
2k − 2

•
2k − 3

◦
2k − 4

•
3

◦
2

•
1

D±
2k, k odd

◦ k − 1

•
k

◦
2k − 2

•
2k − 3

◦
2k − 4

•
3

◦
2

•
1

E•
7

• 3

◦
2

◦
4

◦
6

•
5

◦
4

•
3

In particular, the number of the •–vertices in the parity diagram is the length
of the first Fitting ideal of the matrix representation and the self–intersection
number of the Fitting cycle is −2 times the length of the Fitting ideal, i.e.,
(ZX)2 = −2l(X). Further, ZX · E ≤ 0 for any exceptional curve E.

Proof. Because of Theorem 1.8 we need only to resolve the singularities while
keeping track of the divisors given by the matrix entries. Such a task is tradi-
tionally left to the interested reader. 2

We return to the global situation.

Definition 1.14 Let F ⊂ P3 be a surface and P = {p1, . . . , pt} ⊂ F a set of sin-
gular points of type A2k+1, Dk, or E7 on F . To each of this singularities assign
an essential symmetric surface ADE–singularity symbol of the same underlying
type, i.e., for A2k+1, D2k+1, and E7 one uses A•

2k+1, D•
2k+1, and E•

7 respec-

tively, but for D2k one may choose between D•
2k and D±

2k. Let X = {X1, . . . , Xt}
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be the resulting set. Further, let π : F̃ → F be the minimal resolution of F in
these points and H the pullback of a hyperplane divisor of F to F̃ .

The set X is said to be even if the divisor δH+
∑t

i=1 ZXi
for some δ ∈ {0, 1}

is divisible by 2 in Pic(F̃ ).

X is strictly even if δ = 0, otherwise weakly even.

The set X is called (linearly) symmetric if there is a (linearly) homogeneous
symmetric matrix M with F = det M such that X is precisely the set of essential
symmetric singularities of F .

Note that in the case of a symmetric set of ADE–singularities the pullbacks
of the entries of the adjoint matrix of M define the cycle

∑t
i=1 ZXi

schemethe-
oretically by the definition of the Fitting cycles.

Proposition 1.15 A symmetric set of ADE–singularities is even.

Proof. Let F = detM be the surface which has X as essential singularities and
G a contact surface given by a main corank 1 minor of M . Set l = deg G and
C = 1

2divF (G). Pulling G back to the minimal resolution π : F̃ → F we find

π∗G = 2C̃ +D, where C̃ is the strict transform of C and D a divisor supported
on the exceptional set. By the definition of the Fitting cycle D −∑t

i=1 ZXi
is

effective as well. Further, from Proposition 1.13 we see that for all singularities
the parity of the multiplicity of the exceptional rational curves in the Fitting
cycle is the same as the one in the pullback of a contact surface, thus D −∑t

i=1 ZXi
is divisible by 2, say D −∑t

i=1 ZXi
= 2B. Altogether we have with

δ = l − 2⌊l/2⌋

divF̃ π∗G = lH =
t∑

i=1

ZXi
+ 2(C̃ + B)

=⇒
t∑

i=1

ZXi
+ δH = 2(

⌈
l
2

⌉
H − C̃ − B),

i.e.,
∑t

i=1 ZXi
+ δH is divisible by 2 in Pic(F̃ ). 2

We want to ensure the existence of contact surfaces for an even set of ADE–
singularities with the same properties as G in the above proof.

Proposition 1.16 Let X be an even set of ADE–singularities on a surface
F ⊂ P3 and π : F̃ → F the minimal resolution of F in these singular points.
Then there exists a surface G ⊂ P3 such that its pullback divisor divF̃ π∗G on F̃
contains the Fitting cycles ZXi

for Xi ∈ X and the effective divisor divF̃ π∗G−∑t
i=1 ZXi

∈ Pic(F̃ ) is divisible by 2.

Proof. The proof is the same as the second half of [C, 2.6], we repeat it here
because it is short and helps to understand the rest of the section. Let L be a
divisor such that 2L =

∑t
i=1 ZXi

+ δH . Choose l such that lH − L is linearly

equivalent to an effective divisor C̃. Then (2l − δ)H = 2C̃ +
∑t

i=1 ZXi
; hence,

there exists a surface of degree 2l − δ with the required properties. 2

From now on the theory of the even sets of ADE–singularities is the same
as Catanese’s theory of even nodes [C, 2.16–2.23]. We repeat the statements,
but leave out the proofs if they are identical with the ones in the node case.
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Definition 1.17 Let X be an even set of ADE–singularities on F The order
of X is the smallest degree of a surface with the same properties as G in the
above proposition.

Let S be the graded ring C[x, y, z, w] and L ∈ Pic(F̃ ) such that 2L = δH +∑t
i=1 ZXi

. The associated graded S–module of X is

R− =

∞⊕

l=0

H0(F̃ ,OF̃ (lH − L)) =

∞⊕

l=0

H0(F, (π∗OF̃ (−L))(l)).

Note that if w ∈ H0(F̃ ,OF̃ (lH − L)) and w′ ∈ H0(F̃ ,OF̃ (l′H − L)) then

ww′ ∈ H0(F̃ ,OF̃ ((l+l′)H−2L)) = H0(F,OF (l+l′−δ)). In particular, if l is the
smallest number for which R−

l 6= 0 then X has order 2l− δ by Proposition 1.16.

Lemma 1.18 H0(F̃ ,OF̃ (lH − L)) ∼= H0(F̃ ,OF̃ ((l − δ)H + L)).

Proof. (Compare [C, 2.15].) From the long exact cohomology sequence associ-
ated to

0 → OF̃ (lH − L) → OF̃ ((l − δ)H + L) →
t⊕

i=0

OZXi
(L) → 0

we see that it is enough to show that the cohomology group H0(ZXi
,OZXi

(L))

vanishes. If there exists a section s ∈ H0(ZXi
,OZXi

(L)) then s2 ∈
H0(ZXi

,OZXi
(2L)) = H0(ZXi

,OZXi
(ZXi

+ δH +
∑

j 6=i ZXj
)), but the last ho-

mology group is zero by [R, Ex. 4.14]. 2

Theorem 1.19 If X is a symmetric set of ADE–singularities on a reduced
surface F = detM , then the associated module R− is a Cohen–Macaulay S–
module.

More precisely, if deg M = (d1, . . . , dr), set ki = (n + δ − di)/2, lj = (n +
δ + dj)/2, where n = deg F and δ = n− di mod 2. Then there exists a minimal
set of generators w1, . . . , wr of R− of degrees k1, . . . , kr such that wiwj = mij ,
where (mij) = adjM . Moreover R− admits the minimal free resolution

0 →
r⊕

j=1

S[−lj ]
(mij)→

r⊕

i=1

S[−ki]
(wj)→ R− → 0.

The order of X is n − max{di}.

Theorem 1.20 Let F be an irreducible and reduced surface of degree n and
X an even set of ADE–singularities on F . Then the following conditions are
equivalent:

• X is symmetric.

• Let w1, . . . , wr be a minimal set of homogeneous generators for the S–
module R−. Set mij = wiwj ∈⊕∞

l=0 H(F,O(l)) = S/(F ). Then det(mij)
is a nonzero polynomial of degree n(r − 1).

• R− is a Cohen–Macaulay S–module.
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• H1(F̃ ,OF̃ (lH − L)) = 0 ∀l ∈ Z.

Catanese’s construction of the symmetric matrix is such that none of the
matrix entries is a nonzero constant, because the set of generators of R− was
chosen to be minimal.

Proposition 1.21 Let F be a surface of degree n with an even set X of ADE–
singularities.

If l(X) :=
∑t

i=1 l(Xi) ≤
(
n+1

3

)
, then X has order ≤ n − 1.

If l(X) =
(
n+1

3

)
and n = δ mod 2, then n is divisible by 8.

Proof. (Following [C, 2.21].) By the remark after the defintion 1.17 it suffices to
show that h0(F̃ ,OF̃ (lH −L)) 6= 0 for 2l− δ ≥ n− 1 or even only for 2l ≥ n− 1,
observing that the order of X is an element of 2l − δ + 2N. By Serre duality
and Lemma 1.18

h2(F̃ ,OF̃ (lH−L)) = h0(F̃ ,OF̃ ((n−4−l)H+L)) = h0(F̃ ,OF̃ ((n−4−l+δ)H−L)).

Since n−4−l+δ ≤ l−3+δ < l, we get h2(F̃ ,OF̃ (lH−L)) ≤ h0(F̃ ,OF̃ (lH−L)),

and it is enough to show χ(F̃ ,OF̃ (lH − L)) > 0. Using (
∑

ZXi
)2 = −2l(X)

from Proposition 1.13 we get from Riemann–Roch:

χ(F̃ ,OF̃ (lH − L)) = χ(F̃ ,OF̃ ) + 1
2 (lH − L)(lH − L − (n − 4)H)

= χ(F,OF ) + 1
2

(
(l − δ

2 )H − 1
2

∑
ZXi

) (
(l − n + 4 − δ

2 )H − 1
2

∑
ZXi

)

= 1 +
(

n−1
3

)
+ 1

2

((
l − δ

2

) (
l − n + 4 − δ

2

)
n − 1

2 l(X)
)
.

It is not hard to see that this term is positive for 2r ≥ n− 1 and l(X) ≤
(
n+1

3

)
.

For further reference we note that for l(X) =
(
n+1

3

)
and n − 1 = δ mod 2 one

finds

χ(F̃ ,OF̃ (⌊n
2 ⌋H − L)) = n and χ(F̃ ,OF̃ ((⌊n

2 ⌋ − 1)H − L)) = 0.

For l(X) =
(

n+1
3

)
and n = δ mod 2 we get

χ(F̃ ,OF̃ ((⌈n
2 ⌉ − 1)H − L)) =

3n

8
∈ Z,

showing that n is divisible by 8. 2

Theorem 1.22 Let X be an even set of ADE–singularities on a reduced surface
F ⊂ P3 of degree n: Then X is linearly symmetric if and only if X has length(
n+1

3

)
and order n − 1.

Proof. If X is linearly symmetric, its order is n − 1 by Theorem 1.19 and its
length was computed in Corollary 1.9. Alternatively, one can compute the length
with the arguments in the proof of the above Proposition using Theorem 1.20.
For the nontrivial reverse implication of the theorem we refer to Catanese’s
proof of [C, 2.23]. 2

Catanese showed by example that in general the hypothesis on the order of
X cannot be dropped.
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2 Cubics

Before we study the determinantal cubics we recall the following beautiful the-
orem about cubics in P3, see Bruce and Wall [BW] or Looijenga [L].

Theorem 2.1 The combinations of singularities which can occur on a normal
cubic surface in P3 are precisely the subgraphs of Ẽ6

• • • • •

•

•
which one obtains by removing some of the points. The nonnormal cubics are the
cones over plane cubic curves, the reducible cubics, and two special irreducible
types.

We want to prove a similar statement for linear symmetric cubics. As all
plane cubics have a linear symmetric matrix representation (Appendix A), we
focus on nondegenerate linear symmetric representations of the cubic surfaces
first.

Theorem 2.2 There are three nondegenerate linear symmetric determinantal
cubics with isolated singularities. Their combinations of the singularities are
given by the subgraphs of Ẽ6

• ◦ • ◦ •

◦

•
which are obtained by removing some — but at least one — of the white dots.
They all have unique matrix representations up to equivalence.

In addition, of the nonnormal cubics both special irreducible types, the smooth
quadric with a tangent plane, the quadric cone with a transversal plane, and
the double plane with an additional plane are nondegenerate linear symmetric
cubics. All their nondegenerate linear symmetric matrix representations are
unique.

Including the degenerate matrix representations and with them all cubic
cones, we immediately obtain the following corollary.

Corollary 2.3 There are four types of linear symmetric determinantal cubics
with isolated singularities. Their combinations of the singularities are given by
the subgraphs of the above marked Dynkin diagram Ẽ6 which are obtained by
removing some of the white dots. The cubics with an elliptic singularity have
three matrix representations up to equivalence, the other cubics only one.

In addition, all nonnormal cubics with the exception of the smooth quadric
with a transversal plane are linear symmetric cubics.
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Proof of the Theorem 2.2. (Following the outline in [CD, Prop. 0.5.5], where
only the normal cubics are considered.) A nondegenerate linear symmetric
representation is determined up to equivalence by choosing a four–dimensional
linear subspace A ⊂ Sym(3, C), see the discussion near Definition 1.1. Now
there is a nondegenerate symmetric bilinear form on Sym(r, C) given by

< , >: Sym(r, C) × Sym(r, C) −→ C, (A, B) 7−→ tr(A · B) =

r∑

i,j=1

aijbij ,

where tr denotes the trace. Therefore, instead of choosing a four–dimensional
linear subspace A ⊂ Sym(3, C), we may choose dually a two–dimensional linear
subspace A⊥ ⊂ Sym(3, C). There is only a finite number of these pencils of
A⊥. This can be extracted from [G, 12.6] where these pencils together with a
choice of basis are classified. However, using the identification of a symmetric
3×3–matrix modulo C∗ with a quadric in P2, we can also view A⊥ ⊂ Sym(3, C)
as a pencil of quadrics in P2. Then one can see that prescribing the intersection
type of two general members of this pencil determines the pencil up to a choice
of coordinates. From there one can compute the corresponding determinantal
cubic. We will give one example of this and summarize the remaining cases in
a table.

Let us assume that two quadrics of the pencil intersect with multiplicities
1,1, and 2. We choose coordinates such that (0 : 0 : 1) and (0 : 1 : 0) are the
simple intersection points and (1 : 0 : 0) is the point where the quadrics intersect
with multiplicity 2, i.e., they have a common tangent. This tangent cannot pass
through (0 : 0 : 1) or (0 : 1 : 0), because otherwise it would intersect every
quadric of the pencil with multiplicity 2 + 1 = 3, i.e., it would be a component
of every quadric by Bezout’s theorem. Thus by a further adaption of coordinates
we may assume that the tangent is spanned by (1 : 0 : 0) and (1 : 1 : 1). Let
(r : s : t) be the coordinates on P2. Then a quadric q passing through (1 : 0 : 0),
(0 : 1 : 0), and (0 : 0 : 1) has the form ars + brt + cst. Its tangent in the point
(1 : 0 : 0) is given by grad(1,0,0)q = (0, a, b); hence, passing through (1 : 1 : 1)
implies a = −b. Therefore, the pencil of quadrics is spanned by 2r(s − t) and
2st. These correspond to the symmetric matrices




0 1 −1
1 0 0

−1 0 0


 and




0 0 0
0 0 1
0 1 0


 ,

which therefore span A⊥. From this a basis of A can be easily computed as



1 0 0
0 0 0
0 0 0


 ,




0 0 0
0 1 0
0 0 0


 ,




0 0 0
0 0 0
0 0 1


 ,




0 1 1
1 0 0
1 0 0




and the equation of the cubic is

F = det




w z z
z x 0
z 0 y


 = wxy − xz2 − yz2.

It is easy to see that the singularities of F are the two A1–singularities at
(0 : 1 : 0 : 0) and (0 : 0 : 1 : 0) and an A3–singularity at (1 : 0 : 0 : 0).
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We summarize all cases in the following table. Its first column describes the
pencil of quadrics. If it contains only numbers, we consider the pencil whose
general member is smooth and two of those intersect with multiplicities given
by the numbers. 2
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description
of pencil

pencil of
quadrics

two general
members

F description of cubic

(1, 1, 1, 1)
r(s − t)

t(r − s)

wxy + wxz+
wyz + xyz

cubic with 4A1

(2, 1, 1)
r(s − t)

st
wxy − xz2

−yz2 cubic with 2A1 + A3

(2, 2)
r2

st
−xy2 − wz2 irreducible type I

(3, 1)
2r2 − 2st

rt
wxz − z3

−xy2 cubic with A5 + A1

(4)
2s2 − 2rt

r2
−w3 + 2wxy
−x2z

irreducible type II

all quadrics singular;
no fixed line

r2

s2 −x(wx − 2yz)
nondeg. quadric
+ tangent plane

fixed line; pencil
with center outside line

rt
st

y(wx − z2)
quadric cone

+transversal plane

fixed line; pencil
with center on line

r2

rs
−wy2 double plane

+plane



Looking at the table one notices that whenever the cubic F has only isolated
singularities, these singularities are precisely the singularities of the quartic Q
which is the union of the two smooth members of the pencil of the quadrics
given by A. We are going to explain this amazing fact.

Recall that a plane A2k+1–singularity is defined to be the intersection of two
smooth branches intersecting with multiplicity k. Thus knowing the singularities
of the quartic Q, which is the union of the two smooth quadrics C1 and C2, is
the same as knowing the intersection multiplicities of C1 ∩ C2, whose sum is 4.
Now we embed P2 via the Veronese embedding

v : P2 −→ V ⊂ P5 = P(Sym(3, C)), [x] 7−→ [x · xt].

as the Veronese surface V into P5. Then the quadrics C1 and C2 are pullbacks
of two hyperplanes H1 and H2 of P5. The intersection multiplicities of C1 ∩ C2

are the same as the intersection multiplicities of the curves H1 ∩ V and H2 ∩
V on the Veronese surface V by the projection formula. These are also the
intersection multiplicities of the Veronese surface V and the 3–plane H1 ∩H2 =
P(A). Denoting the affine coordinate ring of Sym2(3, C) by C[x0, . . . , x5], they
can be computed as the vector space dimensions of the ring

C[x0, . . . , x5]/(I(V) + I(H1) + I(H2))

localized at the corresponding points of P(Sym(3, C)). Because H1 and H2 are
linear and the ideal of the Veronese surface is given by the 2 × 2–minors of the
general symmetric matrix, the above ring is isomorphic to

C[w, x, y, z]/(2 × 2–minors of M),

where M is the matrix representation of F ∈ C[w, x, y, z].

To determine the singularities of F = det M , we project F from a general
smooth point of F . Then it is classically known that the singularities of F are
stably equivalent to the singularities of the branch curve of the projection. Let
us recall the proof. If

F (w, x, y, z) = w2g1(x, y, z) + wg2(x, y, z) + g3(x, y, w)

with deg gi = i and g1 6= 0, then (1 : 0 : 0 : 0) is a smooth point of F and the
branch curve G of the projection is

G = g2
2 − 4g1g3.

The stable equivalence between the points of F and G can be seen from

F/g1 =

(
w +

g2

2g1

)2

− 1

4g1
2
G.

Now we apply this to our F = detM . We know a priori that F has at least
four A1–singularities or worse in terms of the sum of the Milnor numbers; thus
the branch curve G has these singularities as well and will be a reducible quartic.
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We will show that it is the union of two quadrics. We choose coordinates such
that the general projection point is (1 : 0 : 0 : 0) and

A0 =




0 0 0
0 1 0
0 0 1


 , then M =




f11 f12 f13

f12 w + f22 f23

f13 f23 w + f33




with fij ∈ C[x, y, z] linear. We denote the adjoint matrix of M by adjM =
(mij). Then

F = w2g1 + wg2 + g3 with g1 = f11, g2 = m22
w=0 + m33

w=0, g3 = detMw=0,

where the index w = 0 stands for setting w equal to zero in the polynomial resp.
matrix. By the determinantal formula of Laplace [KU, 2.4]

F · f11 = m22m33 − (m23)2 =⇒ g1g3 = m22
w=0m

33
w=0 − (m23

w=0)
2

and

G = g2
2 − 4g1g3 = (m22

w=0 + m33
w=0)

2 − 4m22
w=0m

33
w=0 + 4(m23

w=0)
2

= (m22 − m33 + 2
√
−1m23)(m22 − m33 − 2

√
−1m23),

using m22
w=0 − m33

w=0 = m22 − m33 and m23
w=0 = m23. Hence, G is the union of

the quadric cones C̃1 = V (m22 − m33 + 2
√
−1m23) and C̃2 = V (m22 − m33 −

2
√
−1m23) with vertex (1 : 0 : 0 : 0). We consider them as plane curves and

compute their intersection multiplicities. They are given by the vector space
dimensions of the ring

C[x, y, z]/(m22 − m33 ± 2
√
−1m23) = C[x, y, z]/(m22 − m33, m23)

localized at the appropriate points. Since

(m22 − m33, m23) + (m11 = g1w + m11
w=0) ⊆ (2 × 2–minors of M)

and the sum of the intersection multiplicities is 4 in all cases, the intersection
multiplicities of C1 ∩ C2, V ∩ P(A), and C̃1 ∩ C̃2 are equal at corresponding
points! Further, by what we said in the beginning the intersection multiplicities
of C̃1 ∩ C̃2 would determine the singularities of the branch curve if we knew
that C̃1 and C̃2 are smooth, which we do not. However, the singularities will
get only worse if C̃1 or C̃2 are singular, and we can at least conclude that the
singularities of the branch curve, which are also the singularities of the cubic
F , are equal to or worse than the singularities of the quartic Q = C1 + C2,
that we started with. But the combination of the singularities for C1 + C2 are
4A1, 2A1 + A3, 2A3, A5 + A1, and A7 and these combinations are all extremal
combinations of isolated singularities on a normal cubic — with the exception
of 2A3 which is impossible — by the classification of cubics [BW]. Therefore,
the singularities of F are in fact the singularities of C1 + C2 if F is normal.

3 Quartics

The methods of studying a normal quartic in P3 depend on whether its reso-
lution is a K3–surface or a rational surface. If the quartic has only rational
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double points, its resolution is a K3–surface. In this case Urabe and Yang used
Torelli type theorems for K3–surfaces to list all possible combinations of ratio-
nal singularities. If the normal quartic surface possesses a nonrational double
point or a triple point, the quartic is rational and can be examined by studying
the projection of the quartic from this singular point. Degtyarev used this to
list all possible combinations of singularities in this case. The proof also yields
a method for producing equations of these quartics, in contrast to this for most
possible combinations of rational singularities equations of the respective quar-
tics are unknown. In the next three subsections we will adapt all this to the
case of linear symmetric quartics.

If a quartic surface has a quadruple point, it is a cone over a plane curve.
As any plane curve can be represented by a linear symmetric matrix [Be, 4.4],
the same holds for any such quartic surface, and we will not discuss this case
further.

3.1 Linear symmetric quartics with only rational double

points

Urabe and Yang examined the question which combinations of rational double
points can occur on a quartic at all [U1, U2, Y]. The general idea is not to study
the quartic in P3 directly, but its minimal desingularization Y , which is a K3–
surface. For general facts about K3–surfaces see [BPV, VIII]; we recall only the
following: For all K3–surfaces the second cohomology group H2(Y, Z) is a free
abelian group of rank 22. Together with the intersection form it is the unique
unimodular even lattice of signature (3, 19), which is Q(−E8)⊕Q(−E8)⊕H⊕H⊕
H. Here, ⊕ denotes the orthogonal direct sum, Q(−E8) the rank 8 lattice whose
bilinear form is given by the Dynkin graph E8 with sign–reversed weights, and
H the hyperbolic plane H = Zu + Zv, where — writing the symmetric bilinear
form as multiplication — u2 = v2 = 0 and u · v = 1. Due to H1(Y,O) = 0, the
Picard group Pic(Y ) injects into H2(Y, Z) and is in fact a primitive subgroup
there, i.e. H2(Y, Z)/Pic(Y ) is torsion free.

Using Torelli type theorems for K3–surfaces and work of Saint–Donat, Urabe
proved the following

Theorem 3.1 ([U1, Theorem 1.15]) Let G =
∑

akAk +
∑

blDl +
∑

cmEm

be a Dynkin graph with components of type A, D, or E only. The following
conditions are equivalent:

1. There is a quartic surface in P3 with only rational double points as singu-
larities, the combination of singularities corresponding to G.

2. Let Q = Q(G) be the lattice of type G. Let Λ := Q(−E8) ⊕ Q(−E8) ⊕
H⊕H⊕H denote the unimodular even lattice with signature (3, 19). The
lattice S = ZH ⊕ Q (H2 = 4, orthogonal direct sum) has an embedding
S ⊆ Λ satisfying the following conditions (a) and (b). Let S̃ = {x ∈ Λ |
mx ∈ S for some m ∈ Z \ {0}} denote the primitive hull of S in Λ.

(a) If η ∈ S̃, η · H = 0, and η2 = −2, then η ∈ Q.

(b) S̃ does not contain any element u with u2 = 0 and u · H = 2.
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The sum µ :=
∑

akk +
∑

bll +
∑

cmm is called the Milnor number of G or
X . For quartic surfaces one always has µ ≤ 19.

Condition (a) ensures that there are only the expected singularities G on the
quartic; condition (b) that the linear system given by H induces an embedding
into P3.

By this theorem Urabe reduced the question of the existence of a quartic
with a given combination of singularities to a purely lattice theoretic problem.
We want a similar theorem for our situation and start by providing the Dynkin
graph with additional information.

Definition 3.2 A parity Dynkin graph G is a formal sum of the following
marked Dynkin diagrams:

• The essential parity Dynkin diagrams, which are the marked Dynkin dia-
grams of Proposition 1.13. (We do not distinguish between D+

2k and D−
2k

or between D•
4 and D±

4 .)

• The accidental parity Dynkin diagrams, which are the Dynkin diagrams of
Ak, Dk, E6, E7, E8 with every vertex drawn as ◦. They are denoted by
A◦

k, D◦
k, E◦

6 , E◦
7 , E◦

8 .

The number of vertices of G is the Milnor number µ(G) of G and the number
of •–vertices is the length l(G) of G.

To a linear symmetric surface with only rational singularities we assign a
parity Dynkin diagram whose components correspond to the singularities in
the obvious way: for the essential singularities we use the correspondence of
Proposition 1.13 and to the accidental singularities we assign the corresponding
accidental Dynkin diagrams.

Every parity Dynkin diagram comes with a special divisor in corresponding
lattice:

Definition 3.3 The lattice Q(G) of a parity Dynkin graph has a canonical basis
given by the vertices of the graph G. The parity divisor DG is the sum of the
•–vertices.

Now we can state the extension of Urabe’s Theorem for linear symmetric
quartics:

Theorem 3.4 Let G be a parity Dynkin graph. The following conditions are
equivalent:

1. There is a linear symmetric quartic in P3 with only rational double points
as singularities, the combination of singularities corresponding to G.

2. Let G satisfy the condition 2 described in the above Theorem and in addi-
tion:

(c) The length of G is 10 and 1
2H + 1

2DG ∈ S̃, where DG is the parity
divisor of G.
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Proof. In Urabe’s correspondence between the lattices and the quartics, the
primitive lattices S̃ correspond to the Picard group of the minimal resolution F̃
of the quartic. Now on a linear symmetric quartic F the essential singularities
form an even set X of ADE–singularities of length 10 by Proposition 1.15
and Theorem 1.22. Let G be the parity Dynkin graph of F . Clearly, by the
definitions l(G) = l(X) and H + DG is divisible by 2 in Pic(F̃ ) = S̃ precisely if
H +

∑
ZXi

is. Therefore, condition (c) holds.

Starting with a parity Dynkin graph with the properties (a) – (c) Urabe’s
Theorem yields a quartic F with an even set of ADE–singularities of length 10.
Let F̃ be the minimal resolution of F . (This time for all singularities of F , but
this makes no difference for the statements of Section 1.) By Theorem 1.22 the
quartic F is linearly symmetric if the order of X is 3. By Proposition 1.21 X
is weakly even and we only need to show that the order of X is not 1. Setting
L = 1

2 (H +
∑

ZXi
) ∈ Pic(F̃ ) and using the remark after Definition 1.17 this

is equivalent to H0(F̃ ,OF̃ (H − L)) = 0, i.e., we need to show that H − L =
1
2 (H −∑ZXi

) ∈ Pic(F̃ ) is not effective.

Assume that H − L is effective. Then we can decompose it into
∑s

j=1 Cj +∑
k Bk where the Cj , Bk are irreducible curves with H ·Cj > 0 and H ·Bk = 0.

Recall that for any curve C on a K3–surface C2 ≥ −2 and C2 is divisible by 2
[BPV, VIII (3.6)]. Because Q is a negative definite lattice and Bk ∈ Q ⊗ Q, we
get B 2

k = −2 and Bk ∈ Q by condition (a). We claim that there are at most two

curves Cj , i.e., s ≤ 2. Write Cj = ajH+C̃j ∈ QH⊕Q⊗Q, then H ·Cj = 4aj ∈ N

thus aj = nj/4 for some nj ∈ N. From
∑

Cj = 1
2H mod Q⊗Q we find either

s = 1 and a1 = 1
2 or s = 2 and a1 = a2 = 1

4 . It is not difficult to obtain
contradictions for s = 1 or s = 2 and C1 6= C2 by completely elementary
calculations with divisors, but the C1 = C2 case seems inaccessible by these
simple methods. Hence, we recall more lattice theory.

The primitive hull S̃ of S will always lie in S∗ = Hom(S, Z) ⊂ Q ⊗ S, thus
S̃/S ⊆ S∗/S. The finite group S∗/S is well known. If G =

∑
Xi is the decom-

position of the parity Dynkin graph G into the parity Dynkin diagrams, then
S∗/S = Z/4Z ⊕⊕i Q(−Xi)

∗/Q(−Xi), where the first summand is generated
by H/4 and Q(−Xi)

∗/Q(−Xi) depends only on the underlying Dynkin diagram
and is isomorphic to Z/(k +1)Z for Ak, Z/2Z×Z/2Z for D2k, Z/4Z for D2k+1,
Z/3Z, Z/2Z, 0 for E6, E7, E8 respectively [U3, 1.3]. Define for D ∈ Q∗

m(D) := max{(D + B)2 | B ∈ Q}.
Because the intersection form is negative definite, m(D) < 0 for D 6∈ Q. These
numbers were computed by Urabe [U3, 1.3]. In particular, he found m(1

2DXi
) =

− 1
2 l(Xi) for the parity divisors of the singularities Xi. Since Q⊗Q is the orthog-

onal sum of the Q⊗Q(Xi), we get m(1
2DG) =

∑
m(1

2DXi
) = − 1

2

∑
l(Xi) = −5.

Now if s = 1 then C1 = H − L −∑Bk = 1
2H + 1

2DG + B for some B ∈ Q
and

C 2
1 = (1

2H + 1
2DG + B)2 = (1

2H)2 + (1
2DG + B)2 ≤ 1 + m(1

2DG) = 1− 5 = −4,

contradicting C 2
1 ≥ −2.

If s = 2 then write

Cj = 1
4H +

∑
i
Cj,Xi

with Cj,Xi
∈ Q ⊗ Q(Xi).
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We see from C1 + C2 = 1
2H + 1

2DG mod Q that C1,Xi
+ C2,Xi

= 1
2DXi

mod Q.
Further, we find the estimates

C 2
j ≤ (1

4H)2 +
∑

i m(Cj,Xi
) = 1

4 +
∑

i m(Cj,Xi
)

C 2
1 + C 2

2 ≤ 1
2 +

∑
i (m(C1,Xi

) + m(C2,Xi
)) .

A small computation using Urabe’s values for the function m shows

m (C1,Xi
) + m (C2,Xi

) ≤ m(1
2DXi

) = − 1
2 l(Xi)

for any Cj,Xi
with C1,Xi

+ C2,Xi
= 1

2DXi
mod Q(Xi). This implies C 2

1 + C 2
2 ≤

1
2 − 5 = −4 1

2 and hence C 2
1 < −2 or C 2

2 < −2, which yields the required
contradiction. 2

From Urabe’s Theorem it follows immediately that if there exists a quartic
with Dynkin graph G then one can find a quartic for any complete subgraph
G′ ⊂ G. For linear symmetric quartics a similar statement holds:

Definition 3.5 A parity Dynkin subgraph G′ of a parity Dynkin graph G is a
complete subgraph G′ ⊂ G which contains all the •–vertices of G, i.e., l(G′) =
l(G).

Corollary 3.6 (Parity splitting principle) If there exists a linear symmet-
ric quartic with parity Dynkin graph G, then there exists a linear symmetric
quartic for any parity Dynkin subgraph G′ of G.

Proof. Because of DG′ = DG ∈ QH ⊕ Q ⊗ Q(G′) we can use ZH ⊕ Q(G′) ⊆
ZL ⊕ Q(G) ⊆ Λ for the embedding required in the theorem. 2

This parity splitting principle has amazing consequences which we state in
the following summarizing theorem.

Theorem 3.7 Let G be the parity Dynkin graph of a linear symmetric quartic
with only rational double points, then the following holds:

1. 10 ≤ µ(G) ≤ 19 and l(G) = 10.

2. G is a union of the parity Dynkin diagrams A•
2k+1, D±

2k, and A◦
1.

In particular, the parity Dynkin graph G is determined by its underlying Dynkin
graph.

Proof. l(G) = 10 was stated in Theorem 3.4 and µ(G) ≤ 19 holds for any
quartic. By Proposition 1.3 the only possible accidental singularity on a linear
symmetric quartic is an A1–singularity. Proposition 1.13 already says that there
are no essential A2k, E6, and E8 singularities. Further, for the parity Dynkin
diagrams D•

2k+1, D•
2k — except for D•

4 = D±
4 —there exist parity splittings

which have an accidental A◦
l , l ≥ 2, parity Dynkin diagram as a component,

contradicting the parity splitting principle. 2

Urabe used his Theorem to give a short list of so–called basic Dynkin graphs
and define two kinds of transformations for Dynkin graphs such that after apply-
ing two transformations to a basic Dynkin graph the resulting graph is a possible
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combination of rational singularities on a quartic [U1, U2]. This produced a long
list of possible combinations of singularities on a quartic. Unfortunately, these
operations are not compatible with our new condition (c). However, this long
list of combinations of singularities was not complete as Urabe noted himself
in [U2, 3]. There he also remarked that each Dynkin graph G can be checked
individually by a tedious computation using Nikulin’s lattice theory [N]. Yang
wrote a computer program which precisely does this [Y]. Yang was so kind to
send his program to the author. The modification to incorporate condition (c)
is not difficult. The output of the program can be summarized as follows:

Theorem 3.8 For linear symmetric quartics with only rational double points
only the following parity Dynkin graphs or their parity splittings occur:
(Only the underlying Dynkin graphs are listed as they determine the parity
Dynkin diagrams by Theorem 3.7.)

D18 + A1 D14 + A5 D14 + A3 + 2A1

D12 + D6 + A1 D12 + A5 + 2A1 D10 + D8 + A1

D10 + D6 + A3 D10 + A9 D10 + A7 + 2A1

D10 + A5 + A3 + A1 2D8 + 3A1 D8 + D6 + D4 + A1

D8 + D6 + A5 D8 + D6 + A3 + 2A1 D8 + D4 + A5 + 2A1

D8 + A9 + 2A1 D8 + A5 + A3 + 3A1 3D6 + A1

2D6 + D4 + 3A1 2D6 + A7 2D6 + A5 + 2A1

D6 + 2D4 + A3 + 2A1 D6 + D4 + A5 + A3 + A1 D6 + A13

D6 + A9 + A3 + A1 D6 + A7 + A5 + A1 4D4 + 3A1

D4 + A9 + A5 + A1 D4 + 2A5 + A3 + 2A1 A19

A17 + 2A1 A15 + A3 + A1 A13 + A5 + A1

A11 + A7 + A1 A11 + A5 + 3A1 A11 + 2A3 + 2A1

2A9 + A1 A9 + A7 + 3A1 2A7 + A3 + 2A1

3A5 + 4A1 4D4 + 2A1 16A1

The Theorem shows that the possible combinations of singularities on a
linear symmetric determinantal quartic are far less than the one of a general
quartic, where one has 27 pages of combinations for the Milnor numbers 19,
18, and 17 alone and most combinations for the Milnor numbers 16 and 15 and
below that all combinations are possible [Y]. However, one might have hoped
for even less possible combinations.

Without the use of the program it is not clear why one needs only the parity
diagrams of Milnor number 19 and 4D±

4 +2A•
1 as well as 10A•

1 +6A◦
1 as starting

points for the parity splitting process.

Example. In general it is difficult to find an explicit matrix representation
for the combinations of rational singularities we determined above. However,
with some tricks and enough computing power one finds the following matrix
representation




x iy iy/2 y/2 − iz
iy x y/2 + iz iy/2

iy/2 y/2 + iz w + ix + 3iy/2 i(−2x + y − 4z)/4
y/2 − iz iy/2 i(−2x + y − 4z)/4 w − ix − 3iy/2




of the unique quartic with an A19–singularity found by Kato and Naruki [KN].
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In the following sections, when the quartic has nonsimple singular point,
we will study the quartic by projecting it from a singular pint. The referee
suggested that this might also be possible in the above case due to a result of
Cayley [Co, 2.4.3]: We project the quartic from one of its simple singular double
points. Let D be the branch locus of this projection and C be the projection
of the tangent cone of the this singular point. Cayley proved that for a linear
symmetric quartic the sextic curve B is a union of two cubics and has contact to
the conic C. Enumerating all possible intersection configurations of the cubics
and the conic, especially with respect to their singularities, will lead to the above
classification. This might even yield equations for the quartics.

3.2 Linear symmetric Quartics with a nonsimple double

point

As soon as the normal quartic acquires a nonsimple double point, it is no longer
a K3-surface, but a rational surface. Hence the techniques of the last section
cannot be used to study this case. Degtyarev studies these quartics by projecting
them from their worst singularity onto a plane [D]. We will use his extensive
study of quartic equations to obtain the following

Theorem 3.9 Only the following combinations of double points occur on a ra-
tional linear symmetric quartic with at most double points:

X1,0 + A3 + {X1,0, D6 + A1, D4 + 3A1, A7, 2A3 + A1, 6A1},
X1,2 + A3 + {D6, D4 + 2A1}, {X1,2 + A1, X1,4} + {D6 + A1, A7, 2A3 + A1},
X1,4 + A3 + {A3 + A1, A3}, X1,6 + A3 + A1, X1,8 + A3,

Y 1
2,2 + A5 + A1, Y 1

2,2 + 2A1 + {D4, 4A1}, Y 1
2,4 + 2A1 + {2A1, A1},

Y 1
4,4 + 2A1 + {A1, ∅}, Y 1

2,6 + 2A1.

Hereby, one has to choose one element out of the sets to get a valid expression,
and the A2k+1 and D2k singularities may be splitted in the same manner as
A•

2k+1 and D±
2k in the section before.

Proof. To apply the results of Degtyarev, we need explicit equations. Let us
assume that M = wA0 + xA1 + yA2 + zA3, F = detM , and the worst singular
point is at p = (1 : 0 : 0 : 0). The rank of A0 is two by Proposition 1.3 and the
obvious fact that the multiplicity of F at p is equal or higher than the corank
of A0. We can choose a basis of C4 such that

A0 =

(
0 0

0 Ẽ2

)
with Ẽ2 =

(
0 1
1 0

)
.

If we use a 2 × 2–blocking for M ,

M =

(
M11 M12

M t
12 M22

)
,

the quadric part of F in p is given by − detM11. Since we are still free to choose
an arbitrary basis in span {e1, e2} resp. span {x, y, z}, we may think of M11 as
given by a linear subspace in P(Sym(2, C)) ∼= P2. The matrices of rank 1 form a
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smooth conic C in this P2, and the linear spaces inside this P2 are characterized
by their intersection with this conic [H, 10]. We get the following list:

subspace normal form of M11 detM11

P2
(

x z
z y

)
xy − z2

secant of C
(

x 0
0 y

)
xy

tangent to C
(

0 x
x y

)
−x2

point outside C
(

0 x
x 0

)
−x2

point on C
(

0 0
0 x

)
0

∅
(

0 0
0 0

)
0

In the last two cases we get nonisolated singularities by Lemma 1.4. In the first
two cases we get Ak–singularities by the the classification of singularities [AGV,
16.2]. We want to show that in the third case only Dk–singularities occur. We
write

M =




0 x f13 f14

x y f23 f24

f13 f23 f33 w + f34

f14 f24 w + f34 f44


 with fij ∈ C[x, y, z].

After a base change of the type e3 7→ e3 − λ3e1 − µ3e2 and e4 7→ e4 − λ4e1 −
µ4e2, we may assume f13, f14, f23, f24 ∈ C[y, z]. Setting w = 1, computing the
determinant and performing the substitution x → x − xf34 + f14f23 + f13f24,
the equation of F starts with

x2 + 2yf13f14 + . . . .

Because of Lemma 1.4 the linear polynomials f13 and f14 are linear independent.
Thus F has a Dk–singularity in p [AGV, 16.2].

Therefore, the fourth case is the only case where nonsimple double points
may occur. We have

M =




0 x f13 f14

x 0 f23 f24

f13 f23 f33 w + f34

f14 f24 w + f34 f44


 with fij ∈ C[x, y, z].

The surface F is given as F = w2x2 + wxP + Q with

P = 2xf34 − 2(f13f24 + f14f23)

Q = x2(f2
34 − f33f44) + 2x(f13f23f44 + f14f24f33 − f13f24f34 − f14f23f34)

+(f13f24 − f14f23)
2.

The branch curve of the canonical projection of F from p is – besides the x2–
factor

D = P 2 − 4Q = 4(xf33 − 2f13f23)(xf44 − 2f14f24) = 4C1C2,
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a union of two conics C1, C2. Note that there is no restriction on the equation
of the conics, since we can choose the fij arbitrary so far. Further, let the line
L be the projected tangent cone V (x) of F in p.

According to Degtyarev [D, §2], p will be an isolated singularity only if
D is smooth at L ∩ Q. Note that D cannot contain L because of the linear
independence of the linear forms x, f13, f14 resp. x, f23, f24 (Lemma 1.4). This
excludes singularities of the type N [D, §3]. F has the following singularities:

• To each singular point of D not lying on L there corresponds a singular
point of F stably equivalent to it. In particular, the curve D cannot have
a multiple component for a normal surface F .

• To each s–fold point of Q ∩ L not on D there corresponds an exceptional
singular point of F of type As−1.

• The type of the singularity of F at p can be read off the following table.
The first column describes the intersection configuration of L and D where
1 and 2 stands for a transversal resp. tangential intersection at a smooth
point of D and Ak for a transversal intersection at an Ak–singularity of
D. If D ∩ L and Q ∩ L have a common multiple point, its multiplicity in
Q ∩ L is denoted by q, otherwise we set q = 1. The case of two common
double points is written loosely as q = (2, 2).

D ∩ L q
(1, 1, 1, 1) – X1,0

(2, 1, 1) q X1,q

(2, 2) q Y1,q

(2, 2) (2, 2) Y 1
2,2

(Ak, 1, 1) – X1,k+1

(Ak, 2) q Y 1
k+1,q

(Ak, Al) – Y 1
k+1,l+1

We apply this to our case. We have

D ∩ L = V (f13f14f23f24, x).

By Lemma 1.4 the linear forms x, f13, f14 resp. x, f23, f24 are linear indepen-
dent; hence D and L may only intersect in the configuration given in the above
table. Note that

Q ∩ L = V
(
(f13f24 − f14f23)

2, x
)
;

thus the exceptional singularities are of type A1 or A3 if the corresponding
multiple points do not lie on D. We treat the case of the different intersection
configuration of D and L separately.

Case (1,1,1,1). Our main singularity is an X1,0. Since f13, f14, f23, f24 have
pairwise distinct zeros on L, Q ∩ L and D ∩ L cannot have a common multiple
zero, thus we can have either an A3 or two A1s as exceptional singularities.
Further, we can change (f14, f24) to (λf14, λ

−1f24) with λ ∈ C∗ without chang-
ing the equation of D, but Q ∩ L changes to V

(
(f13f24 − λ2f14f23)

2, x
)
. This

restricted pencil for λ2 ∈ C∗ contains a quadruple point, because the complete

27



pencil with λ2 ∈ P1 does and we can exclude λ = 0,∞. Therefore, we can
always have two A1 as well as an A3 as exceptional singularities.

Finally, in the following table we sketch all singularities which can occur on
a quartic D which is the union of two conics and list which singularities — apart
from the exceptional ones — the surface F has in the corresponding case. The
fat line represents L.

X1,0 + A7 X1,0 + A5 + A1 X1,0 + 2A3 X1,0 + A3 + 2A1

X1,0 + 4A1 X1,0 + D6 + A1 X1,0 + D4 + 2A1 X1,0 + 2A3 + A1

X1,0 + A3 + 3A1 X1,0 + 5A1 2X1,0 X1,0 + D4 + 3A1

X1,0 + 6A1

Case (2,1,1). Since L intersects D tangentially, one of the two conics C1, C2

—say C1 — must be smooth and f13 and f23 are proportional modulo x, i.e.,
there exist α ∈ C∗, β ∈ C with f23 = αf13 + βx. It follows that

D ∩ L = V
(
f2
13f14f24, x

)
and Q ∩ L = V

(
f2
13(f24 − αf14)

2, x
)

have a common double point. This point may become a quadruple point of
Q ∩ L and thus the main singularity is either an X1,4 or an X1,2 in the latter
case there exist an exceptional singularity of type A1. With a similar argument
as in the case before, the condition that Q ∩L has a quadruple point is seen to
be independent of the equation of D. We list the possible singularities F has
apart from X1,4 or X1,2 + A1 in dependence of the shape of D:
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A7 A5 + A1 2A3 A3 + 2A1

4A1 D6 + A1 D4 + 2A1 2A3 + A1

A3 + 3A1 5A1

Case (2,2). Because of the two tangential intersections of L and D, both conics
C1, C2 must be smooth and f13 and f23 as well as f14 and f24 are proportional
modulo x; hence

D ∩ L = V
(
f2
13f

2
14, x

)
and Q ∩ L = V

(
f2
13f

2
14, x

)

are the same divisor with two double points. Therefore, our main singularity
is a Y 1

2,2 and there are no exceptional singularities. The singularities of F in
dependence of the shape of D can be read off the following table:

Y
1

2,2 + A5 + A1 Y
1

2,2 + A3 + 2A1 Y
1

2,2 + 4A1

Case (Ak,1,1). Here D has an Ak– singularity on L where k is necessarily odd.
Its two branches belong to C1 and C2. Namely, if both branches belong to C1,
i.e., f13 and f23 are proportional modulo x, then the singular point of D would
belong to Q ∩ L, and F would have a nonisolated singularity. Remembering
that f13 and f14 resp. f23 and f24 are also not proportional modulo x, we find
that f24 = αf13 + βx for some α ∈ C∗, β ∈ C (or the same with the indices 1
and 2 exchanged) and

D ∩ L = V
(
f2
13f14f23, x

)
and Q ∩ L = V

(
(αf2

13 − f14f23)
2, x
)
.

Thus D∩L and Q∩L cannot have a common multiple point. Our usual argument
that Q ∩ L may have two double points as well as a quadruple point without
changing the equation of D can be adapted to this case as well. Thus we can
always have one A3 as well as two A1 as exceptional singularities. It remains to
list all the singularities of F apart from the exceptional ones depending on the
shape of D:

29



X1,2 + A5 X1,2 + A3 + A1 X1,2 + 3A1 X1,2 + D6

X1,2 + D4 + A1 X1,2 + A3 + 2A1 X1,2 + 4A1 X1,2 + D4 + 2A1

X1,2 + 5A1 X1,4 + A3 X1,4 + 2A1 X1,4 + A3 + A1

X1,4 + 3A1 X1,6 + A1 X1,8

Cases (Ak,2) and (Ak,Al). We have seen above that an Ak–singularity of D
on L can only occur as the intersection of both C1 and C2; hence, no further
tangential intersection of L and C1 or C2 is possible, i.e., the case (Ak,2) does not
occur. In the (Ak,Al)–case we obtain f23 = α1f14 + β1x and f24 = α2f13 + β2x
for some α1, α2 ∈ C∗ and β1, β2 ∈ C; thus

D ∩ L = V
(
f2
13f

2
14, x

)
and

Q ∩ L = V
(
(
√

α2f13 +
√

α1f14)
2(
√

α2f13 −
√

α1f14)
2, x
)
.

Therefore Q ∩ L has always two double points outside D ∩ L, i.e., we have two
exceptional A1–singularities. We list the remaining singularities of F according
to the shape of D:
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Y
1

2,2 + A3 Y
1

2,2 + 2A1 Y
1

2,2 + D4 Y
1

2,2 + 3A1

Y
1

2,2 + 4A1 Y
1

2,4 + A1 Y
1

2,4 + 2A1 Y
1

4,4

Y
1

4,4 + A1 Y
1

2,6

2

3.3 Linear symmetric quartics with a triple point

Similar to the above case we obtain

Theorem 3.10 Only the following combinations of singularities occur on a
normal linear symmetric quartic with a triple point:

T3,3,3 + A11, T3,3,5 + A9, T3,3,7 + A7, T3,3,9 + A5, T3,3,11 + A3, T3,3,13 + A1,
T3,3,15, T3,5,5 + A5 + A1, T3,5,7 + A5, T3,5,9 + 2A1, T3,5,11 + A1, T3,7,7 + A3,
T3,7,9 + A1, T3,7,11, T5,5,5 + 3A1, T5,5,7 + 2A1, T5,7,7 + A1, T7,7,7,
T3,3,4 + A11, T3,4,4 + A3 + A7, T4,4,4 + 3A3,

Q11 + A9, S1,0 + A5 + A1, S#
1,2 + A5, S#

1,4 + 2A1, and S#
1,6 + A1

Hereby, the A2k+1–singularities can be splitted in the same manner as A•
2k+1

before.

Proof. Let p = (1 : 0 : 0) be the triple point of the quartic F . From the first
part of the proof of Theorem 3.9 it follows that the rank of A0 is 1; hence, we
choose a basis of C4 such that

A0 =

(
0 0
0 1

)

in a (3,1)–blocking. Then the expansion of F = det(wA0 + xA1 + yA2 + zA3)
with respect to w is F = wP + Q where Q is the determinant of the matrix
A123 = xA1 +yA2+zA3 and P is the upper left 3×3–minor of the same matrix;
hence, we consider A123 as a matrix representation of the curve Q, and P is one
of the contact curves of Q, i.e., all intersection multiplicities are even. In order
to determine the singularities of F we quote the following results of Degtyarev
[D, §4]:

• The point p is an isolated singularity of F only if P and Q have no common
singularities.
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• Apart from the triple point the normal surface F has only Ar−1–
singularities which are in one–to–one correspondence with points of r–fold
intersection of P and Q at smooth points of P .

• The type of the double point of F is determined as follows: For a singular
point Si of P let ri be the intersection multiplicity of P and Q in Si, then
we have the following correspondence

singularities of P triple point of F
— P8 = T3,3,3

A1 P5+q1
= T3,3,q1

, where qi = max{4, 3 + ri}
2A1 Rq1,q2

= T3,q1,q2

3A1 Tq1,q2,q3

A2 Q10, Q11, Q12 for r1 = 0, 2, and 3 respectively.
A3 S11, S12, S1,0 for r1 = 0, 2, and 4 respectively.

S#
1,r1−4 for r1 > 4.

Now we have to analyze our linear symmetric quartic F for the different possi-
bilities of P . For the case of a smooth cubic P we can use abstract arguments
involving the Jacobian of P and the theory of contact curves; for singular P we
have to analyze the equations using the determinantal representations of P in
Appendix A.

Case: P smooth cubic. Since P and Q have contact, the results of Degtyarev
say that F has a P8 = T3,3,3 singularity and a combination of Ak–singularities,
which is a splitting of A11 in the usual way. To show that any such splitting
is possible, we have to prove that for any partition

∑
mi = 6, mi ∈ N, of 6,

there exists a quartic Q which intersects P with the multiplicities (2mi). We
compute in the Jacobian of the smooth cubic P , which is isomorphic to P .
We think of the Jacobian as a complex torus given as the warp around of a
parallelogram inside C determined by the numbers 1, τ ∈ C \ R. Clearly, we
can find pairwise distinct points qi in the interior of the parallelogram given
by 1

2 , τ
2 such that

∑
miqi = τ+1

2 in C. Then
∑

2miqi = 0 in the Jacobian of
P , i.e.,

∑
2miqi is a principal divisor. Due to our choice of the qi, all proper

nontrivial subcombinations
∑

niqi, 0 ≤ ni ≤ mi, are not principal. Since a
plane cubic is projectively normal and deg

∑
2miqi = 3 · 4, there is a quartic Q

with P ∩Q =
∑

2miqi. Now it remains to show that there is a linear symmetric
matrix representation of Q such that the top 3 × 3–minor of this matrix is P ,
because we can obtain a matrix representation of F from this matrix by adding
w to the bottom right entry. Since P is smooth, we find a self–linked ideal
I with respect to (P, Q), i.e., (P, Q) : I = I [M–B, Prop. 4.3]. Note that I
does not contain a quadric polynomial. Namely, if G ∈ I with deg G = 2 then
G2 ∈ (P, Q), i.e., G2 = λQ + LP with λ ∈ C∗ and L ∈ C[x, y, z]1. Hence, we
would have 2G∩P = Q∩P and G∩P would be a principle subdivisor of Q∩P
on P , which is impossible by the construction of Q. By [Be, 2.4] or [M–B, §4]
such a self–linked ideal induces a linear symmetric matrix representation of Q
with a contact cubic P . After a change of basis we may assume that P is the
upper left 3×3–minor of this matrix. In fact, knowing that such a matrix exists,
it can be easily constructed by Dixon’s method [Di].

Case: P nodal cubic. From Appendix A we know that up to a choice of basis
there are only two different linear symmetric matrix representations of a nodal
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cubic P = x3 + y3 + xyz, i.e., for a matrix M with F = detM we may assume
that

M =




−y 0 x ayy + azz
0 −x y byy + bzz
x y z cyy + czz

ayy + azz byy + bzz cyy + czz w + f


 or

M ′ =




−y 1
2z x ayy + azz

1
2z −x y byy + bzz
x y 0 cyy + czz

ayy + azz byy + bzz cyy + czz w + f


 ,

where f ∈ C[x, y, z]. The variable x was eliminated from the last column by
adding a suitable multiples of the first three columns. Now one can compute Q
and Q′ and obtains that (az , bz) 6= 0 resp. cz 6= 0 for Q resp. Q′ to be smooth
at the singular point (0 : 0 : 1) of P . To compute the intersection multiplicities
of P and the quartics, we choose the parameterization (s : t) 7→ (−s2t : st2 :
(t − s)(s2 + st + t2)) of P which maps (1 : 0) and (0 : 1) to the singular point
of P . Plugging it into the quartics we get

st
(
azs

5 − czs
4t + (bz − ay)s3t2 + (cy − az)s

2t3 + (cz − by)st
4 − bzt

5
)2

resp.

(
− 1

2czs
6 + bzs

5t + (az + 1
2cy)s4t2 − bys

3t3 − (bz + ay)s2t4

−(az − 1
2cy)st5 + 1

2czt
6
)2

.

In the first case the polynomial of degree 5 is arbitrary apart from (az, bz) 6= 0,
and we can distribute its zeros arbitrarily with the exception that we cannot
have zeros at (1 : 0) and (0 : 1) at the same time. In the second case the sextic
polynomial can also have any combination of multiple zeros, but none of the
zeros can be at the points that map to the singular point of P because of cz 6= 0.
Therefore, by Degtyarev’s results we get the following possible combinations of
singularities together with the usual splitting of the A–singularities:

T3,3,5+2k + A9−2k, for k ∈ {0, . . . , 4}, T3,3,15, and T3,3,4 + A11.

Case: P smooth quadric+secant. Again there are two linear symmetric matrix
representations of P = x(x2 + yz), thus we may assume that

M =




y 0 x ayy + azz
0 −x 0 byy + bzz
x 0 −z cyy + czz

ayy + azz byy + bzz cyy + czz w + f


 or

M ′ =




0 y x ayy + azz
y −x 1

2z byy + bzz
x 1

2z 0 cyy + czz
ayy + azz byy + bzz cyy + czz w + f


 .

The singularities of P are (0 : 1 : 0) and (0 : 0 : 1). Since Q resp. Q′ must be
smooth at these points, we find that (az , bz) 6= 0 and (by, cy) 6= 0 resp. az 6= 0
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and cy 6= 0. We parameterize the secant of P by (s : t) 7→ (0 : s : t) and the
quadric by (s : t) 7→ (st : −s2 : t2), thus in both cases (1 : 0) and (0 : 1) map
to the singular points of P . To compute the intersection multiplicities of P and
the quartics Q and Q′, we pull the quartics back via these parameterizations
and obtain

st (bys + bzt)
2

and − st
(
cys3 + ays2t − czst

2 − azt
3
)2

resp.

(
cys2 + (cz − 1

2ay)st − 1
2azt

2
)2

and

(
cys4 + bys

3t − (cz + 1
2ay)s2t2 − bzst

3 + 1
2azt

4
)2

.

In the first case we can distribute the zeros arbitrarily with the exception that
not both, the linear and the cubic polynomial, have zeros at points which are
mapped to the same singular point of P . In the second case we cannot have zeros
at the points that are mapped to the singular points of P , but any combination
of multiple zeros can occur; hence F can have the following combinations of
singularities with the usual splitting of the A–singularities:

T3,5,5 + A5 + A1, T3,5,7 + A5, T3,5,9 + 2A1, T3,5,11 + A1, T3,7,7 + A3,

T3,7,9 + A1, T3,7,11, and T3,4,4 + A3 + A7.

Case: P three noncongruent lines. This is the last case where there are two
nonequivalent linear symmetric matrix representations of the cubic. We take P
as xyz and may assume that

M =




x 0 0 ayy + azz
0 y 0 bxx + bzz
0 0 z cxx + cyy

ayy + azz bxx + bzz cxx + cyy w + f


 or

M ′ =




0 x 1
2y azz

x 0 z byy + bzz
1
2y z 0 cxx + cyy + czz
azz byy + bzz cxx + cyy + czz w + f


 .

In order for Q resp. Q′ to be smooth at the singular points of P , we must have
(az, bz) 6= 0, (ay , cy) 6= 0, and (bx, cx) 6= 0 resp. az 6= 0, by 6= 0, and cx 6= 0.
We use the parameterizations (s : t) 7→ (0 : s : t), (s : t) 7→ (t : 0 : s), and
(s : t) 7→ (s : t : 0), which map (1 : 0) and (0 : 1) to the singular points of P .
Pulling Q and Q′ back via these mappings gives

−st (ays + azt)
2
, −st (bzs + bxt)

2
, and − st (cxs + cyt)

2

resp.

(
1
2bys

2 + 1
2bzst − azt

2
)2

,
(
azs

2 − czst − cxt2
)2

, and
(
cxs2 + cyst − 1

2byt2
)2

.

The above inequalities imply in the first case that the linear forms can only
contribute to the intersection multiplicities of P ∩Q at different singular points
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of P and in the second case that the quadrics cannot have zeros at the points
that map to the singular points of P . Therefore, F can have the following
combinations of singularities with the usual splitting of the A–singularities:

T5,5,5 + 3A1, T5,5,7 + 2A1, T5,7,7 + A1, T7,7,7, and T4,4,4 + 3A3.

Case: P cuspidal cubic. Up to a choice of coordinates there is only one rep-
resentation of P = x3 + yz2 as a linear symmetric determinant; hence we may
assume that

M =




−y 0 x ayy + azz
0 −x z byy + bzz
x z 0 cyy + czz

ayy + azz byy + bzz cyy + czz w + f


 .

The condition that Q has no singular point at the singular point (0 : 1 : 0) of P
turns out to be cy 6= 0. Plugging the parameterization (s : t) 7→ (t2s : −s3 : t3)
of P into Q gives

t2
(
cys5 + bys4t − ays

3t2 − czs
2t3 − bzst

4 + azt
5
)2

.

Because of cy 6= 0, the intersection multiplicity of P and Q is always 2 in the
singular point of P , otherwise the quintic is arbitrary; hence F can have Q11+A9

as singularities as well as any combination of singularities obtained by splitting
A9 in the usual way.

Case: P smooth quadric+tangent. As there is only one linear symmetric matrix
representation of P = z(x2 + yz), we may assume that

M =




y x 0 ayy + azz
x −z 0 byy + bzz
0 0 −z cxx + cyy

ayy + azz byy + bzz cxx + cyy w + f


 .

The meeting point of the quartic and the tangent is the singular point (0 : 1 : 0)
of P . For Q to be nonsingular at this point means b2

y + c2
y 6= 0. To compute

the intersection multiplicities of P and Q, we parameterize the line and the
quadric of P by (s : t) 7→ (t : s : 0) and (s : t) 7→ (st : s2 : −t2). Both
parameterizations map (1 : 0) to the singular point of P . Pulling Q back via
these parameterizations yields

t2 (cys + cxt)
2

and − t2
(
bys

3 − ays
2t − bzst

2 + azt
3
)2

.

Since b2
y + c2

y 6= 0, not both terms can contribute further to the intersection
multiplicities of P and Q at the singular point of F at the same time; therefore
F can have the following combinations of singularities with the usual splitting
of the A–singularities:

S1,0 + A5 + A1, S#
1,2 + A5, S#

1,4 + 2A1, and S#
1,6 + A1.

Case: P three congruent lines, double line+line, triple line, empty set. All these
cases lead to nonnormal quartics. Since a linear symmetric matrix representa-
tion M̃ of three congruent lines involves only the variables x and y, the rank
of a 4 × 4-matrix M with M̃ in the upper left corner is only 2 along the line
{x = y = 0}. Therefore, F is singular along this line. For the remaining cases
one can apply Lemma 1.4 after a reshuffling of coordinates. 2
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A Linear symmetric matrix representations of

plane cubics

Finding linear symmetric matrix representations of plane cubics is a classical
problem. The three representations of a smooth cubic were found by Hesse [He].
The matrix representations of the singular cubics are scattered throughout the
literature. Most of them were computed by Barth [B] and Meyer-Brandis [M–B].
The case of the empty cubic is a special case of Atkinson [A]. For the following
complete list the representation matrices of the singular cubics were computed
using the straight–forward method of Barth or Taussky [T]. The remarkable fact
is that a reduced singular cubic has two nonequivalent representations if it has
only A1–singularities and only one representation if it has another singularity.
In the last column the number of accidental singularities is written down, i.e.,
the number of points of P2 where the matrix has only rank 1. This number
distinguishes the two representations of the cubics with A1–singularities.
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cubic equation representation
number of rank 1
parameter ranges

smooth x3 + y3 + z3 − λxyz −1
µ




µx z y
z µy x
y x µz



 0
µ2 + 2µ−1 = λ

nodal x3 + y3 + xyz




−y 1
2z x

1
2z −x y
x y 0


 0




−y 0 x
0 −x y
x y z


 1

quadric+secant x(x2 + yz)




0 y x
y −x 1

2z
x 1

2z 0



 0




y 0 x
0 −x 0
x 0 −z



 2

3 lines xyz




0 x 1
2y

x 0 z
1
2y z 0


 0




x 0 0
0 y 0
0 0 z


 3

cuspidal x3 + yz2




−y 0 x
0 −x z
x z 0


 1

quadric+tangent z(x2 + yz)




y x 0
x −z 0
0 0 −z


 1

3 congruent lines x(x2 + y2)




0 y x
y −x 1

2y
x 1

2y 0



 1

double line+line x2y




az x bz
x 0 0
bz 0 −y



 1 or line
a, b ∈ C

triple line x3




az by x
by −x 0
x 0 0


 0

a, b ∈ {0, 1}

empty cubic ∅




∗ ∗ 0
∗ ∗ 0
0 0 0


 −−−

empty cubic ∅




∗ ∗ ∗
∗ 0 0
∗ 0 0


 −−−
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