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Abstract

We classify projective varieties whose Gauss map has a two dimen-
sional image. A global geometric description of the seven types is given.

Mathematics Subject classification(2000): 14M99, 53A20.

For an n-dimensional projective variety X ⊂ PN , its rational Gauss map

γ : X 99K G(n, N), x 7→ TxX,

assigns to every smooth point x of X its embedded tangent space TxX as a
point of the respective Grassmannian. In general, the dimension of the image
of the Gauss map, the Gauss rank r, is n; if this is not the case, X is called
developable.

The developable varieties of Gauss rank 1 are classically known [4, 6, 5];
they are the osculating scrolls, i.e. the union of the osculating k-planes over
a curve, or cones over curves or osculating scrolls. For developable varieties of
higher Gauss rank, Griffiths and Harris showed that they are a union of two-
dimensional cones or tangent scrolls [6]. Akivis and Goldberg improved this
result by showing that any developable variety is foliated by cones, osculating
scrolls, or developable hypersurfaces [1]. Their paper also contains a historical
account and an extensive bibliography. Akivis, Goldberg and Landsberg gave a
global geometric description of developable hypersurfaces of Gauss rank 2 in P4

[3]. Five different types were found. Here we extend their result to developable
varieties of Gauss rank 2 in general. There will be seven types. Before we
describe them, we recall some facts.

The fundamental result about developable varieties is that the general
fiber F of the Gauss map is a linear space of dimension d = n − r. On each
of these fibers, there exists a hypersurface of degree r, called the focal hyper-
surface, along which X is singular. The closure of the union of the these focal
hypersurfaces is the focal variety Xf of X . The developable varieties of Gauss
rank 2 will be classified by the codimension c of the focal variety in X and the
rank of s of the focal quadric in the general Gauss fiber. Only seven pairs (c, s)
are possible: (1, s), (2, s), and (3, 1) with s ∈ {1, 2, 3}.

From the differential of the Gauss map γ, one obtains the second fundamen-
tal form

IIx : Sym2TxX −→ Nx

which is a symmetric bilinear map from the tangent space TxX ∼= TxX/x to the
normal space. The singular locus of IIx is precisely the Gauss fiber F through x.
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A k-plane L ⊂ TxX is called asymptotic if it contains the Gauss fiber and IIx
vanishes on L. Further, a k-plane L ⊂ TxX and a (n − k + d)-plane M ⊂ TxX
are conjugate if both contain the Gauss fiber, together they span the tangent
space, and IIx(L, M) = 0. We will call L a conjugate plane if there exists a
unique plane M which is conjugate to it. Finally, we will sometimes view the
second fundamental form dually as a map II∗x : N∗

x → Sym2TxX∗; thus we may
speak of the linear system of quadrics of the second fundamental form.

Now we can state the result of this article:

Structure Theorem. Let X ⊂ PN be a developable variety of Gauss rank 2.
Then X is of one of the seven following types distinguished by the pairs (c, s)
where c is the codimension of the focal variety in X and s is the rank of a general
focal quadric.

Type (1,1) Here the focal variety Xf of X has Gauss rank 2. It has a unique
asymptotic d-plane in a general tangent space and X is the union of those. If
Xf is developable, it is of type (1,1) itself or of type (3,1).

Type (1,2) The focal variety Xf has a (d + 1)-dimensional component Y of
Gauss rank 2, which has two conjugate d-planes in a general tangent space. X
is the union of a family of those. If Y is developable, it is of type (1,2), (2,2),
or (3,1).

Type (1,3) X is a hypersurface inside a Pn+1 ⊆ PN . The focal variety
Xf ⊂ Pn+1 has Gauss rank 3. The pencil of quadrics of its second fundamental
form is generated by a quadric of rank 3 and a double tangent plane to this
quadric. The variety X can be recovered from Xf as the union of these d-
dimensional double tangent planes.

Type (2,1) The geometry of X can be described in the following way. There
exist

1. two curves C1 and C2 in PN , possibly C1 = C2, and a correspondence
between them

2. two numbers 0 ≤ a1, a2 ≤ d with 1 ≤ a1 + a2 ≤ d

3. a linear subspace L ⊂ PN of dimension d − 1 − a1 − a2

such that X is the union of the one-dimensional family of (d+1)–planes spanned
by L and the ak-th osculating planes to Ck at corresponding points for k = 1, 2.

Type (2,2) X is a cone over the join of two curves C1 and C2, possibly
C1 = C2.

Type (2,3) X is the secant variety of the Veronese surface or a cone over
it.

Type (3,1) X is a cone over a nondevelopable surface.

For the developable varieties of type (1,1) the recursion in the above descrip-
tion can be solved; for the ones of type (1,2) this is only partially possible, see
section 2.
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The developable varieties of type (1, 3) and (2, 3) cannot exist in P4; thus
the specialization of the remaining five types were found in the classification
of the developable varieties in P

4 by Akivis, Goldberg, and Landsberg [3]. The
description of the varieties of type (2,1) as the union of a one-dimensional family
of 2-planes containing the tangent lines to a curve was only a conjecture there.

After the finishing of this article, Goldberg pointed out to the author the
paper [10] of Savel’ev, which contains — without a proof — a description of
Gauss rank 2 varieties which are not hypersurfaces, i.e the types with s ≤ 2.
However, the varieties of type (2,1) are described there only as a union of a one-
dimensional family of (n− 1)-dimensional cones with vertices of dimension less
than or equal to [(n−1)/2] such that the union of these vertices is a developable
variety or a cone. Savel’ev does not discuss focal varieties, and it appears that he
approaches the problem through the analysis of the second fundamental form.

Let us consider varieties that are smooth outside the hyperplane at infinity,
i.e. complete developable manifolds in CN . Then only two types are possible:
The cones of type (3,1) with vertices in the hyperplane at infinity and the
varieties of type (2,1) where a1 = 0 and C2 as well as L lie in the hyperplane at
infinity [9, 11, 12].

The above geometric descriptions can be used to construct developable va-
rieties of the respective types; for the types (1,1), (1,2), (1,3) one first has to
construct a variety Y , which has the properties described above for the focal
variety Xf and then take the union of the appropriate d-planes. By using the
Cartan test, one can show that the local constructions of Y depends on two
functions of two variables for the types (1,1) and (1,2) and on d + 3 functions
of two variables for the type (1,3). In contrast to this, the construction of de-
velopable varieties with a 2-codimensional focal variety depend only on several
functions of one variable or on several constants in case of type (2,3).

Finally, on a “moduli space” of developable varieties of Gauss rank 2, the
dimension of the focal variety and the rank of the generic focal quadric will be
lower semi-continuous functions. Therefore, the general developable hypersur-
face of Gauss rank 2 in PN , N ≥ 5, will be of type (1,3) and in P4 of type
(1,2). Further, the general developable variety of Gauss rank 2 which is not a
hypersurface will be of type (1,2) as well.

1 Classification

We examine the developable varieties by using Cartan’s moving frame method.
Here we recall some facts, in order to fix the notations. For a complete intro-
duction see section 4 and 5 of [8] or [2]. On the projective space PN , we have the
bundle of projective frames F , consisting of bases (e0, . . . , eN) of CN+1. The
infinitesimal motion of the frame is described by

deA = ω0
Ae0 + . . . + ωN

A eN for 0 ≤ A ≤ N,

where the ωB
A are the Maurer-Cartan 1-forms on GL(CN+1), which fulfill the

Maurer-Cartan equation
dωA

B = −ωA
C ∧ ωC

B .
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To study the geometry of a developable variety, we work only on the subman-
ifold of the projective frame bundle where the general frame has the following
properties:

{e0} is a point of X,

{e0, . . . , ed} is the Gauss fiber F of X through {e0},

{e0, . . . , en} is the tangent space of X in {e0}.

Our adaptions to the geometry of X have the effect that

de0 = ω0e0 + ωδeδ + ωiei

deδ = ω0
δe0 + ωε

δeε + ωi
δei

dei = ω0
i e0 + ωδ

i eδ + ωj
i ej + ωµ

i eµ

with ωA := ωA
0 and the index ranges 1 ≤ δ, ε ≤ d, d + 1 ≤ i, j ≤ n, and

n + 1 ≤ µ ≤ N .

Differentiating ωµ = 0 resp. ωµ
δ = 0 and using the Cartan lemma, we find

functions qµ
ij , a

i
δj such that

ωµ
i = qµ

ijω
j, ωi

δ = ai
δjω

j

and qµ
ij as well as qµ

ikak
δj are symmetric in i, j. Setting Qµ = (qµ

ij), Aδ = (ai
δj),

Q = span {Qµ}, and A = {A0 = id, Aδ}, this means that QA is symmetric for
Q ∈ Q and A ∈ A [2, 4.1]

The second fundamental form of X in x = {e0} is the second differential of
e0 modulo the tangent space

IIx = d2e0 = ωµ
i ωieµ = qµ

ijω
iωjeµ mod {e0, . . . , en}.

Since the second fundamental form is essentially the differential of the Gauss
map, the singular locus of II is the Gauss fiber F = {e0, . . . , ed}.

Now we recall that X is singular along a hypersurface in a Gauss fiber F .
Let e = λ0e0 +λδeδ ∈ F ⊂ X be a point of the fiber. We determine the tangent
space of X at e. Since F ⊂ X , we have F ⊂ TeX ; so, we may compute modulo
F

de = (λ0ωi + λδωi
δ)ei = (λ0δi

j + λδai
δjω

j)ei mod {e0, . . . , ed}.

The point e ∈ X is smooth iff TeX = TxX . This will be the case if the
matrix λ0Er + λδAδ is invertible. Note that this is a local computation; hence,
the point e may in fact be a singular point if it is a point of self–intersection of
X . On the other hand, points e = λ0e0 + λδeδ ∈ F with det(λ0Er + λδAδ) = 0
will always be singular in X . They form the degree r focal hypersurface of the
Gauss fiber F . The closure of the union of the focal hypersurfaces is the focal
variety Xf ⊆ Sing X of X .

Now we fix a general point x of a developable variety of Gauss rank 2 and
study the linear systems A and Q with the help of linear algebra.

Proposition 1 Let A be a linear system of endomorphisms of C2 which con-
tains the identity and Q a linear system of symmetric bilinear forms of C2 with
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1. the bilinear form Q( · , A( · )) is symmetric for every A ∈ A and Q ∈ Q,

2. SingQ := {v ∈ C2 | Q(v, C2) = 0 ∀Q ∈ Q} = 0.

Then, up to a choice of basis of C2, there exist the following four possibilities
for the linear system A

A generated by Q generated by

0)

(

1 0
0 1

) (

1 0
0 1

)

[, arbitrary]

1)

(

1 0
0 1

)

,

(

0 1
0 0

) (

0 1
1 0

) [

,

(

0 0
0 1

)]

2)

(

1 0
0 1

)

,

(

1 0
0 0

) (

1 0
0 1

) [

,

(

0 0
0 1

)]

3)

(

1 0
0 1

)

,

(

1 0
0 0

)

,

(

0 1
1 0

) (

1 0
0 1

)

.

Here, the square brackets indicate optional matrices.

Proof. The first case is characterized by dimA = 1. So let us assume that
dimA = 2 and all matrices of A have only one eigenvalue, then for a matrix
A′

1 ∈ A \ CE2 there exists a basis of C2 such that

A′
1 =

(

λ 1
0 λ

)

; hence A1 := A′
1 − λE2 =

(

0 1
0 0

)

∈ A.

The symmetry of QA1 for Q ∈ Q implies

Q =

(

0 q12

q12 q22

)

.

Condition 2 ensures the existence of a matrix Q ∈ Q with q12 6= 0. By a
scaling of this matrix, we get q12 = 1. A transformation of the basis of C

2 by
e2 7→ e2 − (q22/2)e1 takes Q to

(

0 1
1 0

)

and leaves A1 fixed.

Now let us assume that dimA = 2 and A contains a matrix A1 with two
different eigenvalues. Then there exists a basis of C

2 such that A1 is a diagonal
matrix; through scaling and subtracting a multiple of E2, we can achieve that

A1 =

(

1 0
0 0

)

.

For a matrix

Q =

(

q11 q12

q12 q22

)

∈ Q,

the symmetry of QA1 implies q12 = 0, i.e.

Q =

(

q11 0
0 q22

)

∈ Q.
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This and condition 2 imply the existence of a nonsingular matrix in the linear
system Q. A scaling of coordinates leaves E2 and A1 fixed and may be chosen
such that this nonsingular matrix is taken to

(

1 0
0 1

)

.

We turn to the case of dimA = 3. Since a three dimensional subspace A
inside the four dimensional space End(C2) cannot lie inside the nondegenerate
quadric of matrices with only one eigenvalue, there exists an A1 ∈ A with two
eigenvalues; hence, we may assume that we are in the situation at the end of
the preceeding case. The symmetry of

QA = A for Q =

(

1 0
0 1

)

and A =

(

a11 a12

a21 a22

)

∈ A

implies a12 = a21, thus

A =

{(

1 0
0 1

)

,

(

1 0
0 0

)

,

(

0 1
1 0

)}

.

Further, the symmetry of

Q

(

0 1
1 0

)

for Q =

(

q11 0
0 q22

)

∈ Q

yields q11 = q22.
Finally, it is easy to see that the case of dimA = 4 is impossible. 2

Now let us return to the examination of the geometry of a developable variety
X of Gauss rank two. By the above proposition there are four possibilities for
the linear system A of a general fiber of X . We will have to treat these four
cases separately.

Case A =

{(

1 0
0 1

)}

.

We will show that a developable variety with such a linear system A is a cone
over a surface with a (d − 1)–dimensional vertex. Its focal variety is the cone
vertex.

We can adapt the frame such that Aδ = 0; hence, ωi
δ = 0 and the focal

hypersurface of the Gauss fiber F is the two-fold linear space {e1, . . . , ed}. Dif-
ferentiating the equations ωi

δ = 0, we get

0 = dωn−1
δ = −ωn−1 ∧ ω0

δ and 0 = dωn
δ = −ωn ∧ ω0

δ .

Since ωn−1 and ωn are linearly independent, this yields ω0
δ = 0. Therefore,

deδ = ωε
δeε = 0 mod {e1, . . . , ed},

and the (d − 1)–dimensional linear subspace L = {e1, . . . , ed} will be the fixed
focal hypersurface of the general Gauss fiber of X ; thus X is a cone over L.
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Case A =

{(

1 0
0 1

)

,

(

0 1
0 0

)}

.

We adapt the frame such that

A0 =

(

1 0
0 1

)

, A1 =

(

0 1
0 0

)

, A2 = . . . = Ad = 0

and

Qn+1 =

(

0 1
1 0

)

, Qn+2 =

(

0 0
0 1

)

or 0, Qm = 0 for m ≥ n + 3.

It is understood that all terms with indices greater than N are ignored in the
computation. We see that the focal hypersurface of a general Gauss fiber is
given by

det(λ0A0 + λ1A1) = (λ0)2,

i.e. it is a quadric of rank 1, namely the double (d − 1)–plane {e1, . . . , ed}.

Our adaptions of the frame imply that with the index range 2 ≤ ̺ ≤ d

ωn−1
1 = ωn, ωn−1

̺ = 0, ωn
δ = 0, ωn+1

n−1 = ωn, and ωn+2
n−1 = 0.

The point e1 is a general point of the focal variety Xf . The tangent space of
Xf at e1 is the image of

de1 = ω0
1e0 + ω̺

1e̺ + ωn−1
1 en−1 mod {e1}.

Depending on whether dimXf = d + 1 or d, the forms ω0
1 , ω

̺
1 , ωn−1

1 will be
linearly independent or not. Before treating these cases separately, we will
derive an equality which is useful in both cases. We differentiate ωn

1 = 0 to get

0 = dωn
1 = −ωn ∧ ω0

1 − ωn
n−1 ∧ ωn−1

1 = ωn−1
1 ∧ (ωn

n−1 − ω0
1)

⇒ ωn
n−1 = ω0

1 + fωn−1
1 for a suitable function f.

Subcase: dimXf = d + 1, i.e. X is of type (1,1).

We will show that in this case X is the union of the unique asymptotic d–planes
of the focal variety Xf , which has Gauss rank 2.

The second fundamental form of Xf at e1 is

IIXf ,e1
= d2e1 = (ω0

1ω
n + ωn−1

1 ωn
n−1)en + ωn−1

1 ωn+1
n−1en+1

= (2ω0
1ω

n−1
1 + f(ωn−1

1 )2)en + (ωn−1
1 )2en+1 mod {e0, . . . , en−1},

where we used ωn+1
n−1 = ωn = ωn−1

1 and ωn
n−1 = ω0

1 + fωn−1
1 . The singular locus

of IIXf ,e1
is {e1, . . . , ed}; thus Xf has Gauss rank 2. Its second fundamental

form is given in the basis (ω0
1 , ω

n−1
1 ) by

Q̃n =

(

0 1
1 f

)

and Q̃n+1 =

(

0 0
0 1

)

;
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hence, {e0, . . . , ed} is the unique asymptotic d–plane in the tangent space of Xf .
However, it is also the Gauss fiber of X , and the union of all these planes will
be X itself.

If Xf is developable, then its linear system Ã is either of type 0) or of type 1)

in the table of Proposition 1, because of the form of the matrices Q̃n and Q̃n+1.
We will see in the next subsection that the asymptotic d-planes of a (d + 1)–
dimensional variety of type (2,1) are contained in the variety itself; thus Xf can
only be of type (1,1) or (3,1).

Subcase: dimXf = d, i.e. X is of type (2,1).

We want to show that X is the union of (n − 1)-planes.

From dimXf = d and knowing that Xf is the union of the (d − 1)-planes
{e1, . . . , ed}, we see that the forms ω0

1 and ωn−1
1 = ωn appearing in the expres-

sion for de1 are linearly dependent; thus ω0
1 = gωn. Together with the equation

ωn
n−1 = ω0

1 + fωn−1
1 , it follows that ωn

n−1 = (f + g)ωn.

On X itself, we consider the distribution given by ωn = 0. Since

dωn = −ωn ∧ ω0 − ωn
n−1 ∧ ωn−1 − ωn

n ∧ ωn

= −ωn ∧ ω0 − (f + g)ωn ∧ ωn−1 − ωn
n ∧ ωn = 0 mod {ωn},

this distribution is completely integrable by the theorem of Frobenius.

Let L be an integral manifold of this distribution. We want to show that L
is a (d + 1)–plane. It is enough to show that the second fundamental form of L
vanishes. On L we have

de0 = ωδeδ + ωn−1en−1 mod {e0, ω
n}

IIL,e0
= d2e0 = ωn−1(ωn

n−1en + ωn+1
n−1en+1)

= ωn−1((f + g)ωnen + ωnen+1) = 0 mod {e0, . . . , en−1, ω
n}.

This shows that X is the union of a one-dimensional family of (d + 1)–planes.
From [9, Sec 4] or [5, 2.3.5] it follows that X has the structure stated in the
introduction.

Case A =

{(

1 0
0 1

)

,

(

1 0
0 0

)}

.

We adjust the frame such that

A0 =

(

1 0
0 1

)

, A1 =

(

1 0
0 0

)

, A2 = . . . = Ad = 0.

Then the focal hypersurface of the Gauss fiber F is given by

0 = det(λ0A0 + λ1A1) = λ0(λ0 + λ1),

i.e. it is a quadric of rank 2, consisting of the (d − 1)-planes {e1, . . . , ed} and
{e0 − e1, e2, . . . , ed}. Letting the Gauss fibers vary, we obtain two subvarieties
H1,H2 ⊆ G(d − 1, N) after a closing procedure. It is possible that H1 = H2.
Defining

Yk =
⋃

L∈Hk

L ⊆ PN ,
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the focal variety Xf is the union of Y1 and Y2. With such a linear system A,
the variety X cannot be a cone; therefore, the dimension of Hk is 1 or 2 and
that of Xf is d or d + 1.

Subcase: dimXf = d + 1, i.e. X is of type (1,2).

We may assume that dim Y1 = d + 1. Then we will show that X is the union of
conjugate d–planes of the variety Y1 of Gauss rank 2.

Note that due to our adaptions of the frame e1 is a general point of Y1 and
with the index range 2 ≤ ̺ ≤ d,

ωn−1
1 = ωn−1, ωn−1

̺ = 0, and ωn
δ = 0.

The tangent space of Y1 at the point e1 is the image of

de1 = ω0
1e0 + ω̺

1e̺ + ωn−1
1 en−1 mod {e1}.

By dimension counting, Te1
Y1 = {e0, . . . , en−1} and the forms ω0

1 , ω
̺
1 , ωn−1

1 are
linearly independent basis forms on Y1. By Proposition 1 we can adapt the
frame further, such that the second fundamental form of X is given by

Qn+1 =

(

1 0
0 1

)

, Qn+2 =

(

0 0
0 1

)

or 0, Qm = 0 for m ≥ n + 3,

in particular ωn+1
n−1 = ωn−1 and ωn+2

n−1 = 0. Again, it is understood that all
terms with indices greater than N are ignored in the computation. The second
fundamental form of Y1 is

IIY1,e1
= d2e1 = (ω0

1ω
n + ωn−1

1 ωn
n−1)en + ωn−1

1 ωn+1
n−1en+1

= (ω0
1ω

n + ωn−1
1 ωn

n−1)en + (ωn−1
1 )2en+1 mod {e0, . . . , en−1}.

We want to express ωn and ωn
n−1 in the basis forms of Y1. Differentiating ωn

1 = 0
yields

0 = dωn
1 = −ωn ∧ ω0

1 − ωn
n−1 ∧ ωn−1

1

⇒ ωn = fω0
1 + gωn−1

1 , ωn
n−1 = gω0

1 + hωn−1
1 .

We have f 6= 0, because ωn and ωn−1
1 = ωn−1 are linearly independent. Now

the second fundamental form reads

IIY1,e1
= (f(ω0

1)
2 + 2gω0

1ω
n−1
1 + h(ωn−1

1 )2)en + (ωn−1
1 )2en+1

mod {e0, . . . , en−1}.

Clearly, its singular locus is {e1, . . . , ed}; thus Y1 has Gauss rank 2, and its
second fundamental form is in terms of (ω0

1 , ω
n−1
1 )

Q̃n =

(

f g
g h

)

, Q̃n+1 =

(

0 0
0 1

)

.

The linear space L = {e0, e1, . . . , ed} is conjugate to {−ge0 + fen−1, e1, . . . , ed},
and these two linear spaces are the only conjugate d-planes. Finally, because
the linear space L is precisely a Gauss fiber of X , the union of all these spaces
will be X .
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If Xf is developable, then its linear system Ã is either of type 0) or of type 2)

in the table of Proposition 1, because of the form of the matrices Q̃n and Q̃n+1.
Therefore, Xf can only be of type (1,2), (2,2), or (3,1).

Using ωn−1
̺ = 0, we describe the linear system Ã more precisely as

Ã =

(

∗ ∗
0 0

)

.

Thus {e2, . . . , ed} is a component of the focal hyperquadric in a general tangent
plane of Xf . Let Z be the component of the focal variety Xff of Xf which is
the union of these linear spaces. Due to ωn−1

̺ = ωn
̺ = 0, the tangent variety

of Z is contained in X . However, it will not always be equal to it. If Xf is
of type (3,1) or (2,2) then Z is a linear space resp. a cone over a curve, thus
Tan Z 6= X . Even if Xf is of type (1,2) it might happen that TanZ 6= X ,
namely if dim Z < dimXff = dimX − 2.

Subcase: dimXf = d, i.e. X is of type (2,2).

In this case X is a cone over the join of two curves.

We start proving this by showing that dimH1 = dimH2 = 1. Assume
dimHk = 2. Then, since dimYk = d, each point y ∈ Yk lies on a one-dimensional
family of (d − 1)–planes. By dimension reasons, the union of these is Yk itself;
thus Yk is a cone over y. Since Yk is cone over all its points, it is a d–plane.

Now if dimH1 = dimH2 = 2, then we consider the focal hypersurface L1 ∪
L2, Lk ∈ Hk, of a Gauss fiber F . L1 and L2 intersect in a (d − 2)–plane, thus
the two d–planes Y1 and Y2 intersect in at least a (d − 2)–plane, too. Hence,
Y1 and Y2 span at most a (d + 2)–plane inside PN . Since by construction X
is contained in the span of Y1 and Y2, X must be a (d + 2)–plane, which is
impossible.

Now assume that dimH1 = 2, but dimH2 = 1. Let L2 ∈ H2, then there
is a one-dimensional subvariety F ′ of Gauss fibers of X that contain L2. To
this family corresponds a one-dimensional family H′

1 of H1, such that the Gauss
fibers of F ′ are spanned by L2 and L1 ∈ H′

1. Since the L1 ∈ H′
1 sweep out the

d–plane Y1, the variety X contains the linear space ML2
= L2 ∨ Y1 spanned by

L2 and Y1. Thus X , as the union of all ML2
, L2 ∈ H2, is a cone over the d–plane

Y1; in particular, it has Gauss rank less or equal to 1, which is impossible.

Up to now, we have shown that dimH1 = dimH2 = 1. By dimension reasons
the two-dimensional family of Gauss fibers is given by

L1 ∨ L2, Lk ∈ Hk.

We want to show that L1 ∩ L2 is a fixed (d − 2)–plane for all Lk ∈ Hk. If
that is not the case, let L2, L

′
2 ∈ H2 be general (d − 1)–planes. Looking at the

dimension, we see that

L1 = (L1 ∩ L2) ∨ (L1 ∩ L′
2) for nearly all L1 ∈ H1

Thus L1 and hence Y1 is contained in L2 ∨ L′
2. Because of dim L1 ∩ L2 =

dimL1 ∩ L′
2 = d − 2, the space L2 ∨ L′

2 is at most a (d + 1)–plane. The same
argument with H1 and H2 exchanged implies that Y1 and Y2 are contained in
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the same (d + 1)–plane. By the above remark about the Gauss fibers of X , it
follows that X is contained in this (d + 1)–plane, which is impossible.

Now let L be the fixed intersection of L1 ∈ H1 and L2 ∈ H2. Then there
exist curves C1 and C2 such that

H1 = {p ∨ L | p ∈ C1} and H2 = {q ∨ L | q ∈ C2}.

Therefore, the Gauss fibers of X are

p ∨ q ∨ L with p ∈ C1, q ∈ C2,

and we recognize X as the cone over the join of C1 and C2 with vertex L.

Case A =

{(

1 0
0 1

)

,

(

1 0
0 0

)

,

(

0 1
1 0

)}

.

We adapt the frame such that

A0 =

(

1 0
0 1

)

, A1 =

(

1 0
0 0

)

, A2 =

(

0 1
1 0

)

, A3 = . . . = Ad = 0

and

Qn+1 =

(

1 0
0 1

)

, Qm = 0 for n + 2 ≤ m ≤ N.

Since the linear system of quadrics of the second fundamental form of X is
generated by just one quadric, X is a hypersurface inside a Pn+1 ⊆ PN by the
Segre theorem [2, 2.5.3]. We will assume that Pn+1 = PN .

The focal hypersurface is

det(λ0A0 + λ1A1 + λ2A2) = det

(

λ0 + λ1 λ2

λ2 λ0

)

= (λ0)2 + λ0λ1 − (λ2)2,

i.e. it is a quadric of rank 3.

Note that the general matrix of A is diagonalizable, and that this is even
true for those matrices of A whose determinate vanishes; thus A1 is a general
matrix under those with vanishing determinate, and e1 is a general point of Xf .

Our adaptions of the frame imply that with the index range 3 ≤ ̺ ≤ d

ωn−1
1 = ωn−1, ωn

1 = 0, ωn−1
2 = ωn, ωn

2 = ωn−1, ωn−1
̺ = ωn

̺ = 0,

ωn+1
n−1 = ωn−1, and ωn+1

n = ωn.

Again, we treat the cases of dim Xf = d + 1 or d separately.

Subcase: dimXf = d + 1, i.e. X is of type (1,3).

We will show that Xf has Gauss rank 3 and the pencil of quadrics of the second
fundamental form is generated by a quadric of rank 3 and a double tangent
plane to this quadric. The original variety X can be recovered from Xf as the
union of these double tangent planes.

The tangent space of Xf at the general point e1 ∈ Xf is the image of

de1 = ω0
1e0 + ω2

1e2 + ω̺
1e̺ + ωn−1

1 en−1 mod {e1}.

11



Since it has dimension d + 1 the forms ω0
1 , ω

2
1 , ω

̺
1 , ωn−1

1 must be linearly inde-
pendent. We find for the second fundamental form

IIXf ,e1
= d2e1 = (ω0

1ω
n + ω2

1ω
n
2 + ωn−1

1 ωn
n−1)en + ωn−1

1 ωn+1
n−1en+1

mod {e0, . . . , en−1}.

Knowing ωn+1
n−1 = ωn

2 = ωn−1 = ωn−1
1 , it remains to express ωn and ωn

n−1 in

terms of ω0
1 , ω

2
1 , ω

̺
1 , ωn−1

1 . We differentiate ωn
1 = 0 and find

0 = dωn
1 = −ωn ∧ ω0

1 − ωn
2 ∧ ω2

1 − ωn
n−1 ∧ ωn−1

1

= ωn−1
1 ∧ (ωn

n−1 − ω2
1) + ω0

1 ∧ ωn

⇒ ωn
n−1 − ω2

1 = fωn−1
1 + gω0

1

ωn = gωn−1
1 + hω0

1 for suitable functions f, g, h.

Note that h 6= 0, because ωn and ωn−1
1 = ωn−1 are linearly independent. Using

this, the second fundamental form is

IIXf ,e1
= (2ω2

1ω
n−1
1 + 2gω0

1ω
n−1
1 + h(ω0

1)
2 + f(ωn−1

1 )2)en + (ωn−1
1 )2en+1

mod {e0, . . . , en−1}.

Thus the singular locus of II is {e1, e̺}, and in the basis (ω2
1 , ω

0
1 , ω

n−1
1 ) the

second fundamental form is given by

Q̃n =





0 0 1
0 h g
1 g f



 , Q̃n+1 =





0 0 0
0 0 0
0 0 1



 .

The zero locus of the quadric Q̃n+1, the double plane {e0, . . . , ed}, is tangent to
the quadric Q̃n at the points {e1, . . . , ed}. Since {e0, . . . , ed} is a Gauss fiber of
X , the union of these will be X as well. Finally, we remark that Q̃n and Q̃n+1

can be brought into the normal form

Q̃n =





0 0 1
0 1 0
1 0 0



 , Q̃n+1 =





0 0 0
0 0 0
0 0 1





by a basis transformation in (ω2
1 , ω

0
1 , ω

n−1
1 ) and subtracting a multiple of Q̃n+1

from Q̃n.

Subcase: dimXf = d, i.e. X is of type (2,3).

We claim that the hypersurface X is a cone over the secant variety of the
Veronese surface. Since the dual of the secant variety of the Veronese surface
in P5 is the Veronese surface in the dual space (P5)∗, this is equivalent to the
fact that X∗ is the Veronese surface. By [6, 6c] in the version of [2, 8.4], it is
enough to show that

1. X∗ has a 5-dimensional second osculating space

2. for any two points x, y ∈ X∗, the intersection of the projective tangent
spaces TxX∗ and TyX∗ is nonempty.
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Let eB be the frame dual to eA, then from eB(eA) = δB
A one obtains easily

[8, 7.4]
deB = −ωB

CeC .

The point en+1 is a general point of X∗, and the tangent space of X∗ in en+1

is the image of

den+1 = −ωn+1
n−1e

n−1 − ωn+1
n en = −ωn−1en−1 − ωnen mod {en+1}.

Since ωn−1 and ωn are linearly independent, X∗ has dimension 2. Its second
fundamental form is

IIX∗,en+1 = d2en+1 = ωn−1(ωn−1e0 + ωn−1
1 e1 + ωn−1

2 e2) + ωn(ωne0 + ωn
2 e2)

= (ωn)2e0 + (ωn−1)2(e0 + e1) + 2ωn−1ωne2 mod {en−1, en, en+1};

thus the second osculating space of X∗ is 5-dimensional.

The dual of the tangent space Ten+1X∗ = {en−1, en, en+1} is the Gauss fiber
F = {e0, . . . , ed} of X . Hence, instead of showing that any two tangent spaces
of X∗ intersect nontrivially, we may show that any two Gauss fibers of X do
not span Pn+1. Let F ⊂ X be a Gauss fiber of X and C its focal hypersurface.
Take a one-dimensional family of Gauss fibers F ′ ⊂ F . By dimension reasons,
the union of the focal hypersurfaces C′ of the Gauss fibers F ′ ∈ F ′ is the whole
Xf . In particular, it covers C; therefore,

dim C ∩ C′ ≥ dim C − 1 = d − 2.

Then we have dimF ∩ F ′ ≥ d − 2 as well, and dimF ∨ F ′ ≤ d + 2 implies that
F and F ′ cannot span the whole Pn+1.

2 Constructions

In this section we want to show that the descriptions of the developable varieties
given above can be used to construct them.

Clearly, cones over nondevelopable surfaces or the secant variety of the
Veronese surface are developable varieties of Gauss rank 2.

That a union of a one-dimensional family of (n − 1)-planes as described for
developable varieties of type (2,1) yields a developable variety of Gauss rank
2 was proven in [9, Sec 4] and [5, 2.3.5]. Hereby, the curves must be chosen
sufficiently general, otherwise X might have only Gauss rank 1 or 0; analogous
remarks will be true for all the following constructions.

Developable varieties of type (2,2) are the join of two curves and a linear
space. That such a join is developable follows from Terracini’s Lemma [13,
II.1.10].

Terracini’s Lemma The tangent space of the join variety X = Y1# . . . #Ym

at a general point x ∈ y1 · · · ym with yi ∈ Yi is

TxX = Ty1
Y1 ∨ · · · ∨ Tym

Ym.

Terracini’s Lemma even implies that the join X of the a1–th osculating scroll,

C
(a1)
1 , of a curve C1, the a2–th osculating scroll, C

(a2)
2 , of a curve C2, and
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a linear space L is developable of Gauss rank 2. Its focal variety Xf is the

union of C
(a1−1)
1 #C

(a2)
2 #L and C

(a1)
1 #C

(a2−1)
2 #L. Hence, X is of type (1,2) if

a1 + a2 ≥ 1.

It remains to study the developable varieties whose focal varieties have only
codimension one. Three-dimensional developable varieties of the types (1,1) and
(1,2) were already constructed in [3].

We want to construct developable varieties of type (1,2). Let Y ⊂ PN be a
(d + 1)-dimensional variety of Gauss rank 2 with conjugate d-planes. We claim
that the union of these d-planes has Gauss rank 2. We choose a moving frame
(e0, . . . , eN) such that

{e0} is a point of Y,

{e0, . . . , ed−1} = {e0, eε} is the Gauss fiber of Y through {e0},

{e0, . . . , ed+1} is the tangent space of Y,

{e0, . . . , ed} is the d–plane conjugate to {e0, . . . , ed−1, ed+1},

{e0, . . . , ed+3} is the second osculating space of Y.

Due to our assumptions on the conjugate d-planes, the second fundamental form
may be given by

Qd+2 =

(

1 0
0 0

)

, Qd+3 =

(

0 0
0 1

)

,

in particular ωd+3
d = 0.

Now ed is a general point of X , and the tangent space of X is the image of

ded = ω0
de0 + ωε

deε + ωd+1
d ed+1 + ωd+2

d ed+2 mod {ed}.

Since X has dimension n = d + 2, the forms {ω0
d, ωε

d, ω
d+1
d , ωd+2

d } are the basis
forms of X . The second fundamental form of X is with the index range d+3 ≤
µ ≤ N

IIX,ed
= (ωd+1

d ωµ
d+1 + ωd+2

d ωµ
d+2)eµ mod {e0, . . . , en}.

Differentiating ωd+3
d = 0 yields

ωd+3
d+1 = fωd+1

d + gωd+2
d

ωd+3
d+2 = gωd+1

d + hωd+2
d

with f 6= 0 since ωd+3
d+1 = ωd+1 and ωd+2

d = ωd are linearly independent. Further,
differentiating ων

d = 0 for d + 4 ≤ ν ≤ N yields

0 = dων
d = −ων

d+2 ∧ ωd+2
d ⇒ ων

d+2 = hνωd+2
d .

Therefore, the second fundamental form of X is

IIX,ed
= (f(ωd+1

d )2+2gωd+1
d ωd+2

d +h(ωd+2
d )2)ed+3+hν(ωd+2

d )2eν mod {e0, . . . , en},

thus X has Gauss rank 2.
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If X is not a hypersurface, then the system of quadrics of IIX,ed
is two-

dimensional by Segre’s theorem [2, 2.5.3] and {e0, . . . , ed+1} = Te0
Y is a conju-

gate (d + 1)-plane of X . Taking again the union of the these conjugate planes,
we obtain a developable variety of type (1,2), which is simply the tangent vari-
ety of Y . Thus we may replace the twice iterated process of taking the union
of the correctly chosen conjugated planes by taking the union of the tangent
spaces of the original variety Y . On the other hand, we could have constructed
a developable variety Z by taking the union of the other conjugated planes of
X . Then the question is if there is a variety Y ′ with Z = Tan Y ′. The remarks
at the end of the analysis of the varieties of type (1,2) indicate that this might
not be the case if the component of the focal variety Xf which is not Y has a
smaller dimension than Y .

The construction of a developable variety of type (1,1) is very similar. Let
Y be a (d + 1)-dimensional developable variety of Gauss rank 2 with unique
asymptotic d-planes, which do not lie in Y . Further, let X be the union of these
d-planes. To prove that X has Gauss rank 2, we choose a moving frame adapted
like above with the exception that {e0, . . . , ed} is now the asymptotic d-plane.
This time we may assume that the second fundamental form is given by

Qd+2 =

(

0 1
1 0

)

, Qd+3 =

(

0 0
0 1

)

.

Completely analogous to the above case, we obtain as the second fundamen-
tal form of X

IIX,ed
= (2ωd+1

d ωd+2
d + g(ωd+2

d )2)ed+3 + fν(ωd+2
d )2eν mod {e0, . . . , en}.

Therefore, X has Gauss rank 2. If X is not a hypersurface, then {e0, . . . , ed+1},
the tangent space of Y , is the unique asymptotic (d + 1)–plane in the general
tangent space of X . The union of those, the tangent variety of Y , will be
developable of Gauss rank 2. Thus we may replace the twice iterated process
of taking the union of the asymptotic planes by taking the union of the tangent
spaces of the original variety Y .

Now we state the result for higher iteration. Note that since the pencil of
quadrics of the second fundamental form is generated by {ωdωd+1, (ωd+1)2}
in the asymptotic case and by {(ωd)2, (ωd+1)2} in the conjugate case,
the polynomials of degree k of the k–th fundamental form FF(k) lie in
{ωd(ωd+1)k−1, (ωd+1)k} resp. {(ωd)k, (ωd+1)k} by the prolongation property
[8, 4.2.4] and formulas like [2, 2.51]. Hence, the dimension of the k–th osculat-
ing tangent space T(k)Y is at most the dimension of the (k − 1)–th osculating
tangent space plus 2. Thus if E denotes the asymptotic resp. a conjugate d–
plane of Y , then the dimensions of the linear spaces in the following sequence
are increasing by at most one:

E ⊆ TY ⊆ II(E, TY )+TY ⊆ TY (2) ⊆ FF
(3)(E, TY, TY )+TY (2) ⊆ TY (3) ⊆ . . . .

By computations similar to the above one, one can show that iterating the
process of taking the union of the asymptotic (correctly chosen conjugate) planes
k–times results in the same variety as taking the union of the k–th linear spaces
in the above sequence of the variety Y .
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Finally, we construct varieties of type (1,3). Let Y ⊂ Pn+1 be a developable
variety of dimension d+1 = n−1 and Gauss rank 3, whose pencil of quadrics of
the second fundamental form is generated by a quadric of rank 3 and a double
tangent plane to it. We will show that the union of these d-dimensional double
tangent planes is a n-dimensional developable variety X of Gauss rank 2.

We choose a frame (e0, . . . , en+1) such that

{e0} is a point of Y,

{e0, . . . , ed−2} = {e0, eε} is the Gauss fiber of Y through {e0},

{e0, . . . , ed+1} is the tangent space of Y.

We may assume that the quadric of rank 3 inside the tangent space of Y is
given by 2xd−1xd+1 + (xd)

2, and the double tangent plane is tangent at the
point ed−1, then the second fundamental fundamental form of X is given by

Qd+2 =





0 0 1
0 1 0
1 0 0



 , Qd+3 =





0 0 0
0 0 0
0 0 1



 ,

in particular ωd+3
d−1 = ωd+3

d = 0.

The point ed is a general point of the double tangent plane and hence of X .
We compute the tangent space of X as the image of

ded = ω0
de0 + ωε

deε + ωd−1
d ed−1 + ωd+1

d ed+1 + ωd+2
d ed+2 mod {ed};

thus X has dimension n = d + 2 and not d + 3 as a naive dimension count
suggests. Its second fundamental form is

IIX,ed
= (ωd+1

d ωd+3
d+1 + ωd+2

d ωd+3
d+2)ed+3 mod {e0, . . . , en}.

Differentiating ωd+3
d = 0 yields

0 = dωd+3
d = −ωd+3

d+1 ∧ ωd+1
d − ωd+3

d+2 ∧ ωd+2
d

⇒ ωd+3
d+1 , ω

d+3
d+2 = 0 mod {ωd+1

d , ωd+2
d }.

Hence IIX,ed
can be expressed in the forms ωd+1

d , ωd+2
d alone, and therefore X

has Gauss rank 2.

Finally, we make some remarks about the degree of freedom one has in the
local construction of developable varieties of Gauss rank 2 whose focal varieties
have codimension one. Using the Cartan test [2, 7], one can compute the degree
of freedom in the construction of varieties Y with the properties described above,
from which we obtained developable varieties X with Xf ⊇ Y . This has been
done for a surface Y with conjugate directions in [2, p. 85]. The extention to
developable varieties of Gauss rank 2 is easy. The case where Y is a developable
variety of Gauss rank 2 with asymptotic planes is nearly the same. In both cases
we find that the construction depends on two functions of two variables. Proving
the existence of the variety Y needed in the construction of a developable variety
of type (1, 3), is analogous, but computationally more difficult. Here one finds
that the construction of Y depends on d + 3 functions of two variables.
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