
COALGEBRA STRUCTURES IN ALGEBRAS

ROBERT WISBAUER

Abstract. Historically, the interest in coalgebras grew out from the study
of the notion of Hopf algebras introduced in topology. Now, in the definition

of Hopf algebras, the coalgebraic part is formulated explicitly and is by itself

the basis of a rich theory. Separable, Azumaya, and Frobenius algebras are
usually introduced as algebraic structures without referring to the notion of a

coalgebra. In this survey we reveal the internal coalgebra structure in these
algebras which may also be used to characterise them and to describe their

properties. All these classes of algebras – including the Hopf algebras – have

an associative multiplication and a coassociative comultiplication; they are
distinguished by requiring different compatibility conditions and properties

for units and counits.
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1. Modules and algebras over commutative rings

Throughout this paper R will denote a commutative ring with unit. Firstly we
recall the basic notions of algebras and modules over R in a way which allows for
an easy translation to coalgebras and comodules. For this the language of category
theory is extremely helpful and for convenience we provide the basic notions needed
(from [9], [21]).

1.1. Categories. A category A consists of a class of objects Obj(A) and, for any
A,A′ ∈ Obj(A), a (possibly empty) set MorA(A,A′) of morphisms which allow for
an associative composition. Furthermore, for any MorA(A,A) the existence of an
identity morphism is required which we denote by IA (or just I).

A covariant functor F : A → B between categories A and B consists of assign-
ments Obj(A)→ Obj(B), A 7→ F (A), and

for all A,A′ ∈ Obj(A), MorA(A,A′)→ MorB(F (A), F (A′)), f 7→ F (f),
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respecting the identity morphism and the composition of morphisms. F is a con-
travariant functor if it reverses the composition of morphisms.

Given two functors F,G : A→ B, a natural transformation γ : F → G is defined
by a family of morphisms γA : F (A)→ G(A), A ∈ Obj(A), such that any morphism
f : A→ A′ in A induces commutativity of the diagram

F (A)
F (f) //

γA

��

F (A′)

γA′

��
G(A)

G(f) // G(A′).

For functors L : A → B and R : B → A between any categories A and B, a
pairing is defined by maps, natural in A ∈ A and B ∈ B,

MorB(L(A), B)
αA,B−−−→ MorA(A,R(B))

βA,B−−−→ MorB(L(A), B).

Such a pairing is determined by the images of the identity morphisms of L(A)
and R(B), respectively,

ηA := αA,L(A)(IL(A)) : A→ RL(A),

εB := βR(B),B(IR(B)) : LR(B)→ B,

corresponding to natural transformations

η : IA → RL, ε : LR→ IB,

which are called quasi-unit and quasi-counit of (L,R, α, β), respectively. They allow
to reconstruct α and β.

(L,R) is said to be an adjoint pair provided α ◦ β and β ◦ α yield the identity
maps and this corresponds to the equalities

L
Lη−−→ LRL

εL−−→ L = IL, R
ηR−−→ RLR

Rε−−→ R = IR,

known as triangular identities.

Notice that so far we only have put up a framework without using deeper results
from category theory. In the course of this talk we will encounter several more
concrete examples of these abstract notions.

1.2. Category of R-modules. For the ring R, denote by MR the category of R-
modules, taking for objects the R-modules and for morphisms the R-linear maps.
This is a category with products and coproducts, kernels and cokernels, and the
R-module R as a projective generator.

For any R-modules M , N , there is the tensor product M ⊗R N yielding the
functors

M ⊗R − : MR →MR, N 7→M ⊗R N,
HomR(M,−) : MR →MR, N 7→ HomR(M,N),

which form an adjoint pair by the bijection (property of tensor product)

(1.1) HomR(M ⊗R N,K)
'−−→ HomR(N,HomR(M,K)), ϕ 7→ [n 7→ ϕ(−⊗ n)],

and unit and counit of this adjunction come out as

ηN : N → HomR(M,M ⊗N), n 7→ [m 7→ m⊗ n],

εN : M ⊗HomR(M,N)→ N, m⊗ f 7→ f(m).
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The functors M ⊗R − and HomR(M,−) are naturally isomorphic if and only if
M is a finitely generated and projective R-module: the isomorphism implies that
HomR(M,−) preserves epimorphisms and direct sums (since M ⊗R− does so) and
hence M has the properties required.

Furthermore, M and N can be interchanged by the twist map

τM,N : M ⊗R N → N ⊗RM, m⊗ n 7→ n⊗m,

which obviously satisfies τN,M ◦ τM,N = IM⊗N .
For modules over a field R all these properties are well-known from elementary

linear algebra and the corresponding proofs hold for any commutative base rings.

1.3. Algebras over R. An R-algebra (A,m, 1A) is defined as R-module A with an
associative R-bilinear multiplication m : A×A→ A (usually written as (a, b) 7→ ab)
and unit element 1A satisfying 1Aa = a1A for all a ∈ A.

By the properties of the tensor product, the bilinear map m can be replaced by an
R-linear map m : A⊗RA→ A, and 1A defines an R-linear map η : R→ A, r 7→ r1A.
With this terms, associativity and unitality conditions required for an algebra are
expressed by commutativity of the diagrams (writing ⊗ for ⊗R)

A⊗A⊗A m⊗IA //

IA⊗m
��

A⊗A

m

��
A⊗A m // A,

A⊗R
IA⊗η //

=
%%

A⊗A

m

��

R⊗A
η⊗IAoo

=
yy

A .

Defining R-algebras (A,m, η) in this way we are only using objects and morphisms
in the category MR.

As well known, the tensor product A ⊗ B of two R-algebras A and B is again
an R-algebra by componentwise multiplication. For this definition, the twist map
τB,A : B ⊗ A → A ⊗ B is needed. Analysing the setting shows that there may be
other R-linear maps λ : B⊗A→ A⊗B leading to an associative algebra structure
on A ⊗ B. These are examples of distributive laws known from general category
theory (e.g. [2]).

1.4. Tensor product of algebras. Consider twoR-algebras (A,m, η) and (B,m′, η′).
Multiplication and unit on A⊗B can be defined by

mAB : A⊗B ⊗A⊗B A⊗τB,A⊗B−−−−−−−→ A⊗A⊗B ⊗B m⊗m′−−−−→ A⊗B,
a⊗ b⊗ c⊗ d 7−→ a⊗ c⊗ b⊗ d 7−→ ab⊗ cd,

ηAB : R
η⊗η′−−−→ A⊗B, 1R 7→ 1A ⊗ 1B ,

making (A⊗B,mAB , ηAB) an associative unital algebra.

Replacing τB,A by some R-linear map λ : B ⊗A→ A⊗B, we observe:

1.5. Distributive laws. Let (A,m, η) and (B,m′, η′) be R-algebras with some
R-linear map λ : B ⊗A→ A⊗B. Defining a product on A⊗B by

mλ : A⊗B ⊗A⊗B A⊗λ⊗B−−−−−→ A⊗A⊗B ⊗B m⊗m′−−−−→ A⊗B,
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the triple (A⊗B,mλ, η⊗ η′) is an (associative and unital) R-algebra if and only if
it induces commutativity of the diagrams

B ⊗A⊗A

B⊗m
��

λ⊗A // A⊗B ⊗A A⊗λ // A⊗A⊗B

m⊗B
��

B ⊗A λ // A⊗B

B ⊗B ⊗A

m′⊗A

OO

B⊗λ // B ⊗A⊗B λ⊗B // A⊗B ⊗B,

A⊗m′

OO

B ⊗A λ // A⊗B

B

η⊗B

<<

B⊗η

bb

,

B ⊗A λ // A⊗B

A
η′⊗A

cc

A⊗η′

<<

.

Modules M over an A-algebra are defined by R-bilinear maps % : A×M →M .
Using the tensor product this can again be expressed by referring only to objects
and morphisms from the category MR.

1.6. A-modules. Let (A,m, η) be an R-algebra. A (unital) left A-module is a pair
(M,%M ), where M is an R-module and %M : A⊗M → A (written as (a⊗m) 7→ am)
is an R-linear map leading to commutativity of the diagrams

A⊗A⊗M m⊗IM //

IA⊗%M
��

A⊗M

%M

��
A⊗M

%M // A,

R⊗M
η⊗IM //

=
%%

A⊗M
%M

��
M.

An A-module morphism between two A-modules (M,%M ) and (N, %N ) is an R-
linear map f : M → N with commutative diagram

A⊗M
IA⊗f //

%M

��

A⊗N
%N

��
M

f // N.

The category of left A-modules is denoted by AM. Similar to MR, it also has
products, coproducts, kernels and cokernels and a projective generator (= A) but
it need not allow for a tensor product.

For any R-module X, A⊗X is a left A-module by multiplication of A and this
induces the free and forgetful functors,

φA : MR → AM, X 7→ (A⊗X,m⊗ IX),

UA : AM→MR, (M,%M ) 7→M.

(φA, UA) form an adjoint pair by the bijections, for X ∈MR, (M,%M ) ∈ AM,

HomA(A⊗X,M)→ HomR(X,M), A⊗X f−→M 7→ X
η⊗IX−−−−→ A⊗X f−→M,

HomR(X,M)→ HomA(A⊗X,M), X
g−→M 7→ A⊗X IA⊗g−−−→ A⊗M %−→M,
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and unit η and counit ε for this adjunction come out as

ηX : X
η⊗IX−−−−→ A⊗X, εM : A⊗M %M−−→M.

The algebra structure on the tensor product A ⊗ B of two algebras may also
be seen as a lifting of functors, investigated in a general categorical setting by P.
Johnstone [8], which here comes out as follows.

1.7. Lifting of functors. Let (A,m, η) and (B,m′, η′) be R-algebras and consider
the diagram

BM

UB

��

Â //
BM

UB

��
RM

A⊗− //
RM.

The following are equivalent:

(a) there exists a functor Â making the diagram commutative;

(b) there is a distributive law λ : B ⊗A→ A⊗B (see 1.5);

(c) A⊗ B has an algebra structure induced by some R-linear map λ : B ⊗ A→
A⊗B.

Hereby, for a B-module (M,ρ), Â(M) is the object A ⊗M with the B-module
structure

B ⊗A⊗M λ⊗I−−−→ A⊗B ⊗M I⊗ρ−−→ A⊗M,

and one may write

Â(−) = (A⊗B)⊗B − : BM→ BM.

2. Coalgebras over commutative rings

In the paper [7] (1941), H. Hopf pointed out the rich structure of the homology
of manifolds which admit a product operation: it allows for a coproduct and a
product satisfying certain compatibility properties. In [18] (1965), J.W. Milnor
and J.C. Moore analysed the algebraic parts of this structure and provided an
introduction to the theory of coalgebras and comodules. The framework we built up
for algebras and modules in the preceding section is suitable for a natural transition
to coalgebras and comodules. This will be described in the subsequent section.
Again R will denote a commutative ring.

2.1. Coalgebras. A coalgebra over R is a triple (C,∆, ε) where C is an R-module
with coassociative product and counit, that is, there are R-linear maps

∆ : C → C ⊗ C, ε : C → R,

inducing commutativity of the diagrams

C
∆ //

∆

��

C ⊗ C

I⊗∆

��
C ⊗ C ∆⊗I // C ⊗ C ⊗ C ,

C

∆

��
R⊗ C

=

99

C ⊗ C
ε⊗IC
oo

IC⊗ε
// C ⊗R

=

ee
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Similar to the situation for algebras, the product of two R-coalgebras (C,∆, ε)
and (D,∆′, ε′) can be defined using the twist map τC,D : C ⊗ D → D ⊗ C; the
latter can be replaced by a distributive law ϕ : C ⊗D → D⊗C with commutative
diagrams (e.g. [24, 4.11])

C ⊗ C ⊗D
C⊗ϕ // C ⊗D ⊗ C

ϕ⊗C // D ⊗ C ⊗ C

C ⊗D
ϕ //

∆⊗D

OO

C⊗∆′

��

D ⊗ C

D⊗∆

OO

∆′⊗C
��

C ⊗D ⊗D
ϕ⊗D // D ⊗ C ⊗D

D⊗ϕ // D ⊗D ⊗ C,

C ⊗D
ϕ //

ε⊗D
##

D ⊗ C

D⊗ε
{{

D ,

C ⊗D
ϕ //

C⊗ε′ ##

D ⊗ C

ε′⊗C{{
C .

2.2. C-comodules. Let (C,∆, ε) be an R-coalgebra. A left C-comodule is a pair
(M,ρM ) where M is an R-module and ρM : M → C ⊗M is an R-linear map with
commutative diagrams

M
ρM //

ρM

��

C ⊗M

∆⊗I
��

C ⊗M
I⊗ρM // C ⊗ C ⊗M,

M

=

$$
ρM

��
C ⊗M

ε⊗IM
// M.

A C-comodule morphism between two C-comodules (M,ρM ) and (N, ρN ) is an
R-linear map f : M → N with commutative diagram

M
f //

ρM

��

N

ρN

��
C ⊗M

I⊗f // C ⊗N.

These data form the category of left C-comodules, denoted by CM. There are
the forgetful and the cofree functors,

UC : CM→MR, (M,ρM ) 7→M,

φC : RM→ CM, X 7→ (C ⊗R X,∆⊗ IX , )

and (UC , φC) is an adjoint pair by the bijection, for (M,ρM ) ∈ CM, X ∈MR,

HomC(M,C ⊗X)→ HomR(M,X), M
f−→ C ⊗X 7→M

f−→ C ⊗X ε⊗IX−−−→ X,

HomR(M,X)→ HomC(M,C ⊗X), M
g−→ X 7→M

ρM−−→ C ⊗M IC⊗g−−−→ C ⊗X,

and unit η̃ and counit ε̃ of this adjunction come out as

η̃M : M
ρM−−→ C ⊗M, ε̃X : C ⊗X ε⊗IX−−−−→ X.
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From this adjunction a number of properties of comodules and their categories
can be derived. For example, choosing X = R and M = C, we obtain the isomor-
phisms

HomC(M,C) ' HomR(M,R), EndC(C) = HomC(C,C) ' HomR(C,R),

showing that the R-dual modules play a significant role here.

3. Frobenius and separable algebras

In [6] (1903), F. Frobenius investigated finite dimensional K-algebras A over
a field K with the property that A ' A∗ := HomK(A,K) as left A-modules.
They can also be characterised by the existence of a non-degenerate bilinear form
σ : A×A→ K with σ(ab, c) = σ(a, bc) for all a, b, c ∈ A.

Such algebras A were named Frobenius algebras by Brauer and Nesbitt (1937);
their duality properties were pointed out by Nakayama (1939); Eilenberg and
Nakayama observed (1955) that the notion makes sense over commutative rings,
provided A is finitely generated and projective as an R-module.

Frobenius algebras are of considerable interest in representation theory of finite
groups, number theory, combinatorics, coding theory, etc. Their relation with
coalgebras were mentioned by Lawvere (1967), Quinn (1991), Abrams (1999) e.a.
As pointed out by Dijkgraaf (1989), Abrams (1996), and others, they show up in
the framework of topological quantum field theory. An outline of their categorical
formulation, the Frobenius monads, is given by Street in [20].

3.1. Coalgebra structure of A∗. Let (A,m, η) be an R-algebra and assume A
to be finitely generated and projective as an R-module. Then there is an R-linear
isomorphism λ : A→ A∗ and (A⊗R A)∗ ' A∗ ⊗R A∗ as R-modules.

Applying (−)∗ := HomR(−, R) to m : A ⊗K A → A and η : R → A yields
comultiplication and counit on A∗,

A∗
m∗−→ (A⊗R A)∗ ' A∗ ⊗R A∗, A∗

η∗−→ R.

Applying λ, the coproduct and counit of A∗ can be transferred to A:

A
δ //

λ

��

A⊗K A

A∗
m∗ // A∗ ⊗K A∗ ,

λ−1⊗λ−1

OO A

λ

��

ε

  
A∗

η∗ // R,

making (A, δ, ε) a counital coalgebra.
Now, if we assume λ : A → A∗ to be left A-linear, a little computation shows

that δ is also left A-linear and - by symmetry - also right A-linear and this means
that product and coproduct on A are related by the Frobenius conditions, that is,
commutativity of the diagrams

(3.1) A⊗A m //

I⊗δ
��

A

δ

��
A⊗A⊗A m⊗I // A⊗A ,

A⊗A m //

δ⊗I
��

A

δ

��
A⊗A⊗A I⊗m // A⊗A.
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It follows from general category theory (also shown in [1]) that the category AM
of left A-modules is isomorphic to the category AM of left A-comodules: AM ' AM.
This isomorphism can be seen as a characterising property of Frobenius algebras
(e.g. [15, Theorem 3.13]).

The commutativity of the diagrams can be read in different ways.

3.2. Reformulation of the Frobenius conditions. Let (A,m, δ) be given as
above.

(1) The following are equivalent:

(a) δ ◦m = (m⊗ IA) ◦ (IA ⊗ δ) (left hand diagram);

(b) δ is a left A-module morphism;

(c) m is a right A-comodule morphism.

(2) The following are equivalent:

(a) δ ◦m = (IA ⊗m) ◦ (δ ⊗ IA) (right hand diagram);

(b) δ is a right A-module morphism;

(c) m is a left A-comodule morphism.

By these observations one obtains:

3.3. Characterisation of Frobenius algebras. For an R-module A, let (A,m, η)
be an R-algebra and (A, δ, ε) a coalgebra. Then the following are equivalent:

(a) (A,m, δ) satisfies the Frobenius conditions;

(b) δ is a left A-module morphism and m is a left A-comodule morphism;

(c) δ is a left A-module morphism and a right A-module morphism;

(d) m is a left A-comodule and a right A-comodule morphism;

(e) A⊗R − (equivalently −⊗R A) is adjoint to itself by the unit and counit

IA
η−→ A

δ−→ A⊗A, A⊗A m−→ A
ε−→ IA.

Notice that in (b) the conditions only refer to one side, no twist map is needed
for this property. From (c) it follows that δ(a) = aδ(1A) = δ(1A)a, for all a ∈ A.

3.4. Frobenius bimodules. Let (A,m, η, δ, ε) be a Frobenius algebra. Then
an R-module M is called a Frobenius bimodule provided it has an A-module and
also an A-comodule structure, % : A ⊗M → M and ν : M → A ⊗M , inducing
commutativity of the diagrams

A⊗M
% //

I⊗ν
��

M

ν

��
A⊗A⊗M m⊗I // A⊗M ,

A⊗M
% //

δ⊗I
��

M

ν

��
A⊗A⊗M

I⊗% // A⊗M.

Taking for objects the Frobenius bimodules and for morphisms the R-linear
maps which are A-module and A-comodule morphisms, one obtains the category of
Frobenius bimodules which we denote by A

AM.
Obviously, (A,m, δ) itself is a Frobenius bimodule and there is a pair of functors

A⊗R − : RM → A
AM, X 7→ (A⊗X,mA ⊗X, δA ⊗X),

HomA
A(A,−) : AAM→ RM, M 7→ HomA

A(A,M),
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which form an adjoint pair by the bijection, for X ∈MR, (M,%, ν) ∈ A
AM,

HomA
A(A⊗X,M)

'−−→ HomR(X,HomA
A(A,M)), ϕ 7→ [x 7→ ϕ(−⊗ x)],

and unit η̂ and counit ε̂ are given by

η̂X : X → HomA
A(A,A⊗X), x 7→ [a 7→ a⊗ x],

ε̂M : A⊗HomA
A(A,M)→M, a⊗ f 7→ f(a).

Coinvariants of a Frobenius module M are defined as the image of

HomA
A(A,M)→M, f 7→ f(1A),

and this map is indeed surjective, in particular one has EndAA(A) ' A. Thus the

pair of functors (A ⊗R −,HomA
A(A,−)) induces an equivalence between AM and

A
AM.

This can be expressed by showing that, for any left A-module (M,%), there is
an A-comodule structure on M ,

ν : M
η⊗I−−→ A⊗M δ⊗I−−→ A⊗A⊗M I⊗%−−→ A⊗M,

making (M,%, ν) a Frobenius bimodule, and

Ψ : AM→ A
AM, (M,%) 7→ (M%, ν),

is an isomorphism of categories.

Similarly, any left A-comodule (M,ν) allows for a right comodule structure

% : A⊗M A⊗ν−−−→ A⊗A⊗M m⊗A−−−→ A⊗M ε⊗M−−−→M,

leading to the isomorphism of categories

Φ : AM→ A
AM, (M,ν) 7→ (M%, ν).

Combining these functors, we obtain the isomorphisms of the A-module and the
A-comodule categories mentioned before,

AM
Ψ−→ A

AM
UA−−→ AM, AM Φ−→ A

AM
UA

−−→ AM.

Because of these isomorphisms, the category of Frobenius bimodules may seem
to be of little interest for Frobenius algebras (A,m, η, δ, ε). However, the approach
sketched above also allows to deal with more general situations, for example, when
no counit (or unit) is at hand (see [26]).

3.5. Separable algebras. An R-algebra (A,m, η) is called separable if there is
some A-bimodule map δ : A→ A⊗A with m ◦ δ = IA. This implies that (A,m, δ)
satisfies the Frobenius condition (3.1) and yields a (comparison) functor

KA : RM→ AMA, X 7→ (A⊗X,mA ⊗X),

which is right adjoint to the functor AHomA(A,−) : AMA → RM by the bijection
(derived from (1.1))

AHomA(A⊗X,M)
'−−→ HomR(X,AHomA(A,M)).

Here the coinvariants of any M ∈ AMA are defined as the image of

AHomA(A,M)→M, f 7→ f(1A),

and Z(A) := AEndA(A) is the center of A leading to the equivalence

A⊗Z(A) − : Z(A)M→ AMA, N 7→ (A⊗Z(A) N,m⊗ IN ).
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The R-algebra A is called central if the map R → A, r 7→ r1A, induces an iso-
morphism R ' Z(A) and a central separable algebra is called Azumaya algebra.
More about this kind of algebras can be found, for example, in [22] and [16].

In general categories, separable functors are considered in [19]; for Azumaya
monads and comonads we refer to [17] for a recent account.

4. Bialgebras and Hopf algebras

In this section, we will again consider R-modules endowed with an algebra and
a coalgebra structure but with different compatibility conditions.

4.1. Bialgebras. Let B be an R-module with an algebra structure B = (B,m, η)
and a coalgebra structure B = (B,∆, ε). Then (B,m, η,∆, ε) is called a bialgebra
if

∆ and ε are algebra morphisms, or, equivalently,
µ and η are coalgebra morphisms.

To make ∆ an algebra morphism one needs commutativity of the outer path in
the diagram

B ⊗B m //

B⊗∆

��

B
∆ // B ⊗B

B ⊗B ⊗B

∆⊗B⊗B
��

ω⊗B // B ⊗B ⊗B

B⊗m

OO

B ⊗B ⊗B ⊗B B⊗τ⊗B // B ⊗B ⊗B ⊗B.

m⊗B⊗B

OO

Defining an R-linear map

ω : B ⊗B ∆⊗B−−−→ B ⊗B ⊗B B⊗τ−−−→ B ⊗B m⊗B−−−→ B ⊗B,

the condition reduces to commutativity of the upper rectangle. With the map

ω : B ⊗B B⊗∆−−−→ B ⊗B ⊗B τ⊗B−−−→ B ⊗B B⊗m−−−→ B ⊗B

one obtains a similar rectangle (sides interchanged). These morphisms may be
considered as entwinings between algebras and coalgebras (see Section 5),

ω : B ⊗B → B ⊗B, ω : B ⊗B → B ⊗B.

They can be applied to define bimodules which fit into the setting.

4.2. Hopf modules and algebras. Given a bialgebra (B,B, ω), an R-module
M is called a Hopf module provided it is a B-module ρ : B ⊗ M → M and a
B-comodule ν : M → B ⊗M inducing commutativity of the diagram

B ⊗M
ρ //

B⊗ν
��

M
ν // B ⊗M

B ⊗B ⊗M ω⊗M // B ⊗B ⊗M.

B⊗ρ

OO

The category of Hopf modules, denoted by B
BM, has the Hopf modules as objects

and as morphisms those R-linear maps, which are B-module as well as B-comodule
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morphisms. As can be shown easily, for any R-module X, B⊗RX is a Hopf module
and this observation leads to the functor

B ⊗R − : RM→ B
BM, X 7→ (B ⊗X,m⊗X,∆⊗X),

which is left adjoint to HomB
B(B,−) : BBM → RM by the bijection (derived from

(1.1))

HomB
B(B ⊗X,M)

'−−→ HomR(X,HomB
B(B,M)).

For any M ∈ B
BM, the coinvariants are the image of HomB

B(B,M) → M, f 7→
f(1B), and the coinvariants of B come out as EndBB(B) ' R.

A bialgebra (B,B, ω) is called a Hopf algebra provided B ⊗R − : RM → B
BM

is an equivalence (known as Fundamental Theorem). This can be characterised
by the existence of an antipode, and is also equivalent to require that the (fusion)
morphism

(m⊗ IB) · (IB ⊗∆) : B ⊗B → B ⊗B
is an isomorphism (e.g. [5]). The corresponding constructions for monads and
comonads on categories can be found in [12].

5. Entwining algebras and coalgebras

Suitable distributive laws (e.g. the twist map) allow for giving the tensor product
of two algebras an algebra structure and the tenor product of two coalgebras a
coalgebra structure. The question arises: which structure can be given to the
tensor product of an algebra and a coalgebra? This leads to the notions of mixed
distributive laws and corings over non-commutative rings (e.g. [4], [5]).

Let (A,m, η) be an R-algebra and (C, δ, ε) an R-coalgebra.

5.1. Entwining from A to C. An R-linear map ω : A⊗ C → C ⊗A is called an
entwining from the algebra A to the coalgebra C provided it induces commutativity
of the diagrams

A⊗A⊗ C A⊗ω //

m⊗C
��

A⊗ C ⊗A ω⊗A // C ⊗A⊗A

C⊗m
��

A⊗ C

A⊗δ
��

ω // C ⊗A

δ⊗A
��

A⊗ C ⊗ C ω⊗C // C ⊗A⊗ C C⊗ω // C ⊗ C ⊗A,

A⊗ C ω // C ⊗A

C

η⊗C

bb

C⊗η

<<

,

A⊗ C ω //

A⊗ε
""

C ⊗A

ε⊗A
||

A .

The Hopf modules for bialgebras can be generalised to bimodules for entwined
structures.

5.2. Bimodules for entwinings from A to C. For an entwining ω : A ⊗ C →
C ⊗ A, an R-module M with an A-module structure %M : A ⊗M → M and a
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C-comodule structure %M : M → C ⊗M is called an entwined module if one gets
commutativity of the diagram

A⊗M
%M //

IA⊗%M

��

M
%M // C ⊗M

A⊗ C ⊗M ω⊗IM // C ⊗A⊗M.

IC⊗%M

OO

Taking as morphisms the R-linear maps which are A-module as well as C-comodule
morphisms defines the category C

AM of entwined modules. There is an (induction)
functor (e.g. [5, 32.7])

C ⊗R − : AM→ C
AM, M 7→ C ⊗RM,

that is right adjoint to the forgetful functor CU : CAM→ AM.
Now assume A belongs to C

AM, that is, A is a C-comodule % : A→ C ⊗R A with

grouplike element %(1A), and put S := EndCA(A) (a subalgebra of A). Then there
is a (comparison) functor

SM→ C
AM, X 7→ (A⊗S X,m⊗S IX , %⊗S IX),

and this is an equivalence provided CR is flat and C⊗A is a Galois coring (see e.g.
[5], [13], [23]). In case A = C = B, we get S = R and this brings us back to the
Hopf modules and the Fundamental Theorem (see 4.2).

5.3. Entwining from C to A. An R-linear map ω : C⊗A→ A⊗C is an entwining
from the coalgebra C to the algebra A if it induces commutativity of the diagrams

C ⊗A⊗A ω⊗A //

C⊗m
��

A⊗ C ⊗A A⊗ω // A⊗A⊗ C

m⊗C
��

C ⊗A ω //

δ⊗A
��

A⊗ C

A⊗δ
��

C ⊗ C ⊗A C⊗ω // C ⊗A⊗ C ω⊗C // A⊗ C ⊗ C ,

C ⊗A ω // A⊗ C

C

C⊗η

bb

η⊗C

<<

,

C ⊗A ω //

ε⊗A
""

A⊗ C

A⊗ε
||

A .

It was observed in Section 1.7 that the distributive laws between two algebras
may be understood as liftings of functors to module categories. The situation for
entwinings between algebras and coalgebras is quite similar.

5.4. Liftings and entwinings from A to C. An entwining ω : A⊗ C → C ⊗ A
from A to C corresponds to a lifting Ĉ of C ⊗R − to AM and also to a lifting Â of
A⊗R − to CM, that is, there are commutative diagrams

AM

UA

��

Ĉ //
AM

UA

��
RM

C⊗− //
RM ,

CM

UC

��

Â // CM

UC

��
RM

A⊗− //
RM ,
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where the U ’s denote the forgetful functors. The reader can find a more detailed
description of liftings for tensor functors in [25].

For entwinings from a coalgebra to an algebra the situation is slightly different:
they do not correspond to liftings to the (Eilenberg-Moore) categories AM and
CM but to extensions to the Kleisli categories AM̃ and CM̃ (which may be seen as
subcategories determined by the (co)free objects of the Eilenberg-Moore categories,
e.g. [3]).

5.5. Liftings and entwining from C to A. An entwining ω : C ⊗ A → A ⊗ C
from C to A corresponds to an extension C̃ of C ⊗R − to AM̃ and also to an

extension Ã of A⊗R − to CM̃, that is, there are commutative diagrams

RM

φA

��

C⊗− //
RM

φA

��

AM̃
C̃ //

AM̃ ,

RM

φC

��

A⊗− //
RM

φC

��
CM̃ Ã // CM̃ ,

where the φ’s denote the (co)free functors.

The notions in the preceding section can be readily transferred from the category
MR of R-modules to arbitrary categories A. Hereby A ⊗R − : MR → MR is to be
replaced by any monad F : A→ A and C ⊗R − is to be replaced by any comonad
G : A → A. The role of an entwining ω : A ⊗R C → C ⊗R A is taken by a
natural transformation ω : FG→ GF requiring commutativity of the corresponding
diagrams and the definition of entwined modules is obvious. This allows to apply
the basic theory in fairly general situations (e.g. [12], [13]).
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