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Abstract

Commutative rings in which every prime ideal is the intersection of
maximal ideals are called Hilbert (or Jacobson) rings. This notion was
extended to noncommutative rings in two different ways by the require-
ment that prime ideals are the intersection of maximal or of maximal
left ideals, respectively. Here we propose to define noncommutative
Hilbert rings by the property that strongly prime ideals are the inter-
section of maximal ideals. Unlike for the other definitions, these rings
can be characterized by a contraction property: R is a Hilbert ring if
and only if for all n ∈ N every maximal ideal M ⊂ R[X1, . . . , Xn] con-
tracts to a maximal ideal of R. This definition is also equivalent to
R[X1, . . . , Xn]/M being a finitely generated as an R/M ∩ R-module,
i.e., a liberal extension. This gives a natural form of a noncommutative
Hilbert’s Nullstellensatz. The class of Hilbert rings is closed under finite
polynomial extensions and under integral extensions.

2000 Mathematics Subject Classification 16S38, 16N60, 16S36, 16S20

1 Introduction

A commutative ring R is called a Hilbert ring, also Jacobson or Jacobson-

Hilbert ring, if every prime ideal of R is the intersection of maximal ideals.

This is obviously equivalent to require that in each factor ring of R the nilrad-

ical coincides with the Jacobson radical. Evidently, the class of commutative

Hilbert rings is closed under forming factor rings. The interest in this class of

rings is based on the following characterizations.

∗The research of the first author was supported by DAAD (Germany).
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For a commutative ring R the following are equivalent:

(a) R is a Hilbert ring;

(b) for each maximal ideal M ⊂ R[X], the intersection M∩R is a maximal

ideal in R;

(c) every maximal ideal of R[X] contains a monic polynomial;

(d) the polynomial ring R[X] is a Hilbert ring.

The class of commutative Hilbert rings is closed under forming finite poly-

nomial rings. For an integral extension R ⊆ S, the ring S is Hilbert if and

only if R is a Hilbert ring. The main interest in Hilbert rings in commutative

algebra and algebraic geometry is their relation with Hilbert’s Nullstellensatz.

The notion was extended to noncommutative rings by replacing ”maximal

ideal” by maximal left or two-sided ideals. Recall that the Jacobson radical

of a ring with unit is defined as intersection of all maximal left (or right)

ideals, which is equal to the intersection of all primitive (two-sided) ideals.

The Brown-McCoy radical of R is the intersection of all maximal ideals of R.

A (noncommutative) ring R is named Jacobson ring by Watters in [12],

if every prime ideal is the intersection of maximal left (or right) ideals. This

is obviously equivalent to require that prime ideals are the intersection of

primitive ideals. As shown in Watters [12], R is a Jacobson ring if and only if

the polynomial ring R[X] is a Jacobson ring.

In Watters [13] a ring R is called Brown-McCoy ring if every prime ideal

is the intersection of maximal (two-sided) ideals. It follows from [13] that R

is a Brown-McCoy ring if and only if the polynomial ring R[X] is a Brown-

McCoy ring. Moreover Watters shows that for a Brown-McCoy ring R the

contraction of a maximal ideal in R[X] yields a maximal ideal in R and gives

an example showing that this contraction property does not imply that R is a

Brown-McCoy ring.

Note that the above observations on Jacobson and Brown-McCoy rings are

subsumed in Theorem 5 of Ferrero-Parmenter [4].

A ring R is a Jacobson (Brown-McCoy) ring if and only if in each factor ring

of R the prime radical coincides with the Jacobson (Brown-McCoy) radical.

In any PI ring R primitive ideals are maximal and hence such a ring is a

Jacobson ring if and only if it is a Brown-McCoy ring. In this case also the

Jacobson and Brown-McCoy radical of R[X] coincide. These rings are studied

by Amitsur and Procesi in [1] and [10].

In this article we extend the notion of commutative Hilbert rings to any

noncommutative rings by restricting the requirements to a special class of
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prime ideals, the strongly prime ideals. These are related to strongly prime

rings which can be characterized by the fact that their central closures (in the

sense of Martindale) are simple rings. We give a characterization of Hilbert

rings in terms of a contraction property in the rings of polynomials, and the

class of Hilbert rings is the largest class of rings having this property. Fur-

thermore, we characterize Hilbert rings in terms of monic polynomials, show

that the class of Hilbert rings is closed under finite polynomial and integral

extensions, and obtain a natural symmetric form of a general Hilbert’s Null-

stellensatz for Hilbert rings.

All rings in this paper are associative with identity element which should

be preserved by ring homomorphisms. By an ideal of the ring we shall un-

derstand a two-sided ideal. A ⊂ B means that A is proper subset of B.

Throughout R[X1, . . . , Xn] will denote the polynomial ring with n commuting

indeterminates, which also commute with the elements from the ring R.

2 Strongly prime ideals

LetR be a prime ring, Q(R) its central closure, and F (R) the extended centroid

of the ring R, which is the centre of Q(R). As shown in [14, Section 32], Q(R)

may be understood as self-injective hull of R as R⊗ZRo-module. Any element

ϕ ∈ F (R) may be represented as an R-bimodule homomorphism ϕ : I → R

for some nonzero ideal I ⊆ R.

A prime ring R is called strongly prime if its central closure Q(R) is a

simple ring. Various characterizations of strongly prime rings are given, e.g.,

in [14, 35.6] and [8, Theorem 2.1].

Let φ : R → S be a ring homomorphism. Then S is an R-bimodule

and we write rs and sr instead of φ(r)s and sφ(r) for r ∈ R, s ∈ S. Let

ZS(R) = {x ∈ S | rx = xr, ∀r ∈ R} be the set of R-centralizing elements of

the ring S.

We call φ a centred homomorphism and S a centred extension of R via

φ, provided S = RZS(R). This means that s =
∑

k rkxk for each element

s ∈ S with some rk ∈ R and xk ∈ ZS(R). If ZS(R) is commutative, then

centred extensions are called central extensions. Rings and their centred ho-

momorphisms form a category, known as Procesi category. A centred extension

R ⊆ S is called a liberal extension if S is finitely generated as a canonical R-

module.

An ideal p ⊂ R is called strongly prime if the factor ring R/p is a strongly

prime ring. Clearly, maximal ideals are strongly prime. It is well known that
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in PI rings any prime ideal is strongly prime. Since not each prime ring has

a simple central closure, prime ideals are not necessarily strongly prime. The

following lemma recalls some crucial properties.

Lemma 2.1. Let φ : R→ S be a centred homomorphism.

(1) Assume S to be a simple ring. Then:

(i) The kernel of φ is a strongly prime ideal in R.

(ii) If φ is injective, there is a unique extending ring homomorphism

Q(R)→ S which maps the center of Q(R) into the center of S.

(2) Assume R ⊆ S to be a liberal extension. Then for any prime ideal p in

R there is a prime ideal ideal P in S with P ∩R = p (lying over).

Proof. (1)(i) follows from the characterizations of strongly prime rings (see [8,

Theorem 2.1]). (ii) follows from Amitsur [2, Theorem 18].

(2) This is shown in [11, Theorem 4.1].

The intersection of all strongly prime ideals of the ring R is called the

strongly prime radical and we denote it by Sp(R). Let BMc(R) denote the

Brown-McCoy radical of the given ring R. These two radicals are closely

related.

Theorem 2.2. In any nonzero ring R,

Sp(R) =
⋂
n≥1

(R ∩ BMc(R[X1, . . . , Xn])).

Proof. If a ∈ R does not belong to some maximal ideal M ⊂ R[X1, . . . .Xn],

then a 6∈ M ∩ R = p. Clearly R → R[X1, . . . , Xn]/M is a centred extension

and, by 2.1, p ⊂ R is a strongly prime ideal. So a 6∈ Sp(R).

If a 6∈ p for some strongly prime ideal p ⊂ R, then in the central closure

Q(R/p), a simple ring, we have an expression

a1ϕ1 + · · ·+ anϕn = 1,

where a1, . . . , an ∈ (a) = RaR, and ϕ1, . . . , ϕn are from the extended cen-

troid of the ring R/p, which is the centre of Q(R/p). So we obtain a centred

homomorphism

φ : R[X1, . . . , Xn]→ Q(R/p), Xk 7→ ϕk for 1 ≤ k ≤ n.
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Evidently, the polynomial a1X1 + · · · + anXn − 1 is in the kernel of φ. If

M ⊂ R[X1, . . . , Xn] is a maximal ideal containing ker φ, then a 6∈ M, and

a 6∈ BMc(R[X1, . . . , Xn]).

Notice that the proof of the theorem also follows by Corollary 4.7 and

Theorem 4.12 in [5].

In terms of elements, a ∈ Sp(R) if and only if for any a1, . . . , an ∈ (a), the

ideal in R[X1, . . . , Xn], generated by the polynomial a1X1 + · · · + anXn − 1,

contains 1R (see [8, Theorem 3.2]).

Theorem 2.3. Let M ⊂ R[X1, . . . , Xn] be a maximal ideal and p = M ∩ R.
Then the following are equivalent:

(a) p is a maximal ideal in R;

(b) there exists a monic polynomial f ∈ R[T ] such that f(Xk) ∈ M for all

1 ≤ k ≤ n ;

(c) R/p ⊆ R[X1, . . . , Xn]/M is a liberal extension.

Proof. (a)⇒ (b) Let p ⊂ R be a maximal ideal. So

A = R/p ↪→ R[X1, . . . , Xn]/M = S

is a central extension of a simple ring. S = A[x1, . . . , xn], where x1, . . . , xn
are the images of X1, . . . , Xn respectively, and these elements are from the

centre of S. If the field F is the centre of A, and F [x1, . . . , xn] the subring

of S, generated by F and x1, . . . xn, then we have the canonical surjective

homomorphism

φ : A⊗F F [x1, . . . , xn] −→ S.

By the definition of F [x1, . . . , xn], the restriction of the homomorphism φ

to this ring is a monomorphism. Because A is a central simple F -algebra, φ

is a monomorphism by standard properties of central simple algebras. So φ

is an isomorphism. Now we see that the ring L = F [x1, . . . , xn], which is a

finitely generated F -algebra, is a field - again by the ideal structure of the

tensor product of central simple algebras. By one of the versions of Hilbert’s

Nullstellensatz (e.g., Theorem 4.19 in [3]), L is a finite algebraic extension of

F. So the elements xk ∈ L, 1 ≤ k ≤ n , are algebraic over the field F. Thus

there exist monic polynomials gk ∈ F [T ] such that gk(xk) = 0. Lifting the

product g1 · · · gn to a monic polynomial f ∈ R[T ], we obtain that f(Xk) ∈
M, 1 ≤ k ≤ n .
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Evidently, (c) follows from (b).

(c)⇒ (a) The simple ring S is a liberal extension of the ring A. By 2.1(2),

this implies that A is also a simple ring, so the ideal p = M∩R is maximal.

3 Noncommutative Hilbert rings

We call a ring R a Hilbert ring if every strongly prime ideal is the intersection

of maximal ideals. This is obviously equivalent to require that in each factor

ring of R, the strongly prime radical coincides with the Brown-McCoy radical.

It is also clear that any factor ring of a Hilbert ring is again Hilbert.

Since in commutative rings strongly prime ideals are precisely prime ideals,

this extends the notion of commutative Hilbert rings. Moreover, the class of

Hilbert rings contains the Brown-McCoy rings considered in [13] and also the

Jacobson PI rings considered in [1] and [10]. By Theorem 2.5 in [8], strongly

prime ideals are preserved under Morita equivalences, and so the property to

be a Hilbert ring is preserved under Morita equivalences.

The importance of this notion is based on the following characterizations.

Theorem 3.1. For any ring R the following are equivalent:

(a) R is a Hilbert ring;

(b) for each n ∈ N and any maximal ideal M of R[X1, . . . , Xn], the contrac-

tion M ∩R is a maximal ideal of R;

(c) for each n ∈ N and every maximal ideal M of R[X1 . . . , Xn], there exists

a monic polynomial f ∈ R[T ], such that f(Xk) ∈M, for 1 ≤ k ≤ n;

(d) for each n ∈ N and every maximal ideal M ⊂ R[X1, . . . , Xn], the ex-

tension R/M ∩R ↪→ R[X1, . . . , Xn]/M is liberal;

(e) the polynomial ring R[X] is a Hilbert ring.

Proof. (a) ⇒ (b) Let M ⊂ R[X1, . . . , Xn] be a maximal ideal. Then, by

Remark 4.5 in [5], p = M∩R is a strongly prime ideal in R and the intersection

of all nonzero prime ideals of R/p (i.e., the pseudo-radical of R/p) is nonzero.

However, if R is a Hilbert ring, the intersection of all maximal ideals of R/p

has to be zero. This implies that zero is a maximal ideal in R/p and hence p

is a maximal ideal in R.

(b)⇒ (a) Let Mα, α ∈ In, be the family of maximal ideals of the polyno-

mial ring R[X1, . . . , Xn]. We have

R ∩ BMc(R[X1, . . . , Xn]) = R ∩ (
⋂

α
Mα) =

⋂
α
(R ∩Mα) = BMc(R),
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because all ideals R ∩M are maximal in R, and each maximal ideal of R can

be obtained in this way. So, by Theorem 2.2, Sp(R) = BMc(R).

The equivalence (b)⇔ (c)⇔ (d) follows easily from Theorem 2.3.

(d) ⇒ (e) Take a maximal ideal M ⊂ R[X,X1, . . . , Xn]. By (d), the

extension R/M ∩R ↪→ R[X,X1, . . . , Xn]/M is liberal, so the extension

R[X]/M ∩R[X] ↪→ R[X,X1, . . . , Xn]/M

is also liberal. Hence R[X] satisfies (d) and so it is a Hilbert ring.

Since factor rings of the Hilbert rings are again Hilbert, (e)⇒ (a).

Now we obtain the following corollary which may be considered as a general

symmetric form of Hilbert’s Nullstellensatz, see [3, Theorem 4.19].

Corollary 3.2. If R is a Hilbert ring, then the ring R[X1, . . . , Xn] is also a

Hilbert ring. In this case, for each maximal ideal M ⊂ R[X1, . . . , Xn], the

factor ring R[X1, . . . , Xn]/M is a central liberal extension of the simple ring

R/M ∩R.

The following definition of integral homomorphisms and integral extensions

in a Procesi category and their main properties are considered in [7]. A centred

ring homomorphism φ : R → S is called an integral homomorphism if every

finite subset {s1, . . . , sn} ⊆ S is contained in some subring A ⊆ S which is

a liberal extension of the ring φ(R), i.e., as an R-module A is generated by

a finite set of R-centralizing elements. In this case S is called an integral

extension of R via φ. In the commutative case this definition is equivalent

to the classical definition of an integral homomorphism. Evidently, liberal

extensions of rings are integral, and each integral extension is the inductive

limit of liberal extensions. It is clear that an integral extension of a field is

precisely a locally finite algebras over this field. The following fundamental

properties are shown in the theorems 9, 10 and 11 of [7].

Lemma 3.3. Let R ⊂ S be a centred integral extension.

(1) For any strongly prime ideal p in R, there exists a strongly prime q in S

such that q ∩R = p (lying over).

(2) If R is simple and S is strongly prime, then S is simple.

(3) Consider ideals q ⊆ A in S such that q ∩ R = A ∩ R. If q is a strongly

prime ideal then q = A (incomparability).

This allows us to prove our final result generalising the commutative case.

7



Theorem 3.4. Let R ⊂S be an integral extension of rings. Then S is a Hilbert

ring if and only if R is a Hilbert ring.

Proof. Let S be a Hilbert ring and p ⊂ R a strongly prime ideal. By 3.3(1),

there exists a strongly prime ideal q ⊂ S lying over p. So q is an intersection

of maximal ideals in S. By (1) and (3) in 3.3, the contraction of a maximal

ideal in S is a maximal ideal in R. Hence p is the intersection of maximal

ideals and R is a Hilbert ring.

Let R be a Hilbert ring. If q ⊂ S is a strongly prime ideal, then q ∩ R is

a strongly prime ideal in R. Going to factor rings, we reduce the proof to the

case of an integral extensions of strongly prime rings. Take a nonzero element

s ∈ S. By 3.3(3), the ideal (s) intersects nontrivially with R. So we can find

a maximal ideal m ⊂ R which does not contain (s)∩R. Now, by 3.3(2), there

is a maximal ideal in S lying over m, which does not contain (s). This means,

that the intersection of maximal ideals in S is zero, so S is a Hilbert ring.
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