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Abstract. One reason for the universal interest in Frobenius algebras is that their
characterisation can be formulated in arbitrary categories: a functor K : A → B
between categories is Frobenius if there exists a functor G : B → A which is at the
same time a right and left adjoint of K; a monad F on A is a Frobenius monad
provided the forgetful functor AF → A is a Frobenius functor, where AF denotes
the category of F -modules. With these notions, an algebra A over a field k is a
Frobenius algebra if and only if A ⊗k − is a Frobenius monad on the category of
k-vector spaces.

The purpose of this paper is to find characterisations of quasi-Frobenius algebras
by just referring to constructions available in any categories. To achieve this we
define QF functors between two categories by requiring conditions on pairings of
functors which weaken the axioms for adjoint pairs of functors. QF monads on a
category A are those monads F for which the forgetful functor UF : AF → A is a
QF functor. Applied to module categories (or Grothendieck categories), our notions
coincide with definitions first given K. Morita (and others). Further applications
show the relations of QF functors and QF monads with Frobenius (exact) categories.
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Introduction

Investigating the Frobenius and quasi-Frobenius ring extensions studied by F. Kasch,
T. Nakayama, T. Tsuzuku, B. Pareigis, B. Müller and others, K. Morita defines (in
[24]) two objects X, Y of any module category to be similar provided there are natural
numbers n, k such that X is a direct summand of (the (co)product) Y n and Y is a di-
rect summand of Xk. Given rings A and B, he calls two functors S, S′ : AM→ BM be-
tween the categories of A-modules and B-modules similar provided S(M) and S′(M)
are similar for any object M ∈ AM. Notice that similarity defines an equivalence
relation on the class of objects and the class of functors, respectively. K. Morita uses
these notions to characterise quasi-Frobenius ring extensions B → A for which both

BA and AB have to be finitely generated and projective.
Let F : A → B and G : B → A be a pair of (covariant) functors between additive

categories. In [14], G. Guo calls G left quasi-adjoint to F , provided there are a natural
1
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number n and natural transformations η : IB → (FG)n and ζ : (GF )n → IA such that
ζG ◦ Gη = IG. He defines (G,F ) to be a left quasi-Frobenius pair in case (F,G) is
an adjoint pair and (G,F ) is a quasi-adjoint pair of functors. He shows that a ring
extension ι : B → A is left quasi-Frobenius in the sense of Müller [25, 26], provided
(F1, G1) is a left quasi-Frobenius pair where F1 : AM→ BM is the restriction of scalars
functor and G1 = A⊗B − : BM→ AM is the induction functor.

The notions mentioned above are formulated for Grothendieck categories by Castaño
Iglesias, Nǎstǎsescu and Vercruysse in [7]. They call a functor F : A → B with left
and right adjoints L,R : B→ A a quasi-Frobenius triple provided L and R are similar
functors. This similarity enforces an a priori symmetry for the definitions.

Here we will modify the ideas sketched above to define quasi-Frobenius functors on
any categories without requiring finiteness conditions. In particular, we will consider
QF monads and show that in their module categories the relative injectives coincide
with the relative projective objects. A special case of all these functors are Frobenius
functors between any categories.

In Section 1 we collect elementary properties of pairings of functors weakening the
conditions for adjoint pairs of functors. The notion of right QF functors handled
in Section 2 generalises the notions of Frobenius functors. The latter are functors
F with a right adjoint R which is also a left adjoint. Here we require F to have a
right adjoint R for which a retract of some product RΛ is left adjoint to F . In these
investigations, adjoint triples (L,F,R) of functors (that is L a F a R) are of special
interest. The main properties of QF triples of functors are listed in Proposition 2.6 and
their interplay with functor categories is sketched at the end of this section. Hereby
also the relation with separable functors of the second kind as defined by Caenepeel
and Militaru in [6] is described.

Section 3 begins with recalling some categorical constructions which are of use in
studying QF monads and comonads, that is, monads and comonads for which the
forgetful functors from the (co)module category to the base category are QF functors.
Hereby features known for QF rings and QF corings are shown in a more general
context.

In Section 4 the results are considered for module and comodule categories. It
turns out that the restriction of our notions coincide with the notions defined for
these special cases elsewhere. Finally we outline the relevance of QF functors for
Frobenius categories, which are defined as exact categories with enough projectives
and enough injectives such that projectives and injectives coincide. Recall that rings
whose module categories have these properties are precisely the (noetherian) QF rings
(e.g. [32, 48.15]).

1. Preliminaries

One of our main tools will be a generalised form of adjoint pairs of functors and in
this section we present the basic facts of this setting.

Throughout A and B will denote arbitrary categories. By IA, A or just by I, we
denote the identity morphism of an object A ∈ A, IF or F stand for the identity on
the functor F , and IA or I mean the identity functor on a category A.

1.1. Pairing of functors. Let L : A → B and R : B → A be covariant functors.
Assume there are maps, natural in A ∈ A and B ∈ B,

αA,B : MorB(L(A), B)→ MorA(A,R(B)),

βA,B : MorA(A,R(B))→ MorB(L(A), B).
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These maps correspond to natural transformations α and β between obvious functors
Aop × B→ Set. The quadruple (L,R, α, β) is called a (full) pairing of functors.

1.2. Quasi-unit and quasi-counit. Given a pairing (L,R, α, β), the morphisms, for
A ∈ A, B ∈ B,

ηA := αA,L(A)(I) : A→ RL(A) and εB := βR(B),B(I) : LR(B)→ B

yield natural transformations

η : IA → RL, ε : LR→ IB,

called quasi-unit and quasi-counit of (L,R, α, β), respectively. They, in turn, determine
the transformations α and β by

αA,B : L(A)
f−→ B 7−→ A

ηA−→ RL(A)
R(f)−→ R(B),

βA,B : A
g−→ R(B) 7−→ L(A)

L(g)−→ LR(B)
εB−→ B.

1.3. Definition. A pairing (L,R, α, β) with quasi-unit η and quasi-counit ε (see 1.2)
is called

left semi-adjoint if β · α = I, that is, L
Lη−→ LRL

εL−→ L = L
I−→ L,

right semi-adjoint if α · β = I, that is, R
ηR−→ RLR

Rε−→ R = R
I−→ R,

an adjunction if it is left and right semi-adjoint.

The following observations are essentially made in [20, Section IV.1, Exercise 4].

1.4. Lemma. Let (L,R, α, β) be a pairing.

(1) If (L,R, α, β) is left semi-adjoint, then

(i) the natural transformation Rε · ηR : R→ R is an idempotent;

(ii) L has a right adjoint if and only if this idempotent splits.

(2) If (L,R, α, β) is right semi-adjoint, then

(i) the natural transformation εL · Lη : L→ L is an idempotent;

(ii) R has a left adjoint if and only if this idempotent splits.

Proof. (1) If the idempotent Rε · ηR is split by R
p→ R′

i→ R, then R′ is a right
adjoint of L with unit pL · η and counit ε · Li.

(2) is shown by a similar argument. tu
Recall that a category A is said to be Cauchy complete provided all idempotent

morphisms split in A.

1.5. Corollary. Let (L,R, α, β) be a pairing.

(1) If the category A is Cauchy complete, then (L,R, α, β) is left semi-adjoint if and
only if the functor R has a retract R′ (i.e. there are natural transformations
τ : R′ → R and τ ′ : R→ R′ with τ ′ · τ = IR) which is right adjoint to L.

(2) If the category B is Cauchy complete, then (L,R, α, β) is right semi-adjoint if
and only if the functor L has a retract L′ which is left adjoint to R.

1.6. Proposition. Let η, ε : L a R : B→ A be an adjunction.

(i) Assume there are a functor R : B → A and natural transformations τ : R → R
and τ : R→ R with τ · τ = IR. Then (L,R) is left semi-adjoint with

quasi-unit η = τL · η and quasi-counit ε = ε · Lτ .

(ii) Assume there are a functor L : A → B and natural transformations κ : L → L
and κ : L→ L with κ · κ = IL. Then (L,R) is right semi-adjoint with
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quasi-unit η = Rκ · η and quasi-counit ε = ε · κR.

Proof. All these assertions are easy to verify. tu
The following result can be obtained by adapting the proof of [21, Lemma 3.13]:

1.7. Lemma. Let H,H ′ : A → B be functors such that H is a retract of H ′. Then
any (co)limit that is preserved by the functor H ′ is also preserved by the functor H.

Proof. Since H is a retract of H ′, there are natural transformations τ : H → H ′

and τ ′ : H ′ → H with τ ′ · τ = IH . Now, let F : C → A be an arbitrary functor with C
a small category such that the functor H ′ preserves its limits. Since τ ′ · τ = IH , the
diagram

H
τ // H ′

τ ·τ ′ //
I

// H ′

is a split equaliser diagram, and thus it is preserved by any functor. Then, in the
commutative diagram

H(lim←−F )

k1

��

τ(lim←−F )

// H ′(lim←−F )

k2

��

(τ ·τ ′)(lim←−F )

//
I

// H ′(lim←−F )

k3

��
lim←−(HF )

lim←−(τF )
// lim←−(H ′F )

lim←−((τ ·τ ′)F )
//

I
// lim←−(H ′F ) ,

where the vertical morphisms are the comparison ones, the rows are (split) equaliser
diagrams. Since the functor H ′ preserves the limit of F , the morphisms k2 and k3 are
both isomorphisms, implying that k1 is also an isomorphism.

The dual statement can be shown in the same way by using the split coequaliser
diagram

H ′
τ ·τ ′ //
I

// H ′
τ ′ // H.

tu
Note that to say that (L,R, α, β) is left semi-adjoint is to say that, for any B ∈ B,

the functor MorB(L(−), B) is a retract of the functor MorA(−, R(B)), natural in B.
It then follows from Lemma 1.7:

1.8. Proposition. Let (L,R, α, β) be a pairing.

(i) If (L,R, α, β) is left semi-adjoint, then L preserves any colimits existing in A.

(ii) If (L,R, α, β) is right semi-adjoint, then R preserves any limits existing in B.

1.9. Relative injectives and projectives. Let E be a class of morphisms in a
category A. An object A ∈ A is said to be E-projective if for any diagram

A

g

��

h

~~
X

f
// Y

with f ∈ E, there is a morphism h : A → X such that fh = g. Dually, the notion
of E-injective objects is defined. Note that the class of E-projectives is closed under
small coproducts, while the class of E-injectives is closed under small products.

Given a functor F : A → B, classes E of morphisms may be defined by collect-
ing those morphisms f : A → A′ in A, for which F (f) : F (A) → F (A′) is a split



QF FUNCTORS 5

monomorphism or a split epimorphism in B. This leads to the notions of F -injective
or F -projective objects, respectively.

1.10. Proposition. Let (L,R, α, β) be a pairing and E and E′ classes of morphisms
in A and B, respectively.

(i) If (L,R, α, β) is left semi-adjoint and R(E′) ⊆ E, then L takes E-projectives into
E′-projectives.

(ii) If (L,R, α, β) is right semi-adjoint and L(E) ⊆ E′, then R takes E′-injectives
into E-injectives.

Proof. (i) Let A ∈ A be an E-projective object and

L(A)

g

��
X

f
// Y

a diagram in B with f ∈ E′. Consider the transform

A
ηA // RL(A)

R(g)
��

R(X)
R(f)

// R(Y )

of this diagram under the adjunction. Since R(E′) ⊆ E and f ∈ E′, R(f) ∈ E by
assumption and E-projectivity of A implies that there is a morphism h : A → R(X)
making the diagram commute. This leads to the commutative diagram

L(A)
LηA //

L(h)

��

LRL(A)

LR(g)

��
LR(X)

LR(f)
//

εX

��

LR(Y )

εY

��
X

f
// Y

and we get

f · εX · L(h) = εY · LR(g) · LηA = g · εL(A) · LηA = g,

where the last equality follows from left semi-adjointness of the pairing. This shows
that L(A) is E′-projective. (ii) is shown dually. tu

The following setting will encounter us repeatedly in what follows.

1.11. Definition. A triple (L,F,R) of functors F : A→ B, L,R : B→ A is called an
adjoint triple provided (L,F ) and (F,R) are adjoint pairs of functors.

In any category, consider the classes

E1 of all epimorphisms, M1 of all monomorphisms,

E2 of all strong epimorphisms, M2 of all strong monomorphisms,

E3 of all regular epimorphisms, M3 of all regular monomorphisms.

1.12. Proposition. Let (L,F,R) be an adjoint triple of functors.
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(1) The functors F,L preserve all colimits while F,R preserve all limits existing in
A or B, respectively. Moreover, L preserves small objects.

(2) L preserves Ei-projectives, while R preserves Mi-injectives (i = 1, 2, 3).

Proof. (1) The first properties are well-known for adjoint functors. Let B be a
small object in B. We have to show that MorA(L(B),−) preserves coproducts. For
any family {Xi}I of objects in A with coproduct

∐
I Xi,

MorA(L(B),
∐
I Xi) ' MorB(B,F (

∐
I Xi))

' MorB(B,
∐
I F (Xi))

'
∐
I MorB(B,F (Xi)) '

∐
I MorA(L(B), Xi)).

(2) Right adjoint functors preserve epimorphisms, strong epimorphisms and regular
epimorphisms, while left adjoint functors preserve monomorphisms, strong monomor-
phisms and regular epimorphisms. Now apply Proposition 1.10. tu

2. QF functors

The following definitions generalise the corresponding notions in [24], [14] and [7]
to arbitrary categories. Again A and B denote any categories. As customary in ring
theory we will write QF for quasi-Frobenius.

2.1. Definitions. A functor F : A→ B is called

right QF if it allows for a right adjoint functor R : B→ A such that
the pair (RΛ, F ) is right semi-adjoint for some index set Λ;

left QF if it allows for a left adjoint functor L : B→ A such that

the pair (F,L(Λ)) is left semi-adjoint for some index set Λ;

QF if it is left and right QF ;

Frobenius if it has a right adjoint functor which is also left adjoint (see [24]).

Clearly a Frobenius functor is QF with |Λ| = 1 = |Λ′|. However, a QF functor with
this property need not be Frobenius. The condition only means that R is a retract
of L and L is a retract of R. In general this need not imply that R ' L (but see
Proposition 2.3).

2.2. Proposition. Let (L,F,R) be an adjoint triple of functors (see 1.11).

(1) The following are equivalent:

(a) F is left QF ;

(b) R is a retract of L(Λ) for some index set Λ.

If this holds, R preserves colimits, F preserves small objects in B, and every
F -injective object in A is F -projective.

(2) The following are equivalent:

(a) F is right QF ;

(b) L is a retract of RΛ for some index set Λ.

In this case L preserves all limits which exist in B and every F -projective object
in A is F -injective.

Proof. (1) By Proposition 1.12, the functor L preserves colimits and since colimits
are preserved by coproducts, it follows from Lemma 1.7 that R also preserves all
colimits existing in B. Then the proof of Proposition 1.12 shows that F preserves
small objects.
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Since R is right adjoint to F , an object a ∈ A is F -injective if and only if a is a
retract of R(b), with b ∈ B (e.g., [28], [23, Proposition 1.5]). Since F is left QF , R is a

retract of L(Λ), Λ some index set. Then R(b) is a retract of L(Λ)(b) = L(b)(Λ). But, by
the dual of [23, Proposition 1.5], L(b) is F -projective, and since small coproducts of
F -projectives are F -projective, it follows that a is a retract of an F -projective object
L(Λ)(b). Thus a is also F -projective.

(2) By Proposition 1.12, the functor R preserves all limits and since limits are
preserved by products, it follows from Lemma 1.7 that L also preserves all limits
existing in B. Dual to (1) one proves that any F -projective object is F -injective. tu

2.3. Proposition. Let (A,⊗, I, [−,−]) be a symmetric monoidal closed category with
small complete and cocomplete A. For any A-object A, the following are equivalent:

(a) the endofunctor A⊗− : A→ A is Frobenius;

(b) the endofunctor A⊗− : A→ A is a QF functor;

(c) the object A ∈ A is nuclear, i.e., the canonical morphism [A, I]⊗ A→ [A,A] is
an isomorphism (e.g. [15]).

Proof. Clearly (a)⇒(b).
(b)⇒(c) Suppose the endofunctor A ⊗ − to be QF. Then its right adjoint [A,−]

preserves all colimits by Proposition 2.2. Applying [11, Corollary (5.8)] gives that
there is a natural isomorphism [A,−] ' [A, I] ⊗ −, implying in particular that the
canonical morphism [A, I]⊗A→ [A,A] is an isomorphism. Thus, A is nuclear.

(c)⇒(a) If A is nuclear, then by [15, Theorem 2.5], there is a natural isomorphism
[A,−] ' [A, I] ⊗ −. It then follows that the functor [A,−] is left adjoint to A ⊗ −.
Indeed, to say that the functor [A,−] ' [A, I]⊗− is right adjoint to the functor A⊗− is
to say that the object [A, I] is right adjoint to the object A in the monoidal category
A. Hence, by symmetry of A, there is an adjunction [A, I] a A in A, inducing an
adjunction [A,−] a A⊗− of functors. This proves that the endofunctor A⊗− : A→ A
is Frobenius. tu

2.4. Proposition. (Composition of QF functors) Let (L,F,R) be as in 1.11 and let
(L1, G,R1) be an adjoint triple with functors G : B→ C and L1, R1 : C→ B.

If F and G are left (right) QF functors, then GF : A → C is again a left (right)
QF functor.

Proof. Assume F and G to be left QF functors. Then there are index sets Λ, Λ1

such that R is a retract of L(Λ) and R1 is a retract of L
(Λ1)
1 . That is, there are natural

transformations

k : R→ L(Λ), l : L(Λ) → R, k1 : R1 → L
(Λ1)
1 , l1 : L

(Λ1)
1 → R1,

such that l · k = IR and l1 · k1 = IR1 . By Proposition 2.2(1), the functor R preserves
small colimits in B and thus there is an isomorphism

ω : RL
(Λ1)
1 ' (RL1)(Λ1).

It is now easy to see that the composites

RR1
Rk1−−→ RL

(Λ1)
1

ω−→ (RL1)(Λ1) (kL1)(Λ1)

−−−−−−→ (L(Λ)L1)(Λ1) = ((LL1)(Λ))(Λ1) ' (LL1)(Λ×Λ1),

RR1
Rl1←−− RL(Λ1)

1
ω−1

←−− (RL1)(Λ1) (lL1)(Λ1)

←−−−−− (L(Λ)L1)(Λ1) = ((LL1)(Λ))(Λ1) ' (LL1)(Λ×Λ1)

make RR1 a retract of (LL1)(Λ×Λ1). This shows that the functor GF with left and
right adjoints LL1 and RR1 is left QF.
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A similar proof shows the claim for right QF functors. tu

2.5. Definition. An adjoint triple (L,F,R) (as in 1.11) is said to be a (left, right)
QF triple provided F is a (left, right) QF functor as in Definition 2.1.

Summarising the above observations yields generalisations of [7, Lemma 2.4(a)]:

2.6. Proposition. Let (L,F,R) be a QF triple. Then:

(i) The functors L,F and R preserve all limits and colimits in A or B, respectively.

(ii) The functors L and F preserve small objects.

(iii) L and R preserve both Ei-projectives and Mi-injectives (i = 1, 2, 3).

(iv) F preserves E1-projectives, E3-projectives, M1-injectives and M3-injectives.

(v) Every F -injective object in A is F -projective and vice versa.

(vi) If B is small complete, well-powered, and with a small cogenerating set, then the
functor L admits a left adjoint.

(vii) If B is small cocomplete, well-copowered, and with a small generating set, then
the functor R admits a right adjoint.

Proof. (i), (ii) and (v) follow by Proposition 2.2.
(iii) It follows from Proposition 1.12(ii) that L preserves Ei-projectives and R pre-

serves Mi-injectives (i = 1, 2, 3). By Proposition 2.2(1), R (resp. L) is a retract of L(Λ)

(resp. RΛ). But since Ei-projectives (resp. Mi-injectives) are closed under coproducts
(resp. products) and retracts, it follows that R (resp.L) also preserves Ei-projectives
(resp. Mi-injectives) (i = 1, 2, 3).

(iv) Since R preserves all small colimits, it in particular preserves epimorphisms
(by the dual of [3, Proposition 2.9.2]) and regular epimorphisms. It now follows from
Proposition 1.10 that F preserves E1-projectives and E3-projectives.

Dually, F preserves M1-injectives and M3-injectives.
(vi) and (vii) follow from (i) and the Special Adjoint Theorem (e.g. [20]) and its

dual, respectively. tu

2.7. The functors Π and Σ. Given a category A with small products and coproducts
and an index set Λ, we write ΠA

Λ (resp. ΣA
Λ) for the functor A→ A that takes an object

A from A to AΛ (resp. A(Λ)). For any functor H : X→ A, we write HΛ (resp. H(Λ))
for the composite ΠA

ΛH (resp. ΣA
ΛH). Note that, if a functor H : X → A preserves

products (coproducts), then HΛ = ΠA
ΛH ' HΠX

Λ (H(Λ) = ΣA
ΛH ' HΣX

Λ). When no

confusion can occur, we shall write ΠΛ (ΣΛ) instead of ΠA
Λ (ΣA

Λ).

Given two categories X and Y, we write [X,Y] for the functor category.

2.8. Functor categories and adjoint triples. Let (L,F,R) be an adjoint triple (as
in 1.11). For unit and counit of the adjunction F a R (L a F ) write ηR : IA → RF
and εR : FR→ IB (ηL : IB → FL and εL : LF → IA). Then, for any category X, one
has adjunctions

ηX, εX : [X, F ] a [X, R] : [X,B]→ [X,A],

ηX, εX : [X, L] a [X, F ] : [X,A]→ [X,B],

where
ηX = [X, ηR], εX = [X, εR], ηX = [X, ηL], εX = [X, εL].

Now assume (L,F,R) to be a QF triple. Then there are index sets Λ and Λ′ such

that R is a retract of L(Λ) and L is a retract of RΛ′ (see Proposition 2.2). Since

[B, L](ΣB
Λ) = LΣB

Λ ' ΣA
ΛL = L(Λ), [B, R](ΠB

Λ′) = RΠB
Λ′ ' ΠA

Λ′R = RΛ′ ,
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it follows that R is a retract of [B, L](ΣB
Λ), while L is a retract of [B, R](ΠB

Λ′). Using
now that L,R ∈ [B,A] and that [B, L] (resp. [B, R]) is a left (resp. right) adjoint to
[B, F ], it follows (e.g. from [23, Proposition 1.5] and its dual) that the R-component
(εX)R = εLR of εX is a split epimorphism, while the L-component (ηX)L = ηRL of ηX

is a split monomorphism.
Similarly, considering the adjunctions

[R,A] a [F,A] a [L,A],

one gets that RηL is a split monomorphism, while LεR is a split epimorphism.

Summarising we have proved:

2.9. Theorem. Let (L,F,R) be a QF triple (as in 2.5). Then - with the notation
from 2.8 - ηRL and RηL are split monomorphisms, while εLR and LεR are split
epimorphisms.

2.10. Separability and adjoint triples. In [6], Caenepeel and Militaru introduced
the notion of separable functors of the second kind. Applied to an adjoint triple
(L,F,R), they prove in [6, Theorem 2.7]:

(i) the functor L is R-separable if and only if RηL is a split monomorphism;

(ii) the functor R is L-separable if and only if LεR is a split epimorphism.

As shown in Theorem 2.9, for a QF triple (L,F,R), the conditions in (i) and (ii)
are satisfied and hence [6, Proposition 2.4] applies and yields:

2.11. Proposition. Let (L,F,R) be a QF triple and consider a morphism f : B → B′

in B. Then R(f) has a left (right) inverse in A if and only if L(f) has a left (right)
inverse in A.

3. QF monads and comonads

Before coming to the main topics of this section we recall some constructions from
category theory. For a monad F = (F, µ, η) on a category A, we write

• AF for the Eilenberg-Moore category of F-modules and φF a UF : AF → A
for the corresponding forgetful-free adjunction;

• ÃF for the Kleisli category of the monad F (as a full subcategory of AF , e.g.

[4]) and φF a uF : ÃF → A for the corresponding Kleisli adjunction.

Dually, if G = (G, δ, ε) is a comonad on A, we write

• AG for the Eilenberg–Moore category of G-comodules and UG a φG : A→ AG
for the corresponding forgetful-cofree adjunction;

• ÃG for the Kleisli category of the comonad G and uG a φG : A→ ÃG for the
corresponding Kleisli adjunction.

3.1. Monads on functor categories. Let F = (F, µ, η) be a monad on a category
A. Then the precomposition with F induces a monad FX on [X,A],

FX : [X,A]→ [X,A], f 7−→ Ff,
f → f ′ 7−→ Ff → Ff ′.

It is easy to see that the corresponding Eilenberg-Moore category [X,A]FX of FX-
modules are just left F-modules (see [22]), that is, functors f : X → A together with



10 B. MESABLISHVILI AND R. WISBAUER

a natural transformation α : Ff → f inducing commutativity of the diagrams

f

@@
@@

@@
@@

@@
@@

@@
@@
ηf // Ff

α

��
f,

FFf
µf //

Fα
��

Ff

α

��
Ff α

// f .

Dually, F induces the monad FX on the category [A,X],

FX : [A,X]→ [A,X], f 7−→ fF,
f → f ′ 7−→ fF → f ′F.

The corresponding Eilenberg-Moore category [A,X]FX of FX-modules are just right
F-modules.

3.2. Theorem. ([29, Theorem 8]) Let F = (F, µ, η) be a monad on A.

(1) The assignments f : X→ AF 7−→ UF f : X→ A,
f → f ′ : X→ AF 7−→ UF f → UF f

′ : X→ A,
yield an isomorphism of categories

[X,AF ] ' [X,A]FX .

(2) The assignments f : ÃF → X 7−→ fφF : A→ X,
f → f ′ : ÃF → X 7−→ fφF → f ′φF : A→ X,

yield an isomorphism of categories

[ÃF ,X] ' [A,X]FX .

3.3. Density presentation. For a monad F = (F, µ, η) on A, consider the family

P = {(FF (A), µF (A))
µA //
Fh
// (F (A), µA))}(A,h) ∈ AF

of parallel morphisms. We know from [8] that P is a density presentation (in the sense

of Kelly [18]) of the fully-faithful and dense canonical embedding i : ÃF → AF . For
any category B with coequalisers, we write [AF ,B]P for the full subcategory of [AF ,B]
given by those functors H : AF → B that preserve the coequaliser of each member of
P, that is, for all (A, h) ∈ AF , H preserves the coequaliser diagram

(FF (A), µF (A))
µA //
Fh
// (F (A), µA))

h // (A, h) .

Then, according to [18, Theorem 5.31], the functor

[i,B] : [AF ,B]P → [ÃF ,B]

is an equivalence of categories. Now, by Theorem 3.2(2), the composite

[AF ,B]P
[i,B]−−→ [ÃF ,B]

'−→ [A,B]FB , AF
H−→ B 7−→ A φF−−→ ÃF

i−→ AF
H−→ B,

is an equivalence of categories. But since i · φF = φF , this equivalence is just the
functor [φF ,B]. Thus, we have proved:

3.4. Theorem. For any monad (F, µ, η) on A and any category B with coequalisers,
the functor

[φF ,B] : [AF ,B]P → [A,B]FB

is an equivalence of categories.

We now come back to QF functors.
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3.5. Right adjoints of monads. Let F = (F, µ, η) be monad on A. For an adjunction
η̄, ε : F a G, the monad structure on F induces canonically a comonad G = (G, δ, ε),
called a right adjoint of the monad F (e.g. [10]). The categories AF and AG are
isomorphic by

T : AF → AG, F (A)
%−→ A 7→ A

η̄A−→ GF (A)
G(%)−→ G(A),

T−1 : AG → AF , A
ω−→ G(A) 7→ F (A)

F (ω)−→ FG(A)
εA−→ A.

The forgetful functor UF : AF → A is right adjoint to the free functor φF : A → AF
and the forgetful functor UG : AG → A is left adjoint to the free functor φG : A→ AG.

With these notions we have the diagram with commutative triangle

A
φF // AF

UF //

T
��

A

A
φG // AG.

UG

>>||||||||

This shows that UF can be written as composition of functors with right adjoints and
hence also allows for a right adjoint. More precisely,

(φF , UF , T
−1φG) is an adjoint triple of functors.

Similar arguments show, given a comonad (G, δ, ε) with left adjoint F ,

(TφF , U
G, φG) is an adjoint triple of functors.

3.6. Definitions. A monad (F, µ, η) is called a (left, right) QF monad if F has a
right adjoint G such that (φF , UF , T

−1φG) is a (left, right) QF triple.
A comonad (G, δ, ε) is called a (left, right) QF comonad if G has a left adjoint F

such that (TφF , U
G, φG) is a (left, right) QF triple.

3.7. Proposition. (Properties of QF monads) Let F = (F, µ, η) be a monad on A
with right adjoint comonad G = (G, δ, ε).

(1) F is a QF monad if and only if G is a QF comonad.

(2) If this is the case, then

(i) φF and φG preserve all limits and colimits;

(ii) φF preserves small objects;

(iii) the UF -injective objects in AF are the same as the UF -projectives;

(iv) the UG-injective objects in AG are the same as the UG-projectives;

(v) F and G preserve all limits and colimits;

(vi) if A is small complete, well-powered, and with a small cogenerating set,
then the functor F admits a left adjoint;

(vii) if A is small cocomplete, well-copowered, and with a small generating set,
then the functor G admits a right adjoint.

Proof. (1) The comonad G being right adjoint to the monad F, the diagram

AF
T //

UF   A
AA

AA
AA

A AG

UG
~~}}

}}
}}

}}

A
commutes. Since T is an isomorphism of categories, it follows that (φF , UF , T

−1φG)
is a QF triple if and only if (TφF , U

G, φG) is so.
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(2) (i), (ii), (iii), (iv), (vi) and (vii) follow from Proposition 2.6.
(v) Since the forgetful functor UF : AF → A admits both left and right adjoints, it

preserves all limits and colimits. Then the functor F = UFφF also preserves all limits
and colimits by (i). Similarly, G preserves all limits and colimits. tu

3.8. Module structures on right adjoints of monads. Let (F, µ, η) be a monad
on A with right adjoint comonad (G, δ, ε). Then one has the commutative diagram

A

G   A
AA

AA
AA

A
φG // AG

T−1
//

UG

��

AF

UF}}zz
zz

zz
zz

A.

Hence there is a left F-module structure αG : FG → G on the functor G (e.g. [22]),
thus (G,αG) ∈ [A,A]FA . Hereby αG corresponds to δ : G→ GG under the bijection

MorA(F (−), ?) ' MorA(−, G(?)),

and hence αG = εG · Fδ, where ε : FG→ IA is the counit of F a G.

Now let (F, µ, η) be a QF monad with a right adjoint comonad (G, δ, ε). Since
the forgetful functor UF : AF → A creates limits, for any index set Λ, we have
commutativity of the diagram

A

G   A
AA

AA
AA

A
T−1φG// AF

ΠΛ //

UF

��

AF
UF

��
A

ΠΛ

// A.

It follows that the functor GΛ = ΠΛG is an object of the category [A,A]FA . Write
αGΛ : FGΛ → GΛ for the corresponding left action of the monad F on GΛ. It is easy
to see that (G,αG)Λ in [A,A]FA is just the pair (GΛ, αGΛ).

Similarly, consider the diagram

A

F   A
AA

AA
AA

A
φF // AF

ΣΛ //

UF

��

AF
UF

��
A

ΣΛ

// A,

in which the square commutes since F preserves colimits by Proposition 3.7, and thus
the forgetful functor UF creates them. Then commutativity of the outer diagram
implies − since the functor F (Λ) equals ΣΛφF − that F (Λ) is also an object of the
category [A,A]FA . Write αF (Λ) : FF (Λ) → F (Λ) for the corresponding left action of

the monad F on F (Λ). Then (F, µ)(Λ) in [A,A]FA is just the pair (F (Λ), αF (Λ)).

3.9. Proposition. Let F = (F, µ, η) be a monad on A and G a right adjoint to F .

(1) F is a left QF monad if and only if, for some index set Λ, there is a natural

coretraction G→ F (Λ) of left F-modules.

(2) F is a right QF monad if and only if, for some index set Λ′, there is a natural

coretraction F → GΛ′ of left F-modules.
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Proof. (1) Since UFT
−1φG = UGφG = G and UF (φF )(Λ) = (UFφF )(Λ) = F (Λ), it

follows from Theorem 3.2 that T−1φG ∈ [A,AF ] is a coretraction of (φF )(Λ) ∈ [A,AF ]

if and only if (G, δ) is a coretraction of (F (Λ), αF (Λ)) in [A,A]FA .
(2) can be proved in a similar manner. tu

3.10. Definition. A monad (F, µ, η) on A is said to be a Frobenius monad provided
the forgetful functor UF : AF → A is Frobenius.

A comonad (G, δ, ε) is said to be a Frobenius comonad provided the forgetful functor
UG : AG → A is Frobenius (Definition 2.1).

By an argument similar to the proof of Proposition 3.9 we get:

3.11. Proposition. A monad F on A with a right adjoint comonad G is Frobenius
if and only if the functors F and G are isomorphic as left F-modules.

As pointed out in 3.5, for any monad (F, µ, η), any right adjoint functor G of F has
the structure of a comonad; in particular, for a Frobenius monad F the functors φF
and φG have to be isomorphic and hence the functor F allows for a comonad structure.
This leads to the following characterisation of Frobenius monads given in [30].

3.12. Proposition. A monad (F, µ, η) on A is Frobenius provided there exist natural
transformations ε : F → IA and % : IA → FF satisfying the equations

Fµ · %F = µF · F% and Fε · % = η = εF · %.
Putting δ = Fµ · %F = µF · F%, we have

(i) Fµ · δF = δ · µ = µF · Fδ;
(ii) Fε · δ = IF = εF · δ;

(iii) % = δ · η;

(iv) (F, F ) is an adjoint pair with counit σ = ε ·µ : FF → IA and unit % : IA → FF ;

(v) (F, δ, ε) is a comonad on A.

It was observed by L. Abrams in [1, Theorem 3.3] that over a Frobenius algebra A,
the category of right modules over A is isomorphic to the category of right comodules
over A. The following theorem shows that this holds more generally for Frobenius
functors and such an isomorphism is characteristic for these functors.

3.13. Theorem. Let F = (F, µ, η) be a monad on A. The following are equivalent:

(a) F is a Frobenius monad;

(b) F allows for a comonad structure F = (F, δ, ε) and an isomorphism

κ : AF → AF

that is compatible with the forgetful functors (i.e. UFκ = UF ) and restricts to

an isomorphism of the Kleisli (sub-)categories ÃF and ÃF .

Proof. (a)⇒(b) If (F, µ, η) is a Frobenius monad it has a right adjoint (comonad)
G which is isomorphic to F . This defines a comonad F = (F, δ, ε) and, in view of 3.5,
we get an isomorphism

κ : AF
T−→ AG '−→ AF

which satisfies the compatibility condition required in (b). Moreover, κφF = φF : For
any A ∈ A, κ takes φF (A) = (F (A), µA) to

(F (A), F (A)
ηF (A)−−−→ FFF (A)

FµA−−−→ FF (A)),
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where η : IA → FF is the unit of the adjunction F a F . By Proposition 3.12 this
means FµA ·ηF (A) = δA and κ(φF (A)) = φF (A), that is, κ restricts to an isomorphism
between the corresponding Kleisli categories.

(b)⇒(a) We claim that, under the conditions given in (b), the comonad F = (F, δ, ε)
is right adjoint to the monad F. Indeed, if κ : AF → AF is an isomorphism compat-
ible with the forgetful functors, then the composite κ−1φF is right adjoint to the
functor UF . It then follows that the composite F = UFφF admits as a right adjoint
the composite UFκ

−1φF , which – since UFκ
−1 = UF – is just UFφF = F . Thus F

is right adjoint to itself implying that it is a Frobenius functor. Then F allows for

another comonad structure F
′

= (F, δ′, ε′) and an isomorphism κ′ : AF → AF ′ that
is compatible with the forgetful functors. It follows that the composite isomorphism
κ(κ′)−1 : AF ′ → AF is also compatible with the forgetful functors. Hence the comon-

ads F and F
′

are isomorphic, and thus the comonad F is also right adjoint to the

monad F. Now, since to say that κ restricts to an isomorphism ÃF ' ÃF is to say

that κφF ' φF , it follows that φF ' κ−1φF is right adjoint to UF . Thus, F is a
Frobenius monad. tu

To answer the question when the free-module and free-comodule functors are QF
we need the following observations.

3.14. Lemma. Let (F, µ, η) be a monad and (G, δ, ε) a comonad on A.

(1) The functor F : A→ A has a left adjoint L if and only if the free-module functor
φF : A→ AF does so.

In this case L has a right F-module structure which we denote by α : LF → L.

(2) The functor G : A → A has right adjoint R if and only if the free-comodule
functor φG : A→ AG does so.

In this case R has a left G-comodule structure denoted by β : R→ GR.

Proof. (1) Indeed, if φF has a left adjoint, then the functor F , being the composite
UFφF , also has a left adjoint. Conversely, suppose that F has a left adjoint. Then
since the functor UF is clearly monadic, one can apply Dubuc’s Adjoint Triangle
Theorem [9] to the diagram

A
φF //

F   A
AA

AA
AA

A AF
UF

��
A

to deduce that the functor φF also admits a left adjoint. In case F has a left adjoint
functor L : A→ A, the above commutative triangle implies a right F-module structure
on L.

(2) is proved in a similar way. tu

3.15. Theorem. Let F = (F, µ, η) be a monad and G = (G, δ, ε) a comonad on A.

(1) If F admits a left adjoint L : A→ A, the following are equivalent:

(a) the functor φF : A→ AF is QF;

(b) there are index sets Λ, Λ′ such that

(i) the right F-module (L,α) is a retract of the right F-module (F, µ)Λ,

(ii) the right F-module (F, µ) is a retract of the right F-module (L,α)(Λ′).

(2) If G admits a right adjoint R : A→ A, the following are equivalent:
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(a) the functor φG : A→ AG is QF;

(b) there are index sets Λ, Λ′ such that

(i) the left G-comodule (R, β) is a retract of the left G-comodule (G, δ)(Λ),

(ii) the left G-comodule (G, δ) is a retract of the left G-comodule (L,α)Λ′.

Proof. (1) Since F admits a left adjoint L : A → A by our assumption on F,
the functor φF also admits a left adjoint L : AF → A. Since left adjoints are unique
up to natural isomorphism, L may be chosen in such a way that the composite LφF
is just L. Since L is a left adjoint, it preserves all colimits. Since the functor

∑
Λ′

also preserves colimits, it follows that the functor L
(Λ′)

=
∑

Λ′ L preserves colimits,

too. Thus, in particular, L
(Λ′) ∈ [AF ,A]P . Next, since the functor UF takes – for any

F -module (A, h) – each coequaliser

(FF (A), µF (A))
µA //
Fh
// (F (A), µA))

h // (A, h)

to a (split) coequaliser

FF (A)
µA //
Fh
// F (A)

h
//

ηF (A)

��
A

ηA

��

and since any product of split coequalisers is split, it follows that the functor UΛ
F =

ΠΛUF also lies in [AF ,A]P . Now, since

L
(Λ′)

φF = (LφF )(Λ′) = L(Λ′), UΛ
F φF = (UFφF )Λ = FΛ,

(L,α)(Λ′) = (L(Λ′), α(Λ′)), (F, µ)Λ = (FΛ, µΛ),

the result follows from Theorem 3.4.
(2) is shown by a similar proof. tu

3.16. Proposition. Let (F, µ, η) be a monad and (G, δ, ε) a comonad on A.

(1) If F admits a left adjoint, then the functor φF : A → AF is QF if and only if

the functor φF : A→ ÃF is so.

(2) If G admits a right adjoint, then the functor φG : A→ AG is QF if and only if

the functor φG : A→ ÃG is so.

Proof. (1) Write L : A → A for the left adjoint to F and α : LF → L for the
corresponding right F -module structure on L (see Lemma 3.14). Since L is left adjoint
to F , L allows for a canonical comonad structure (L, δ, ε) (e.g. [10]). Moreover, there

is an isomorphism between the Kleisli categories, K : ÃF → ÃL, given by the natural
bijections (e.g. [19], [4, 2.6])

MorAF
(φF (A), φF (A′)) ' MorA(A,F (A)′)

' MorA(L(A), A′) ' MorAL(φL(A), φL(A′)),

leading to the diagram with commutative triangle

A
φF //

φL ��?
??

??
??

? ÃF
uF //

K
��

A

ÃL
uL
// A.
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Now the functor φF - which has a right adjoint uF - is composed by functors which
have left adjoints and hence also allows for a left adjoint, that is,

(uLK,φF , uF ) is an adjoint triple of functors.

Then, since for any index set Λ,

• (uF )ΛφF = ΠΛuFφF = ΠΛF = FΛ, and

• (uLK)(Λ)φF = ΣΛu
LKφF = ΣΛu

LφL = ΣΛL = L(Λ),

it follows from Theorem 3.2(2) that there are index sets Λ and Λ′ such that the functor
uLK is a retract of the functor uΛ

F and the functor uF is a retract of the functor

(uLK)(Λ′) if and only if the right F -module (L,α) is a retract of the right F -module

(F, µ)Λ and the right F -module (F, µ) is a retract of the right F -module (L,α)(Λ′).

Thus, the functor φF : A→ ÃF is QF if and only if the functor φF : A→ AF is QF.
(2) The proof is dual to that of (1). tu

3.17. Proposition. For a monad (F, µ, η) on A admitting a left adjoint comonad
(G, δ, ε), the following are equivalent:

(a) the functor φF : A→ AF is QF;

(b) the functor φF : A→ ÃF is QF;

(c) the functor φG : A→ AG is QF;

(d) the functor φG : A→ ÃG is QF.

Proof. (a) and (b) are equivalent by Proposition 3.16(1), while (c) and (d) are
equivalent by Proposition 3.16(2). The equivalence of (b) and (d) follows from the
commutativity of the diagram

A
φF //

φG ��?
??

??
??

? ÃF
T
��

ÃG

(see the proof of Proposition 3.7(1)). tu

4. Applications

We illustrate the definitions from Section 1 in the case of module categories over
associative unital rings R and S. By RM we denote the category of left R-modules.

For commutative rings R, Proposition 2.3 reads as follows.

4.1. Proposition. For any module M over a commutative ring R, the following are
equivalent:

(a) M ⊗R − : MR →MR is a QF functor;

(b) M ⊗R − : MR →MR is a Frobenius functor;

(c) the canonical morphism HomR(M,R)⊗RM → EndR(M) is an isomorphism.

4.2. Functors between module categories. Any functor RM→ SM which allows
for a right adjoint is given by an (R,S)-bimodule RPS and the adjoint functor pair

P ⊗S − : SM→ RM, HomR(P,−) : RM→ SM.
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We define the full subcategories of RM and SM, respectively (see [33]),

Gen(RP ) = {N ∈ RM |N is P -generated},
σ[P ] = {N ∈ RM |N is a submodule of some P -generated module},

Stat(P ) = {N ∈ RM |P ⊗S HomR(P,N) ' N},
Adst(P ) = {X ∈ SM |X ' HomR(P, P ⊗S X)}.

By restriction and corestriction we obtain the following pairs of adjoint functors (keep-
ing the symbols for the functors) where Q denotes a cogenerator in σ[RP ]:

L1 = P ⊗S − : SM→ RM, R1 = HomR(P,−) : RM→ SM,

L2 = P ⊗S − : SM→ σ[P ], R2 = HomR(P,−) : σ[P ]→ SM,

L3 = P ⊗S − : Adst(P )→ Stat(P ), R3 = HomR(P,−) : Stat(P )→ Adst(P ).

For all these adjunctions one may ask if they are left or right quasi-Frobenius.

4.3. Proposition. Let P be an (R,S)-bimodule.

(1) L1 is a QF functor if and only if both RP and PS are finitely generated and
projective and the functors HomR(P,R)⊗R− and HomS(P, S)⊗R− are similar
(compare [7, Definition 3.6]).

(2) If L2 is a QF functor, then PS is a Mittag-Leffler module and RP is finitely
generated and self-projective.

(3) L3 is always a (quasi-) Frobenius functor.

Proof. (1) Let L1 be a QF functor. Then, by Proposition 2.6, L1 and R1 preserve
all limits and colimits and this implies that RP and PS have to be finitely generated
and projective.

Putting N = HomS(P, S), we get that the functor N ⊗R − : RM → SM is left
adjoint to P ⊗S − by the isomorphisms

HomS(N ⊗R X,Y ) ' HomR(X,HomS(HomS(P, S), Y ))

' HomR(X,HomS(HomS(P, S), S)⊗S Y )

' HomR(X,P ⊗S Y ),

where the first isomorphism follows from the tensor-hom adjunction, while the others
follow from the fact that P is a finitely generated and projective right S-module.

By Proposition 2.2, HomR(P,−) is a retract of (N ⊗R −)(Λ) and (N ⊗R −) is a

retract of HomR(P,−)Λ′ , for some index sets Λ, Λ′. In particular there are retractions
of (S,R)-modules

HomR(P,R)→ HomS(P, S)(Λ), ϕ : HomS(P, S)→ HomR(P,R)Λ′ .

Since HomR(P,R) is finitely generated as right R-module, Λ can be chosen to be
finite. This implies that HomR(P,R) is also finitely generated and projective as left
S-module.

As a consequence, HomS(HomS(P, S),HomR(P,R)) is finitely generated as a left
S-module, say by g1, . . . , gk. Then for any λ ∈ Λ′, the canonical projection πλ :

HomR(P,R)Λ′ → HomR(P,R) can be written as πλ ◦ ϕ =
∑k

i=1 s
λ
i gi for some sλi ∈ S

and ⋂k

i=1
Ke gi ⊆

⋂
Λ′

Ke πλ ◦ ϕ = 0.

From this it follows that Λ′ can also be chosen to be finite.
This shows that RPS ⊗S − is a QF functor (in our sense) if and only if it is a quasi-

Frobenius bimodule in the sense of [7, Definition 3.6] which means that both RP and
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PS are finitely generated and projective, and moreover, HomR(P,R) and HomS(P, S)
are similar and so are the related functors.

(2) Similar arguments as in (1) show that RP is finitely generated and projective
in σ[RP ]. L2 preserves products means that for a family {Xi}I of S-modules,

P ⊗S
∏

I
Xi ' Trσ[P ]

∏
I
(P ⊗S Xi) ⊂

∏
I
(P ⊗S Xi),

where the middle term denotes the product of the P ⊗SXi in σ[RP ]. This shows that
the canonical map P⊗S

∏
I Xi →

∏
I(P⊗SXi) is injective, that is, PS is Mittag-Leffler

(e.g. [33]).
Notice that if RP is faithful, PS is only finitely generated provided σ[RP ] = RM.
(3) Obviously (L3, R3) is an equivalence of categories (e.g. [33, 2.4]) and hence L3

is a (quasi-) Frobenius functor. tu

4.4. QF ring extensions. A ring extension R → A provides a monad A ⊗R − on

RM and adjoint functor pairs

AM
UA=A⊗A−

//
RM,

RHom(A,−)

ee

A⊗R−

yy

where A ⊗R − is left adjoint to UA and UA is in turn left adjoint to RHom(A,−).
A ⊗R − is a QF monad provided UA is a QF functor (see Definition 3.6). Applying
4.3(1) to the above diagram gives that the (A,R)-bimodules A and ∗A = RHom(A,R)
are similar and the notion coincides with the usual QF extensions (e.g. [25], [24, §5],
[7, Corollary 4.2]). In particular, RA and AR are finitely generated and projective.

4.5. Theorem. For any ring extension R → A, the functor A ⊗R − : RM → AM is
QF if and only if the monad A⊗R − : RM→ RM is QF.

Proof. Applying 4.3(1) to the bimodule AAR gives that the functor

A⊗R − : RM→ AM
is QF if and only if RAR is finitely generated and projective on both sides and the
(R,A)-bimodules A and A∗ = HomR(A,R) are similar. By [25, Satz 2], this is equiv-
alent to saying that the (A,R)-bimodules A and ∗A = RHom(A,R) are similar. 4.4
now completes the proof. tu

4.6. QF corings. An A-coring (C, δ, ε) is called a QF coring if C ⊗A − : AM → AM
is a QF comonad (as defined in 3.6) and is called Frobenius coring if C ⊗A − is a
Frobenius comonad.

For results about Frobenius corings we refer to [5, 27.8].
The following characterisations show that this notion coincides with the one given in

[7, Definition 7.4] and generalise parts of [7, Theorem 7.5] (without a priori conditions
on the A-module structure of C).

4.7. Theorem. The following are equivalent for an A-coring C and C∗ = HomA(C, A).

(a) The functor CU : CM→ AM is QF;

(b) the functor C ⊗A − : AM→ CM is QF;

(c) CA is finitely generated and projective and the functor UC∗ : C∗M→ AM is QF;
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(d) CA is finitely generated and projective and the functor C∗ ⊗A − : AM→ C∗M is
QF;

(e) CA is finitely generated and projective and the ring extension A → C∗ is a QF
extension (in the sense of [25]).

Proof. (c)⇔(d) by Theorem 4.5, while (c)⇔(e) follows by 4.4.
To show the equivalence (a)⇔(c), note first that the functor C ⊗A − : AM → AM

admits as a left adjoint the functor C∗ ⊗A − : AM → AM if and only if CA is finitely
generated and projective. Now, if the functor CU : CM → AM is QF, then it admits
a left adjoint and then the functor C ⊗A − : AM → AM does so. Applying Theorem
3.7(1) gives that (a) and (c) are equivalent.

If the functor C ⊗A − : AM → CM is QF, the functor CU : CM → AM preserves
limits by Proposition 2.2(2). Then the functor C ⊗A − : AM → AM also preserves
limits and hence CA is finitely generated and projective and CM ' C∗M (e.g. [5]).
Thus the functor C ⊗A − : AM → C∗M is QF. It then follows from Proposition 4.3
that C∗CA (and hence also AC∗C∗) is a quasi-Frobenius bimodule. But to say that the
bimodule AC∗C∗ is quasi-Frobenius is to say that the (A, C∗)-bimodules AHom(C∗, A)
and C∗ ' C∗Hom(C∗, C∗) are similar. Since C is finitely generated and projective as
a right A-module, C∗ is finitely generated and projective as a left A-module. Thus

AHom(C∗, A) ' C, and hence the (A, C∗)-bimodules C and C∗ are similar, which by 4.4
just means that the ring extension A → C∗ is a QF extension (in the sense of [25]).
Thus (b)⇒(e).

If the ring extension A → C∗ is a QF extension, then (C∗, A)-bimodules C∗ and

AHom(C∗, A) are similar. If, in addition, CA is finitely generated and projective,
then C∗ is finitely generated and projective as a left A-module, and thus the (A, C∗)-
bimodule C∗ is quasi-Frobenius. Then the (C∗, A)-bimodule AHom(C∗, A) is also quasi-
Frobenius. Since CA is finitely generated and projective, AHom(C∗, A) ' C. Thus the
(C∗, A)-bimodule C is quasi-Frobenius. Applying now Proposition 4.3, we obtain that
the functor C ⊗A − : AM→ C∗M is QF. Since CA is finitely generated and projective,
CM ' C∗M, and thus the functor C ⊗A − : AM → CM is also QF, showing that (e)
implies (b). This completes the proof of the theorem. tu

4.8. Frobenius categories. We use [17] as a reference for exact categories. An
exact category is an additive category A endowed with a class E of exact pairs (i, p)
of morphisms satisfying certain axioms (i is called inflation, p is called deflation). An
exact category (A, E) is said to be Frobenius provided it has enough E-projectives
and E-injectives and, moreover, the classes of E-projectives and E-injectives coincide.
Frobenius categories are of interest in homological algebra because they give rise to
algebraic triangulated categories by passing to the stable category A of A.

An additive category is said to be weakly idempotent complete if retracts have
kernels (equivalently, coretracts have cokernels).

4.9. Theorem. Let (A, EA) and (B, EB) be exact categories and (L,F,R) a QF triple
of functors F : A → B and L,R : B → A . Suppose A to be weakly idempotent
complete and the unit ηR : IA → RF (resp. counit εL : LF → IA) to be a componen-
twise inflation (resp. deflation). Define EF as the class of those EA-exact pairs in A
that become split short exact sequences upon applying F . Then the pair (A, EF ) is a
Frobenius category.

Proof. Since the F -injectives and F -projectives in A coincide (see Proposition 2.6),
by [13, Theorem 3.3] it is enough to show that the subcategories of A generated by all
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summands of the images of L and R coincide. But since A is assumed to be weakly
idempotent complete, this follows from Proposition 2.11. tu

Suppose now that (F, µ, ε) is a QF monad on an abelian category A. Since the
functor F has a right adjoint, it is additive. Using that it preserves all limits and
colimits (see Proposition 3.7), it is not hard to show that the category AF is also
abelian.

4.10. Theorem. Let (F, µ, ε) be a QF monad on an abelian category A. Write EF
for the class of short exact sequences that become split short exact upon applying F .
Then (A, EF ) is a Frobenius exact category.

Proof. Since the forgetful functor UF : AF → A is faithful, the result can be
derived by combining Proposition 3.7 and Proposition 2.11 with Grime [13, Theorem
3.4]. tu

For any exact functor H : (A, EA) → (B, EB), we write E◦H for the class of those
EA-exact pairs whose image under H is a split exact sequence in B.

4.11. Theorem. Let (A, EA) and (B, EB) be exact categories and (L,F,R) a QF triple
of exact functors F : A→ B and L,R : B→ A. Suppose that the following conditions
are satisfied:

• A is weakly idempotent complete;
• every morphism in B, whose image under L is a coretraction, is an inflation

of (A, EA);
• every morphism in B, whose image under R is a retraction, is an deflation of

(A, EA).

Then E◦L = E◦R := E and the pair (B, E) is Frobenius.

Proof. According to Beck [2, Proposition 0.2], we have only to show that E◦L = E◦R
and this follows easily from 2.11. tu
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