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Abstract

For any ring R, an R-module P with S = EndR(P ) is called self-tilting provided
HomR(P,−) is exact on short exact sequences of P -generated modules and all P -
generated modules are P -presented. We extend the theory of self-tilting modules
to any additive functor R : A → B which has a left adjoint L : B → A, together
with an adstatic generator B of B. (L,R;B) is called a right pointed tilting pair
if R is exact on short exact sequences of L(B)-generated modules and all L(B)-
generated modules are L(B)-presented. It is shown that for a right pointed tilting
pair (L,R;B), R : Gen(L(B)) → Cog(R(A)) is an equivalence (with inverse L),
where A is any cogenerator in A, provided R preserves coproducts of L(B). Basic
properties of right pointed tilting pairs are investigated and various applications of
the results are outlined.

Introduction

The classical Morita Theory decribes an equivalence between two module categories R-Mod
and S-Mod, for unital rings R, S, by a functor HomR(P,−), where P is a finitely generated
projective generator in R-Mod and EndR(P ) ' S. This setting was generalized in various
directions.

One may ask for which proerties of P ∈ R-Mod, HomR(P,−) induces an equivalence
between certain subcategories ofR-Mod and S-Mod, respectively. For example, this functor
induces an equivalence between the category of all P -generated modules Gen(P ) ⊂ R-Mod
and the category of all Q-cogenerated modules Cog(Q) for Q = HomR(P,U), where U is
any cogenerator in R-Mod, if and only if P is a finitely generated self-tilting module (in
the terminology of [22]) or a ∗-module (in the terminology of Menini-Orsatti, see [6]).
Variations of this were studied by many authors (e.g., Sato [18]) and the formulation of
this setting in Grothendieck categories was given in Colpi [5].

Without any special conditions on P ∈ R-Mod and S = EndR(P ), HomR(P,−) always
defines an equivalence between the category Stat(P ) of all P -static modules X ∈ R-Mod,
i.e., P ⊗S HomR(P,X) ' X, and the category Adst(P ) of P -adstatic modules Y ∈ S-Mod,
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i.e., Y ' HomR(P, P ⊗S Y ). Depending on the properties of P these classes may have
special properties like being closed under submodules, factor modules, etc. These notions
were considered by Naumann [14, 15] and a comprehensive treatment is given in [23].

The present paper was stimulated by the simple fact that static objects X ∈ A and
adstatic objects Y ∈ B can be defined with respect to any pair of adjoint functors R :
A → B and L : B → A between (complete and cocomplete abelian) categories by the
conditions LR(X) ' X, reps. Y ' RL(Y ). Essential for building up the theory in this
general setting is the existence of a static generator B ∈ B or - dually - a static cogenerator
A ∈ A. We call the data (L,R;B) (resp., (A; L,R)) a right (left) pointed pair of adjoint
funtors.

After recalling some general facts needed for our investigation in the first section, the
formal theory of a right pointed pair of adjoint funtors is presented in Section 2. The close
connection to suitable Hom-functors is outlined in Section 3.

The application of our results to Doi-Koppinen modules defined for a right H-comodule
algebra A and a right H-module coalgebra, where H is a bialgebra over a ring K, is
presented in Section 4. Another interesting case is given by graded rings and modules and
this is considered in Section 5. Similar constructions are studied in Marcus [11].

The dual situation is subject of Section 6. Here the elementary properties of left pointed
pairs of adjoint funtors are sketched. These results are applied in Section 7 to the category
of comodules thus obtaining generalizations of the Takeuchi equivalences between comodule
categories.

Our techniques subsume a number of results about equivalences of (subcategories) of
module categories and the tilting theory for Grothendieck categories. Moreover they extend
related constructions to other situations, in particular to important categories in comodule
theory.

1 Equivalences related to adjunctions

Let C be a complete and cocomplete abelian category and consider an object C of C. For
any set I, we denote by CI the product, and by C(I) the coproduct of I copies of C in the
category C. An object X of C is called C-cogenerated (resp. C-copresented) if there are sets
I,J and exact sequences 0 → X → CI (resp. 0 → X → CI → CJ). The subcategories of
all C-cogenerated and all C–copresented objects will be denoted by Cog(C) and Cop(C),
respectively. Dually, X is said to be C-generated (resp. C-presented) if there are sets I, J
and exact sequences C(I) → X → 0 (resp. C(J) → C(I) → X → 0). When both I and J
are finite sets, we say that X is finitely C–presented. The subcategories of all C–generated
and all C–presented objects will be denoted by Gen(C) and Pres(C), respectively. The
subcategory of all finitely C–presented objects is denoted by Presf (C). We start by fixing
our notation and recalling basic facts on adjunctions which will be used in the sequel. The
notation X ∈ C means in this framework “X is an object of C”.

1.1. Adjoint pairs of functors. Let R : A → B be an additive functor between complete
and cocomplete abelian categories which has a left adjoint L : B → A. Notice that R
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always preserves inverse limits and L preserves direct limits.
Let η : 1B → RL, δ : LR → 1A be the unit and the counit of the adjunction,

respectively, and consider any object Y of B. From the exact sequence

L(Y )
L(ηY ) // LRL(Y ) // L(coker(ηY )) // 0

we get that coker(L(ηY )) ∼= L(coker(ηY )), and by properties of the unit η,

δL(Y )L(ηY ) = 1L(Y ). (1)

From equality (1) it follows that LRL(Y ) ∼= ker δL(Y ) ⊕ Im(L(ηY )).
So, coker(L(ηY )) ∼= ker δL(Y ) and we have an isomorphism

ker δL(Y )
∼= L(coker(ηY )). (2)

Analogously, let X be any object of A. From the exact sequence

0 // R(ker δX) // RLR(X)
R(δX)// R(X)

we get that ker R(δX) ∼= R(ker δX), and by properties of the counit δ,

R(δX)ηR(X) = 1R(X). (3)

From equality (3) it follows that RLR(X) ∼= ker R(δX)⊕ Im(ηR(X)).
So, coker(ηR(X)) ∼= ker R(δX) and we have the isomorphism

coker(ηR(X)) ∼= R(ker δX). (4)

1.2. Static and adstatic objects. An object A of A is said to be R–static if δA is
an isomorphism. By Stat(R) we will denote the full subcategory of A consisting of all
R–static objects. Analogously, an object B of B is L–static if ηB is an isomorphism. If we
think of R as the basic object of our study, then we will use R-adstatic as synonymous for
L-static. The full subcategory of B consisting of all R–adstatic objects will be denoted by
Adst(R). Obviously the functor R induces an equivalence between the categories Stat(R)
and Adst(R) with inverse L. The term ‘static’ comes from the equivalence theory for
modules as expounded in the papers [1], [14] and [23]. It was also used in the framework
of abstract localization theory in Grothendieck categories in [9].

1.3. Related subclasses. Let B be a generator for B and put P = L(B). For any object
Y in B, there is an exact sequence

B(I) // B(J) // Y // 0 ,

for some sets I, J . Apply the right exact and coproducts preserving functor L to obtain
the exact sequence

P (I) // P (J) // L(Y ) // 0 .
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This implies that L(B) ⊆ Pres(P ), where L(B) denotes the full subcategory of A consisting
of all objects isomorphic to L(Y ) for some object Y of B. So we have the chain

Stat(R) ⊆ L(B) ⊆ Pres(P ) ⊆ Gen(P ) ⊆ A. (5)

Assume that A has a cogenerator A, and put Q = R(A). By dualizing the preceding
arguments, we have

Adst(R) ⊆ R(A) ⊆ Cop(Q) ⊆ Cog(Q) ⊆ B. (6)

By right exactness of L and left exactness of R, it follows that Gen(L(B)) and Cog(R(A))
are independent of the choice of the generator B of B and the cogenerator A of A.

1.4. Lemma. 1. If P (I) is R–static for every set I, then L(B) = Pres(P ). Moreover,
δX is an epimorphism for every X ∈ Gen(P ).

2. If QI is R–adstatic for every set I, then R(A) = Cop(Q). Moreover, ηX is a
monomorphism for every X ∈ Cog(Q).

Proof. (1). Let X ∈ Pres(P ). We have an exact sequence P (I) → P (J) → X → 0, for
some sets I, J . Let f : R(P (I))→ C be the co-kernel of R(P (J))→ R(P (I)). Applying the
functor L to the diagram

R(P (J)) // R(P (I))
f //

%%JJJJJJJJJ
C

g
||zzzzzzzzz

// 0

R(X)

,

we get the commutative diagram

LR(P (J)) //

∼=

��

LR(P (I))

∼=

��

L(f) //

**TTTTTTTTTTTTTTTTTT
L(C) //

α

��

L(g)

$$IIIIIIIII 0

LR(X)

δXzztttttttttt

P (J) // P (I) // X // 0.

Therefore, α is an isomorphism which proves that X ∈ L(B). Now, if X is P–generated,
then we have an epimorphism P (I) → X → 0. This gives the commutative square with
exact rows

LR(P (I)) //

∼=
��

LR(X)

δX

��
P (I) // X // 0

whence δX is an epimorphism.
The proof of (2) is dual to that of (1).
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1.5. Remark. Let Presf (P ) denote the full subcategory ofA whose objects are the finitely
P–presented objects. Then the proof of part (1) in Lemma 1.4 shows that Presf (P ) ⊆
R(A), under the assumption that P is R–static. Moreover, the counit morphism δX is an
epimorphism for every finitely P–generated object X. The dual statements corresponding
to part (2) in the lemma are also true.

1.6. Theorem. Let R : A → B be an additive functor with left adjoint L : B → A. Let
B be any generator in B and A any cogenerator in A. Putting P = L(B) and Q = R(A),
the following conditions are equivalent:

(i) R(A) = Adst(R);

(ii) L(B) = Stat(R);

(iii) R(ker δX) = 0 for every X in A;

(iv) L(coker(ηY )) = 0 for every Y in B;

(v) Pres(P ) = Stat(R);

(vi) Cop(Q) = Adst(R);

(vii) R : Pres(P )→ Cop(Q) is an equivalence of categories with inverse L.

Proof. (i)⇒ (iii). Let X be an object of A. Then R(X) ∈ R(A) = Adst(R), which means
that ηR(X) is an isomorphism. By 1.1.(4), R(ker δX) = 0.

(iii) ⇒ (iv). Let Y be any object in B. Then L(Y ) ∈ B, so that R(ker δL(Y )) = 0. By
1.1.(2) we have that LR(coker(ηY )) = 0 and this implies, by 1.1.(3) that R(coker(ηY )) = 0.

(iv) ⇒ (ii). Let L(Y ) be an object of L(B). Since Y ∈ B then L(coker(ηY )) = 0.
By 1.1.(2) we have that ker δL(Y ) = 0, which implies that δL(Y ) is a monomorphism, and,
hence, an isomorphism.

(ii) ⇒ (iv) is similar to (i) ⇒ (iii), and (iv) ⇒ (iii) is similar to (iii) ⇒ (iv).
(ii) ⇔ (v). Since P (I) ∈ L(B) ∩ Pres(P ) for any set I, this follows from Lemma 1.4.
(i) ⇔ (vi). Since QI ∈ R(A) ∩ Cop(Q) for any set I, this follows from Lemma 1.4.
(v) and (vi) ⇔ (vii). This is a direct consequence of the definition of Stat(R) and

Adst(R).

1.7. Remark. The equivalence between (i)-(iv) in Theorem 1.6 holds without the as-
sumption of the existence of a generator B in B or a cogenerator A in A.

1.8. Corollary. Let R : A → B be an additive functor with left adjoint L : B → A, and
let B be any generator of B. Then the following conditions are equivalent.

1. η : 1B → RL is a natural isomorphism.

2. The functor R : Pres(L(B))→ B is an equivalence of categories with inverse L.

Proof. If η is a natural isomorphism, then clearly Adst(R) = B and, obviously, coker(ηY ) =
0 for every object Y of B. It follows from Theorem 1.6 that Pres(L(B)) = Stat(R). This
gives the equivalence Pres(L(B)) ∼ B. The converse is obvious.
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2 Right pointed (tilting) pairs

Definition. A right pointed pair of adjoint functors (L,R;B) for the categories A and B
consists of an additive functor R : A → B with a left adjoint L : B → A, and a generator
B for B which is R-adstatic, i.e., B ' RL(B).

Denote by Add(P ) (resp., add(P )) the full subcategory of A consisting of all direct
summands of (finite) direct sums of copies of P . Let (L,R;B) be a right pointed pair
of adjoint functors and P = R(B). Then clearly add(P ) ⊆ Stat(R) and also add(B) ⊆
Adst(R). In general we have neither Add(P ) ⊆ Stat(R) nor Add(B) ⊆ Adst(R).

2.1. Coproduct preserving functors. Let R : A → B be an additive functor. Given a
coproduct P (I) of copies of P ∈ A, consider the canonical injection ιi : P → P (I) for each
i ∈ I. The family of morphisms

{R(ιi) : R(P )→ R(P (I)) | i ∈ I}

induces a canonical homomorphism Ψ : R(P )(I) → R(P (I)). The functor R is said to
respect coproducts of P if Ψ is an isomorphism for any set I.
Assume (L,R;B) to be a right pointed pair of adjoint functors and put P = L(B). Since L
preserves coproducts, P (I) ' L(B(I)). If ji : B → B(I) denotes the i-th canonical injection,
then L(ji) : L(B) → L(B(I)) is the corresponding injection for the coproduct P (I). From
the commutative diagram

B(I)
η
B(I)// RL(B(I))

B(I)

Id

OO

η
(I)
B // RL(B)(I),

Ψ

OO
(7)

we get that R respects coproducts of P if and only if B(I) ∈ Adst(R), for any set I. This
implies that if R respects coproducts of P then any coproduct of copies of P is R-static.

2.2. Theorem. Let (L,R;B) be a right pointed pair of adjoint functors for A and B, and
let A be any cogenerator for A. Put P = L(B), Q = R(A) and assume the following
conditions.

(1) R respects coproducts of P .

(2) The functor R respects the exactness of the sequences 0→ K → P (I) → X → 0, where
K ∈ Gen(P ).

Then R : Pres(P )→ Cog(Q) is an equivalence of categories with inverse L.

Proof. Assume the conditions (1) and (2) hold. By Theorem 1.6, if we prove that Pres(P ) =
Stat(R), then R gives the equivalence Pres(P ) ∼ Cop(Q). Since Stat(R) ⊆ Pres(P ) is
always true, let us prove that every P–presented object X is R–static. An exact sequence

P (J) // P (I) // X // 0
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yields an exact sequence

0 // K // P (I) // X // 0, (8)

where 0→ K → P (I) is the kernel of P (I) → X. By condition (2), we get an exact sequence

0 // R(K) // R(P (I)) // R(X) // 0.

Next, apply L to obtain the diagram with exact rows

0 // K // P (I) // X // 0

LR(K) //

δK

OO

LR(P (I)) //

δ
P (I)

OO

LR(X)

δX

OO

// 0

Now, δP (I) is an isomorphism by hypothesis (1) and 2.1, implying that δX is an epimor-
phism. Clearly, K ∈ Gen(P ) and this implies, by Lemma 1.4, that δK is also an epimor-
phism. From this we deduce that δX is a monomorphism and, thus, X is R–static.

Finally, we have to show that Cop(Q) = Cog(Q). Let Y be a Q–cogenerated object
of B. Since we have proved that Gen(P ) = Stat(R), it follows from Theorem 1.6 that
Cop(Q) = Adst(R). In particular, QI ∈ Adst(R) for every set I. By Lemma 1.4 we
get that ηY is a monomorphism. Let us prove that it is an epimorphism. Since B is a
generator, there exists an exact sequence

0 // Y1
// B(I) // Y // 0 .

Apply the right exact functor L to obtain the exact sequence

L(Y1) // P (I) // L(Y ) // 0.

This last sequence yields a new exact sequence

0 // K // P (I) // L(Y ) // 0 ,

for some object K which is an epimorphic image of L(Y1). Since L(Y1) ∈ Gen(P ), it follows
that K ∈ Gen(P ). Therefore, condition (2) gives the diagram with exact rows

0 // R(K) // R(P (I)) // RL(Y ) // 0

B(I) //

η
B(I)

OO

Y //

ηY

OO

0.

By 2.1, ηB(I) is an isomorphism, whence ηY is an epimorphism.

The above observations motivate the following
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2.3. Definition. A right pointed pair of adjoint functors (L,R;B) is said to be a right
pointed tilting pair provided Gen(P ) = Pres(P ) and R is exact on short exact sequences
in Gen(P ).

As an immediate consequence of the preceding theorem we have:

2.4. Proposition. Let (L,R;B) be a right pointed tilting pair for A and B and assume
that R preserves coproducts of P . Then R : Gen(P ) → Cog(Q) is an equivalence of
categories with inverse L, where P = L(B) and Q = R(A), for some cogenerator A ∈ A.

By definition, an R-module P with S = EndR(P ) is self-tilting if and only if the right
pointed pair of adjoint functors (HomR(P,−), P ⊗S −;S) is a right pointed tilting pair for

RM and SM (see [22]). For P finitely generated and self-tilting, 2.4 yields the equivalence
HomR(P,−) : Gen(P )→ Cog(Q) shown in [22, 5.5].

2.5. Corollary. Let (L,R;B) be a right pointed pair of adjoint functors and assume that
R is exact and respects coproducts of P = L(B). Then the functor R : Pres(P )→ B is an
equivalence of categories with inverse L.

Proof. We know from Theorem 2.2 that R : Pres(P )→ Cog(Q) gives an equivalence with
inverse L. Notice that, in this case, Cog(Q) = Adst(R). Let Y be any object of B. Since
B is a generator and R is exact, there exists a commutative exact diagram of the form

0 // K //

ηK
��

B(I) //

η
B(I)

��

Y //

ηY
��

0

RL(K) // RL(B(I)) // RL(Y ) // 0.

(9)

By 2.1, ηB(I) is an isomorphism, whence ηK is a monomorphism. Combined with the fact
that RL(K) ∈ Cog(Q) this implies that K ∈ Cog(Q). Therefore K ∈ Adst(R) and ηK is
an isomorphism. We get from (9) that ηY is an isomorphism and, thus, Y ∈ Adst(R). We
have shown that B = Adst(R), which finishes the proof.

2.6. Theorem. Assume B to be a Grothendieck category with generator B and let (L,R;B)
be a right pointed pair of adjoint functors, P = L(B) and Q = R(A) for some cogenerator
A of A. Then the following are equivalent:

(i) R : Gen(P )→ Cog(Q) is an equivalence;

(ii) Gen(P ) = Pres(P ) and R respects coproducts of P and the exactness of short exact
sequences in Gen(P ).

Proof. (ii) ⇒ (i) is shown in 2.4. Assume (i). Clearly, Gen(P ) = Pres(P ) = Stat(R).
Since B ∈ Adst(R) = Cog(Q) and this last subcategory of B is closed under products and
subobjects, it follows that B(I) ∈ Adst(R) for every index set I (here we use that B(I) is
isomorphic to a subobject of BI by [16, Corollary 2.8.10]). This implies that R respects
coproducts of P (see 2.1). The fact that R respects exactness of short exact sequences
in Gen(P ) follows from the proof of [6, Proposition 1.1] (see also [5, Lemma 1.3]), since
Gen(P ) = L(Cop(Q)) and Cop(Q) = Adst(R).
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2.7. Remark. Let P be any object of a complete and co-complete abelian category A
and let S = EndA(P ). The functor HomA(P,−) : A → SM has a left adjoint denoted by
P ⊗S − such that P ⊗S S ∼= P (see, e.g., [17, p.301]). Therefore, if we apply Theorem 2.6
to this situation, we obtain a generalization of [5, Theorem 3.1, (b)⇔ (d)].

3 Relation with the Hom adjunctions

Let (L,R;B) be a right pointed pair of adjoint functors for the categories A and B. For
P = L(B) we have a ring isomorphism

S := EndA(P ) ' HomB(B,RL(B)) ' EndB(B) =: T,

and a commutative diagram of functors

A R //

HomA(P,−)
��

B
HomB(B,−)

��
MS

∼= //MT .

Recall that an object P ∈ A is said to be self-small provided HomA(P,−) preserves coprod-
ucts of P , and P is w-Σ–quasi-projective if HomA(P,−) preserves exactness of sequences

0 // K // P (Λ) // N // 0 (∗)

in A, for any set Λ, where K ∈ Gen(P ).

3.1. Proposition. If P is w-Σ–quasi-projective (in A), then R respects exactness of se-
quences of type (∗).

The converse is true if B is a projective generator in B.

Proof. This is easily deduced from the fact that HomB(B,−) is a faithful functor (B being
a generator). When B is projective, the functor HomB(B,−) is, in addition, exact, which
gives the converse.

3.2. Proposition. Assume that B is a Grothendieck category.

(a) If R preserves coproducts of P and B is a self-small object, then P is a self-small
object.

(b) If P is a self-small object, then R preserves coproducts of P .
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Proof. From the diagram (7) we get that ηB(Λ) is a monomorphism for any set Λ. This
gives a commutative diagram

HomA(P, P (Λ))
∼= // HomB(B,RL(B(Λ)))

HomA(P, P )(Λ)

OO

HomB(B,B(Λ))

HomB(B,η
B(Λ) )

OO

HomB(B,RL(B))(Λ)

∼=

OO

∼= // HomB(B,B)(Λ),

OO

which yields our assertions.

3.3. Theorem. Let A be a cogenerator for A and assume B to be a Grothendieck category.
Let Q = R(A) and P ∗ = HomA(P,A). If P is w-Σ-projective and self-small (in A), then
we have the commutative diagram of equivalences of categories

Pres(P ) R
∼=

//

HomA(P,−) ∼=

��

Cog(Q)

HomB(B,−)

∼=

zzvvvvvvvvvvvvvvvvvvv

Cog(P ∗)

Proof. Applied to the right pointed pair (P⊗S−,HomA(P,−);S), Theorem 2.2 yields that
HomA(P,−) : Pres(P )→ Cog(P ∗) is an equivalence.

In view of Proposition 3.1 and 3.2, we can apply Theorem 2.2 also to the right pointed
pair (L,R;B) to obtain the equivalence R : Pres(P ) → Cog(Q). This finishes the proof.

4 Doi-Koppinen modules

In this section we outline some applications of our general results to the theory of gener-
alised Hopf modules, which were introduced in [7] (see also [10]). Let K be a commutative
ring and (H,∆H , ε) a bialgebra over K. Consider a right H-comodule K-algebra A, i.e.,
the H–comodule structure morphism

%A : A // A⊗H (10)

is a homomorphism of K-algebras. Dually, let (C,∆C) be a right H-module K–coalgebra,
i.e., the H–module structure morphism

νC : C ⊗H // C (11)

is a homomorphism of coalgebras.
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4.1. Doi-Koppinen modules. To every right A–module N we associate the right A⊗H–
module N ⊗ C with action given by

(n⊗ c)(a⊗ h) = na⊗ ch.

Restricting scalars by the algebra morphism (10), we endow N ⊗ C with the structure of
a right A–module given by

(n⊗ c)a = (n⊗ c)%A(a). (12)

Dually, given a right C–comodule L with structure map %L : L // L⊗ C ,
we have the right C ⊗H-comodule structure given by

%L⊗A : L⊗ A %L⊗%A // L⊗ C ⊗ A⊗H id⊗τ⊗id // L⊗ A⊗ C ⊗H,

where τ denotes, as usual, the ‘flip’ map. The corestriction functor associated to the
coalgebra morphism (11) gives L⊗ A the structure of a C–comodule

%L⊗A : L⊗ A
%L⊗A // L⊗ A⊗ C ⊗H id⊗id⊗νC // L⊗ A⊗ C , (13)

where νC : C ⊗H → C is the right H–module structure map of C.

4.2. Definition. A right (H,A,C)–Doi-Koppinen module is a K–module M which is a
right C–comodule and a right A–module by the structure maps

%M : M // M ⊗ C , νM : M ⊗ A // M ,

such that %M is A–linear (or, equivalently, νM is C-colinear). The Doi-Koppinen right
modules form an additive category (with arbitrary coproducts) M(H)CA, where the mor-
phisms are the K–module homomorphisms which are both A–module and C–comodule
homomorphisms. The set (which is in fact a K–module) of all morphisms between two
objects M and N in this category will be denoted by HomC

A(M,N).

4.3. −⊗ A as a left adjoint. Let L be a right C–comodule. The K–module L⊗ A has
the right A–module structure inherited from A, and the right C–comodule structure

%L⊗A : L⊗ A // L⊗ A⊗ C

given in (13). It is easy to see that L⊗A becomes a Doi-Koppinen module. This leads to
an additive functor

−⊗ A :MC //M(H)CA .

This functor is left adjoint to the forgetful functor M(H)CA
//MC (see [3]). In fact, it

is easy to see that the mapping

ηL : L // L⊗ A, l 7→ l ⊗ 1, (14)
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is a right C–comodule homomorphism. Moreover, if M is a Doi-Koppinen module, then
its right A–module map

νM : M ⊗ A // M (15)

is a morphism in the category M(H)CA. Some straightforward computations show that
(14) and (15) are the unit and counit, respectively, for the mentioned adjunction.

4.4. M(H)CA is a Grothendieck category. Assume C to be flat as a K–module. Then
for any morphism f : M → N in M(H)CA, its kernel and co-kernel are right C-comodules
and right A-modules. Hence M(H)CA is a co-complete abelian category with exact direct
limits which has a generator, i.e., is a Grothendieck category.

Proof. We have to find a generator forM(H)CA. For this choose a generator B inMC and
consider any M inM(H)CA. There exists an epimorphism of right C–comodules B(I) →M ,
for some index set I, yielding an epimorphism B(I) ⊗ A → M ⊗ A in M(H)CA. Since
B(I) ⊗A ∼= (B ⊗A)(I) we get that M ⊗A is B ⊗A-generated. Finally, νM : M ⊗A→M
is an epimorphism in M(H)CA, whence M is B ⊗ A-generated showing that B ⊗ A is a
generator and M(H)CA.

We now assume that C is flat over K. Let P be a right (H,A,C)–Doi-Koppinen module
and consider the ring S = EndCA(P ). The functor

HomC
A(P,−) :M(H)CA

//MS

has a left adjoint functor −⊗S P :MS
//M(H)CA , where for each right S–module X,

the A–module and C–comodule structures on X ⊗S P are inherited from P . In this situa-
tion, (− ⊗S P,HomC

A(P,−);S) is a right pointed pair of adjoint functors. From Theorem
1.6 we have the following

4.5. Proposition. Let U be any cogenerator for the Grothendieck category M(H)CA and
write Q = HomC

A(P,U). The following statements are equivalent.

(i) HomC
A(P,HomC

A(P,M)⊗S P ) ∼= HomC
A(P,M), for every M in M(H)CA;

(ii) HomC
A(P,N ⊗S P )⊗S P ∼= N ⊗S P , for every N in MS;

(iii) HomC
A(P, ker δM) = 0, for every M in M(H)CA;

(iv) (coker(ηN))⊗S P = 0, for every N in MS;

(v) HomC
A(P,X ⊗S P ) ∼= X, for every X in Cop(Q);

(vi) HomC
A(P, Y )⊗S P ∼= Y , for every Y in Pres(P );

(vii) HomC
A(P,−) : Pres(P )→ Cop(Q) is an equivalence of categories with inverse −⊗SP .

12



Theorem 2.2 applied to the right pointed pair of adjoint functors (−⊗SP,HomC
A(P,−);S)

yields:

4.6. Theorem. Let U be any cogenerator for the Grothendieck categoryM(H)CA and write
Q = HomC

A(P,U). If HomC
A(P,−) respects coproducts of P and the exactness of the se-

quences
0→ K → P (I) → X → 0,

where K ∈ Gen(P ), then HomC
A(P,−) : Pres(P )→ Cog(Q) is an equivalence of categories

with inverse −⊗S P .

4.7. Remarks. From Proposition 3.1 and Theorem 2.6 we obtain a right pointed tilting
pair (−⊗SP,HomC

A(P,−);S), provided Gen(P ) = Pres(P ) and P is a w-Σ–quasi-projective
object ofM(H)CA. In this case we say that P is a self-tilting Doi-Koppinen module. Recall
from Proposition 3.2 that P is self-small iff the functor HomC

A(P,−) respects coproducts
of P (S is a projective generator of SM). Therefore, P is a self-small and self-tilting
Doi-Koppinen module iff the equivalence HomC

A(P,−) : Gen(P )→ Cog(Q) hold.

Module case. Putting C = H = K, the categoryM(H)CA is exactly the categoryMA

of right A-modules, HomC
A(P,−) = HomA(P,−), and S = EndA(P ).

For the right pointed pair of adjoint functors (P⊗S−,HomA(P,−);S) for the categories
MA andMS, Proposition 4.5 recovers and extends known characterizations (e.g., Sato [18,
Theorem 1.3], [4, Proposition 2.7], [22, 5.5]):

4.8. Proposition. Let PA be a right A–module and Q = HomA(P,U) the right S-module,
where U is a cogenerator of MA. Then the following are equivalent:

(i) HomA(P,HomA(P,M)⊗S P ) ∼= HomA(P,M), for every M in MA;

(ii) HomA(P,N ⊗S P )⊗S P ∼= N ⊗S P , for every N in MS;

(iii) HomA(P, ker δM) = 0, for every M in MA;

(iv) (coker(ηN))⊗S P = 0, for every N in MS;

(v) HomA(P,X ⊗S P ) ∼= X, for every X in Cop(Q);

(vi) HomA(P, Y )⊗S P ∼= Y , for every Y in Pres(P );

(vii) HomA(P,−) : Pres(P )→ Cop(Q) is an equivalence of categories with inverse P⊗S−.

4.9. Remark. With the above notation, HomA(P,−) : Gen(P ) → Cog(Q) is an equiva-
lence if and only if P is a self-small and self-tilting module ((∗)-module).

4.10. Module coalgebras with group-like elements. In this example we will follow
[7]. Let H be a Hopf algebra over a ring K and C a right H-module coalgebra which is
flat over K and which has a group-like element x ∈ C. The map

πx : H → C, πx(h) = x ↼ h,
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is a right H-module coalgebra map, and any right H-comodule algebra A can be viewed
as a right C-comodule via πx. In particular, A is an object of M(H)CA.

We consider the subalgebra Ax of A defined by Ax = {a ∈ A|
∑
a0 ⊗ πx(a1) = a⊗ x}.

More generally, we define Mx for any M ∈M(H)CA by

Mx = {m ∈M |ρM(m) = m⊗ x},

which is a right Ax-module. The functor

(−)x :M(H)CA →MAx , M 7−→Mx,

has a left adjoint given by − ⊗Ax A. We have a right pointed pair of adjoint functors
(−⊗Ax A, (−)x;Ax). Theorem 1.6 has the following form:

4.11. Theorem. Let H be a Hopf algebra over a commutative ring K, A a right H-
comodule algebra, and C a right H-module coalgebra, flat over K, with a group-like element
x. Assume U to be a cogenerator ofM(H)CA. Then the following conditions are equivalent.

(i) (Mx ⊗Ax A)x ∼= Mx, for every M in M(H)CA;

(ii) (V ⊗Ax A)x ∼= V , for every V in Cop(Ux);

(iii) (V ⊗Ax A)x ⊗Ax A ∼= V ⊗Ax A, for every V in MAx;

(iv) Mx ⊗Ax A ∼= M , for every M in Pres(A);

(v) coker(ηV )⊗Ax A = 0, for every V in MAx;

(vi) (ker δM)x = 0, for every M in M(H)CA;

(vii) (−)x : Pres(A)→ Cop(Ux) is an equivalence with inverse −⊗Ax A.

4.12. Remarks. (1) The functor (−)x commutes with coproducts. Therefore, by Corol-
lary 2.5, if (−)x is an exact functor then Pres(A) ∼MAx .

(2) It follows that (−)x :M(H)CA →MAx is an equivalence of categories if and only if
(−)x is exact and A is a generator for M(H)CA.

(3) By applying Theorem 2.6 to the foregoing situation we get that Gen(A) ∼ Cog(Ux)
if and only if Gen(A) = Pres(A) and (−)x is exact on Gen(A).

4.13. A as H-extension of the invariants AcoH.
For C = H and x = 1H we have AcoH = A1

∼= EndHA (A) and (−)coH ∼= HomH
A (A,−).

So (− ⊗AcoH A, (−)coH ;AcoH) is a right pointed pair of adjoint functors for the categories
MH

A :=M(H)HA and MAcoH . Now Theorem 4.11 has the form:

Corollary. Let H be a K-Hopf algebra, flat as K-module and A a right H-comodule
algebra. If U is a cogenerator of MH

A , then the following conditions are equivalent.
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(i) (M coH ⊗AcoH A)coH ∼= M coH , for every M in MH
A ;

(ii) (V ⊗AcoH A)coH ∼= V , for every V in Cop(U coH);

(iii) (V ⊗AcoH A)coH ⊗AcoH A ∼= V ⊗AcoH A, for every V in MAcoH ;

(iv) M coH ⊗AcoH A ∼= M , for every M in Pres(A);

(v) coker(ηV )⊗AcoH A = 0, for every V in MAcoH ;

(vi) (ker δM)coH = 0, for every M in MH
A ;

(vii) (−)coH : Pres(A)→ Cop(U coH) is an equivalence with inverse −⊗AcoH A.

4.14. Remarks. (1) An algebra extension A/B is called an H-extension if A is a H-
comodule algebra and B is its invariant subalgebra A1 = {a ∈ A|ρA = a⊗ 1}. Recall that
a total integral φ : H → A is anH-comodule map with φ(1H) = 1A. It is well known that for
an H-extension A/B with total integral the canonical map V → (V ⊗BA)1, v → v⊗1, is an
isomorphism, for every V inMB. By the above Corollary, the equivalence Pres(A) ∼MB

holds.
When A is a left faithfully flat H-Galois extension of the invariants B (i.e. A is a

projective generator in MH
A ) we obtain the classical equivalence of Schneider MH

A ∼MB

(see [19, Theorem 1]).

(2) If C = A = H and H is projective as a K-module, then H is a projective generator
in MH

H , EndHH(H) ∼= K , (−)1
∼= HomH

H(H,−), and for every M ∈MH
H ,

M1 ⊗K H →M, m⊗ h 7→ mh,

is a Hopf module isomorphism andMH
H ∼MK (Fundamental Theorem for Hopf modules).

5 Graded rings and modules

Let G be a group with neutral element e. For a G-graded ring R, we will denote by R− gr
the category of all G-graded unital left R-modules. Our basic reference for graded rings
and modules is [13]. Let x ∈ G and M be a graded left R–module. We denote by M(x)
the module M endowed with the new grading given by M(x)y = Myx for every y ∈ G.
This gives the so called x–suspension functor. For P,Q ∈ R-gr we consider the G-graded
abelian group HOMR(P,Q), whose x-th homogeneous component is

HOMR(P,Q)x = {f ∈ HomR(P,Q) | f(Py) ⊆ Qyx, for all y ∈ G}.

Clearly, HOMR(P,Q)x = HomR−gr(P,Q(x)). If Q = P then S = HOMR(P, P ) =
ENDR(P ) is a G-graded ring and P is a graded (R, S)-bimodule.
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For a graded left S-module N , P ⊗S N is a left R-module that can be graded by

(P ⊗S N)x := {
∑
yz=x

py ⊗ nz | py ∈ Py, nz ∈ Nz}.

This provides two functors which are graded, i.e. commute with the x-suspension functor,
for every x ∈ G,

HOMR(P,−) : R-gr → S-gr, and P ⊗S − : S-gr → R-gr.

It is well known that the functor P ⊗S − is left adjoint to HOMR(P,−). Recall that⊕
x∈G S(x) is a generator of S-gr.
Let M be a graded left R–module. The functor HOMR(P,−) preserves coproducts of

copies of M if and only if HomR−gr(P,−) preserves coproducts of M(x) for every x ∈ G. In
particular, HOMR(P,−) preserves coproducts of

⊕
x∈G P (x) if and only if HomR−gr(P,−)

does. In this case we say that P is gr-self-small.

5.1. Lemma. If P ∈ R-gr is gr-self-small then (P ⊗S −,HOMR(P,−);
⊕

x∈G S(x)) is a
right pointed pair of adjoint functors.

Proof. We prove that
⊕

x∈G S(x) is HOMR(P,−)-adstatic. Since HOMR(P,−) preserves
coproducts of

⊕
x∈G P (x) and the two functors are graded and the functor P⊗S− commutes

with direct sums, we have

HOMR(P, P ⊗S (
⊕

x∈G S(x))) ∼= HOMR(P,
⊕

x∈G(P ⊗S S(x))
∼= HOMR(P,

⊕
x∈G(P ⊗S S)(x))

∼= HOMR(P,
⊕

x∈G P (x))
∼=

⊕
x∈G HOMR(P, P (x)) ∼=

⊕
x∈G S(x).

By Proposition 3.1, if P ∈ R-gr is gr-w-
∑

-quasiprojective, then HOMR(P,−) respects
exactness of sequences

0→ K → (
⊕
x∈G

P (x))(I) → X → 0,

where K ∈ Gen(
⊕

x∈G P (x)). Now Theorem 2.2 yields for graded modules:

5.2. Theorem. If P ∈ R-gr is gr-self-small and gr-w-
∑

-quasi-projective then

HOMR(P,−) : Pres(
⊕
x∈G

P (x))→ Cog(P ∗)

is an equivalence of categories where P ∗ = HOMR(P,A), for any cogenerator A of R-gr.

5.3. Definition. P ∈ R-gr is said to be gr-self-tilting provided P is gr-w-
∑

-quasi-
projective and Pres(

⊕
x∈G P (x)) = Gen(

⊕
x∈G P (x)).

By Theorem 5.2, for a gr-self-small and gr-self-tilting module P , we have an equivalence
graded functor

HOMR(P,−) : Gen(
⊕
x∈G

P (x))→ Cog(P ∗).
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6 Left pointed (tilting) pairs

Recall that the dual or opposite category Cop of a category C is the category whose objects
are the objects of C and HomCop(X, Y ) = HomC(Y,X). Every functor F : C → D can be
considered as a functor Fop : Cop → Dop in the most natural way. Let R : A → B be
an additive functor between complete and cocomplete abelian categories which has a left
adjoint L : B → A. Clearly, Lop is right adjoint to Rop. The ‘duality principle’ in Category
Theory allows to state without proofs a number of results which are dual to that we have
proved in sections 1 and 2.

Definition. A left pointed pair of adjoint functors (A; L,R) for the categories A and B
consists of an additive functor R : A → B with a left adjoint L : B → A, and a cogenerator
A for A which is L-adstatic, i.e., A ' LR(A). Clearly, (A; L,R) is a left pointed pair if
and only if (Rop,Lop;A) is a right pointed pair of adjoint functors.

6.1. Product preserving functors. Let L : B → A be an additive functor. Given a
direct product QI of copies of Q ∈ B, consider the canonical projection πi : QI → Q for
each i ∈ I. The family of morphisms

{L(πi) : L(QI)→ L(Q) | i ∈ I}

induces a canonical homomorphism Θ : L(QI) → L(Q)I . Assume (A; L,R) to be a left
pointed pair and put Q = R(A). By 2.1, if L respects products of Q then any product of
copies of Q is L–static.

Theorem 2.2 can be re-stated as the following dual tilting theorem.

6.2. Theorem. Let (A; L,R) be a left pointed pair of adjoint functors for A and B, and let
B be any generator for B. Put P = L(B), Q = R(A) and assume the following conditions.

(1) L respects products of Q.

(2) The functor L respects the exactness of the sequences 0 → X → QI → C → 0, where
C ∈ Cog(Q).

Then L : Cop(Q)→ Gen(P ) is an equivalence of categories with inverse R.

Definition. A left pointed pair (A; L,R) is said to be a left pointed tilting pair provided
Cog(Q) = Cop(Q) and L is exact on short exact sequences in Cog(Q).

As an immediate consequence of Theorem 6.2 we have:

6.3. Proposition. Let (A; L,R) be a left pointed tilting pair for A and B and assume
that L preserves products of Q = R(A). Then L : Cog(Q)→ Gen(P ) is an equivalence of
categories with inverse R, where P = L(B) for some generator B of B.

6.4. Corollary. Let (A; L,R) be a left pointed pair and assume that L is exact and respects
products of Q = R(A). Then the functor L : Cop(Q) → A is an equivalence of categories
with inverse R.
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7 Comodules

Let C be a coalgebra over a commutative ring K with unity. If C is flat as a K-module,
then the category MC of all right C–comodules is a Grothendieck category (see [25]).
When C is K–projective, the category MC is isomorphic to the category σ[C∗C] of all
left C∗–modules subgenerated by C∗C (see [8] and [25]). A right C–comodule Q is said
to be quasi-finite if the functor − ⊗ Q : RM → MC has a left adjoint. As for the
case of coalgebras over fields [21], a quasi-finite right C–comodule QC gives rise to a co-
hom functor hC(Q,−) : MC → MD which is the left adjoint to the cotensor functor
−�DQ : MD → MC , where D = eC(Q) = hC(Q,Q) is the co-endomorphism coalgebra
(see [2]). We keep this notation in the rest of this section.

In general the coalgebra D need not be a cogenerator for MD. However, this is the
case when the ground ring K is quasi-Frobenius. Then (DD; hC(Q,−),−�DQ) is a left
pointed pair, and Theorem 1.6 yields

7.1. Theorem. Assume that the ground ring K is QF and let P = hC(Q,G), where G is
a generator for MC. The following conditions are equivalent.

(i) hC(Q, hC(Q,M)�DQ) ∼= hC(Q,M); for every M in MC,

(ii) hC(Q,X�DQ) ∼= X, for every X in Pres(P );

(iii) hC(Q,N�DQ)�DQ ∼= N�DQ, for every N in MD;

(iv) hC(Q, Y )�DQ ∼= Y , for every Y in Cop(Q);

(v) ker δY�DQ = 0, for every Y in MD;

(vi) hC(Q, coker(ηX)) = 0, for every X in MC;

(vii) hC(Q,−) : Cop(Q)→ Pres(P ) is an equivalence of categories with inverse −�DQ.

From Corollary 1.8 we obtain

7.2. Corollary. Let QC be a quasi-finite comodule. The following are equivalent.

1. δ : hC(Q,−�DQ)→ 1MC is a natural isomorphism.

2. The functor hC(Q,−) : Cop(Q) → MD is an equivalence of categories with inverse
−�DQ.

Our next aim is to apply Theorem 6.2 to comodule categories.

7.3. Lemma. Let QC be a quasi-finite right C–comodule and let

0 // X // Y // X // 0 (S)

be an exact sequence of right C–comodules. The following conditions are equivalent.

18



(i) The functor hC(Q,−) respects exactness of (S).

(ii) For every injective K–module W , the functor HomC(−,W ⊗Q) respects exactness of
(S).

(iii) The functor HomC(−, E⊗Q) respects the exactness of (S), for some injective cogen-
erator E of KM.

Proof. A slight modification of the proof of [2, Proposition III.2.7] runs here.

7.4. Let Q be a quasi-finite right C–comodule. In [2, Definition III.2.8] the comodule Q
is said to be an injector if W ⊗ Q is an injective right C–comodule for every injective
K–module W or, equivalently, if the functor hC(Q,−) is exact. This suggests the following
definition.

Definition. The comodule Q is said to be a w-injector if the functor hC(Q,−) respects
exactness of all the exact sequences of the form

0 // X // QI // M // 0 (S ′)

where I is any index set and M ∈ Cog(Q). By Lemma 7.3 this is equivalent to require that
for every injective K–module W , the functor HomC(−,W ⊗ Q) respects the exactness of
all the sequences of the form (S ′).

In case the ground ring K is quasi-Frobenius, Lemma 7.3 implies (take E = K) that
Q is a w–injector if and only if it is w–Π-quasi-injective in the sense of [24]. In this case
the right C-comodule Q is said to be self-cotilting if Q is w-injector and all Q-cogenerated
comodules are Q-presented.

7.5. Definition. A quasi-finite right C–comodule Q is said to be self-co-small if Q is
hC(Q,−)–co-small, i.e., if the canonicalD–colinear homomorphism hC(Q,QI)→ hC(Q,Q)I

is an isomorphism for every index set I (here, D = CoendC(Q)).
If QC is an injector, then, by [2, Satz III.4.7], the functor hC(Q,−) is naturally iso-

morphic to the functor −�ChC(Q,C). In particular, hC(Q,−) : MC → MD preserves
arbitrary direct products. This shows that every quasi-finite injector is self-co-small.

We are now ready to formulate Theorem 6.2 for comodule categories when the ground
ring K is quasi-Frobenius.

7.6. Theorem. Let Q be a quasi-finite self-co-small w–π–quasi-injective right C–comodule
and let P = hC(Q,G), where G is any generator of MC. If the ground ring K is quasi-
Frobenius, then the functor

hC(Q,−) : Cop(Q)→ Gen(P )

is an equivalence of categories with inverse −�DQ.
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7.7. Corollary. Let Q be a quasi-finite injector. If the ground ring K is quasi-Frobenius
then the functor

hC(Q,−) : Cop(Q)→MD

is an equivalence of categories with inverse −�DQ.

Proof. A quasi-finite injector is automatically self-co-small. Apply Corollary 6.4.

7.8. Remark. (1) If the ground ring K is not assumed to be quasi-Frobenius, then our
general theory can be applied whenever we assume that there exists an adstatic cogenerator
A for the categoryMD. For the moment, we do not know if such cogenerator is always on
hand.

(2) For K quasi-Frobenius, if QC is a quasi-finite self-co-small and self-cotilting comod-
ule then the functor

hC(Q,−) : Cog(Q)→ Gen(P )

is an equivalence of categories with inverse −�DQ.

(3) If the quasi-finite comodule QC is an injector cogenerator (K quasi-Frobenius) then
the functor hC(Q,−) : MC → MD is an equivalence [2, Satz IV.1.4]. If K is a field
and QC is a quasi-finite injective cogenerator then we obtain the equivalence of Takeuchi
hC(Q,−) :MC →MD [21, Theorem 3.5].

7.9. Module coalgebras. In this example, we follow [7]. Let C be a right H-module
coalgebra which is flat over K, and A a right H-comodule algebra. Assume that there is
an algebra map α : A → K. In [7, (1.9)] an additive functor (−)α : M(H)CA → MCα is
constructed as follows:

Define the map θα : A → H by θα(a) =
∑
α(a0)a−1, which is a right H-comodule

algebra map. Moreover C is an objet in M(H)CA via this θα. Write A+ = ker(α). Then
CA+ = C ↼ A+ is a coideal of C. Define Cα = C/CA+ and Mα = M/MA+, for any M in
M(H)CA. Then Cα has a unique coalgebra structure such that the projection p : C → Cα

is a coalgebra map. Mα has a unique comodule structure ρα : Mα →Mα ⊗ Cα .
(−)α is a functor from M(H)CA to MCα , the category of right Cα-comodules. This

functor has a right adjoint given by the cotensor product −�CαC :MCα →MC
A. If K is

a QF ring, then (Cα; (−)α,−�CαC) is a left pointed pair. From Theorem 1.6 we obtain
the following result.

7.10. Theorem. Let C be a right H-module coalgebra which is flat over a QF ring K.
Let A be a right H-comodule algebra with an algebra map α : A→ K. If G is a generator
of M(H)CA, the following are equivalent.

(i) (Mα�CαC)α ∼= Mα for every M in M(H)CA,

(ii) (X�CαC)α ∼= X for every X in Pres(Gα),
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(iii) (X�CαC)α�CαC ∼= X�CαC for every X in MCα,

(iv) Mα�CαC ∼= M for every M in Cop(C).

(v) (−)α : Cop(C)→ Pres(Gα) is an equivalence of categories with inverse −�CαC.
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