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Abstract
It is well known that the category MC of right comodules over an
A-coring C, A an associative ring, is a subcategory of the category of
left modules «¢cM over the dual ring *C. The main purpose of this
note is to show that MC is a full subcatgeory in «¢cM if and only if C
is locally projective as a left A-module.

1 Introduction

For any coassociative coalgebra C' over a commutative ring R, the convolu-
tion product turns the dual module C* = Hompg(C, R) into an associative
R-algebra. The category M¢ of right comodules is an additive subcate-
gory of the category ¢«M of left C*-modules. M is an abelian (in fact a
Grothendieck) category if and only if C' is flat as an R-module. Moreover,
M coincides with ¢« M if and only if C is finitely generated and projective
as an R-module (e.g. [11, Corollary 33]).

In case C is projective as an R-module, M¢ is a full subcategory of
o+M and coincides with o[c«C], the category of submodules of C-generated
C*-modules (e.g. [9, 3.15, 4.3]). It was well understood from examples that
projectivity of C' as an R-module was not necessary to achieve M¢ = g[c+C]
and that the equality holds provided C' satisfies the a-condition, i.e., the
canonical maps N ®r C' — Homg(C*, N) are injective for all R-modules N
(e.g. [1, Satz 2.2.13], [2, Section 2], [10, 3.2]). It will follow from our results
that this condition is in fact equivalent to M¢ = ¢[¢+C] and also to C' being
locally projective as an R-module.

We do investigate the questions and results mentioned above in the more
general case of comodules over any A-coring, A an associative ring, and it
will turn out that the above observations remain valid almost literally in this
extended setting.



2 Some module theory

Let A be any associative ring with unit and denote (—)* = Hom(—, A). We
write 4M (M) for the category of unital left (right) A-modules. I (or Iy)
will denote the identity map (of the module N).

2.1. Canonical maps. For any left A-module K, consider the maps

gr: K 25 ke L AKX
ko= [f=fR)] — (f(k))rex-
For any right A-module N define the maps

N K - N®AK —>HOH11(K*,N), 7’L®]{5 = [anf(k)]a
Uy N @y AT — NE n @ (ag)fer+ — (nay) ek

By the identification Map(K*, N) = NX" we have the commutative dia-
gram

NoaK 275 N g, AK nek ——— na(f(k)) rex-
T T
0 — Homg(K*, N) ——— N&7°, Lf = nf(k)] —— (nf(k))sex-

2.2. Injectivity of an . We stick to the notation above.
(1) The following are equivalent:
(a) an k is injective;
(b) forue N®@a K, (Ief)(u) =0 for all f € K*, implies u = 0.
(2) The following are equivalent:
(a) For every finitely presented right A-module N, oy i is injective;
(b) ¢x : K — AX" is a pure monomorphism.
Proof. (1) Letu=>""_ n;®k; € N®4K. Then (Jof)(u) = i nif(k;) =
0, for all f € K* if and only if u € Keay k.

(2) For N finitely presented, ¥y is injective (bijective) and so ay g is
injective if and only if Iye@K is injective. Injectivity of Iyepk for all finitely
presented N characterizes ¢ as a pure monomorphism (e.g., [8, 34.5]). O



We say that K satisfies the a-condition provided ay g is injective for all
right A-modules N. Such modules are named universally torsionless (UTL)
in [4] and we recall some of their characterizations.

The module K is called locally projective (see [12]) if, for any diagram of
left A-modules with exact lines

0—s F —> K

i

L N 0,

where F' is finitely generated, there exists h : K — L such that goi = fohoi.

Clearly every projective module is locally projective. From Garfinkel
[4, Theorem 3.2] and Huisgen-Zimmermann [12, Theorem 2.1] we have the
following characterizations of these modules which are also studied in Ohm-
Bush [5] (as trace modules), and in Raynaud-Gruson [6] (as modules plats et
strictement de Mittag-Leffler).

2.3. Locally projective modules. For the left A-module K, the following
are equivalent:

(a) K is locally projective;

(b) K is a pure submodule of a locally projective module;

(¢) an k is injective, for any right A-module N;

(d) an ki is injective, for any cyclic right A-module N ;

(e) for each m € K, we have m € K*(m)K;

(f) for each finitely generated submodule i : F — K, there exists n € IN
and maps §: R" — K, v: K — R" with Bo~yoi=1.

Recall the following observations. Notice that for a right noetherian ring
A, every product of copies of A is locally projective as left A-module (e.g.
[12, Corollary 4.3]).

2.4. Corollary. Let K be a left A-module.

(1) Every locally projective module is flat and a pure submodule of some
product AN, A some set.

(2) If K 1s finitely generated, or A is left perfect, then K is locally projective
if and only if K is projective.



(8) For a right noetherian ring A, the following are equivalent:
(a) K is locally projective;
(b) K is a pure submodule of a product A*, A some set.

The following facts from general category theory will be helpful (e.g., [7]).
In any category A, a morphism f : A — B is called a monomorphism if for
any morphisms g, h : C' — A the identity f o g = f o h implies g = h.

In an additive category A a morphism v : K — A is called a kernel of
f:+A— B provided fo~v =0 and, for every g : C' — A with fog =0, there
is exactly one h : C' — K such that g =~y oh.

Recall the following well-known (and easliy proved) observations.

2.5. Monomorphisms. Let A be any catgeory and f : A — B a morphism
in A. The following are equivalent:

(a) f is a monomorphism;
(b) the map Mor(L, f) : Mor(L, A) — Mor(L, B), g — f o g, is injective,
for any L € A.
If A is additive and has kernels, then (a)-(b) are equivalent to:
(c) for the kernel v: K — A of f, K = 0.

The basic properties of adjoint functors will be helpful.

2.6. Adjoint functors. Let A and B be any categories. Assume a functor
F : A — B is right adjoint to a functor G: B — A, i.e.,

Morg(Y, F(X)) ~ Mor4(G(Y), X)), forany X € A, Y € B.
Then

(1) F preserves monomorphisms and products,

(2) G preserves epimorphisms and coproducts.

For the study of comodules the following type of module categories is of
particular interest.

2.7. The category o|K]. For any left A-module K we denote by o[K] the
full subcategory of 4 M whose objects are submodules of K-generated mod-

ules. This is the smallest full Grothendieck subcategory of 4 M containing
K (see [8]).



o[K] coincides with 4 M if and only if A embeds into some (finite) co-
product of copies of K. This happens, for example, when K is a faithful
A-module which is finitely generated as a module over its endomorphism
ring (see [8, 15.4]).

The trace functor TX : 4 M — o[K], which sends any X € 4M to

TH(X) =) {f(N)| N €o[K], f € Homa(N,X)},

is right adjoint to the inclusion functor o[K| — s M (e.g., [8, 45.11]). Hence,
by 2.6, for any family {N,}x of modules in o[K], the product in o[K] is

Hf]\fA =T(]I, ™.

where the unadorned [ ] denotes the usual (cartesian) product of A-modules.
It also follows from 2.6 that for { N}, in o[K] the coproduct in o[K] and
the coproduct in 4 M coincide.

3 Corings and comodules

As before, let A be any associative ring with unit.

3.1. Corings and their duals. An A-coring is an (A, A)-bimodule C with
(A, A)-bimodule maps (comultiplication and counit)

A:C—>C®usC, e:C— A,
satisfying the identities
(leA)o A= (Axl)o A, (Ieg)oA=1=(eal)oA.

For elementwise description of these maps we adopt the X-notation, writ-
ing for ¢ € C,

Ale) = Z c18C.

Then coassociativity of A is written as

D Ale)ecy =Y criscianc = Y asciacss = Yy ae(c),

and the conditions on the counit are

Yol =c=) cele).
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Of course, when A is commutative and ac = ca for all a € A, ¢ € C, the
coring C is just a coalgebra in the usual sense.

For any A-coring C, the maps C — A may be right A-linear or left A-linear
and we denote these by

Cr .= Hom,A(C,A), *C = HOHIA,(C,A),

and for bilinear maps we have Hom44(C, A) =*C N C*.
Both C* and *C can be turned to associative rings with unit £ by the
(convolution) products

(1) for f,g €C*, and c € C put f =" g (c) =3 g(f(c1)ea),

(2) for f,ge*C,and c € C put f* g(c) =>_ flcrg(ca))
Notice that for f,g € *C N C* this yields

Frg(e) =" flevglea),

a formula which is well known from coalgebras.
It is easily verified that the maps

y:A—"C,aw[c—g(c)al, and ¢, : A—C*, a— [cr ag(c)],

are ring anti-morphisms and hence we may consider left *C-modules as right
A-modules and right C*-modules as left A-modules.

3.2. Right comodules. Let C be an A-coring and M a right A-module. An
A-linear map oy : M — M ® 4 C is called a coaction on M, and it is said to
be counital and coassociative provided

(Ieg) ooy = I, and (IeA) o onr = (omel) 0 o

A right C-comodule is a right A-module with a counital coassociative
coaction.

A morphism of right C-comodules f : M — N is an A-linear map such
that

enof=(fel)ooun.
We denote the set of comodule morphisms between M and N by Hom (M, N).

It is easy to show that this is an abelian group and hence the category M,
formed by right C-comodules and comodule morphisms, is additive.
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For any right A-module X, the tensor product X ®4 C is a right C-
comodule by
1A : X ®4C — X ®4C®4C,

and for any A-morphism f: X — Y, the map
fol : X®4C—-Y ®4C
is a comodule morphism.

3.3. The category MC. Let C be an A-coring.

(1) The category ME has direct sums and cokernels.
It has kernels provided C is flat as a left A-module.

(2) For the functor — @, C : My — MC we have natural isomorphisms
Hom (M, X ®4C) — Homa(M, X), f (Igg)o f,

for M € M€, X € My, with inverse map h — (hal) o oy, i.e., the
functor — @4 C : My — MC is right adjoint to the forgetful functor
MC — My and hence it preserves monomorphisms and products.

(3) For the right comodule endomorphisms we have EndC(C) ~ C*.
(4) C is a subgenerator in MC.

Proof. (1) Consider a family {M,}, of right C-comodules. It is easy to
prove that the direct sum @, M, in M4 is a right C-comodule and has the
universal property of a coproduct in MC.

For any morphism f : M — N of right C-comodules, the cokernel of f in
M 4 has a comodule structure and hence is a cokernel in MC. If C is flat as
a left A-module, similar arguments hold for the kernel.

(2) The proof of the corresponding assertion for coalgebras applies (e.g.,
9, 3.12]) and then refer to 2.6. Note that the adjointness, for example, was
also observed in [3, Lemma 3.1].

(3) The group isomorphism End®(C) ~ C* follows from (2) by putting
M = C and X = A. This is a ring isomorphism when writing the morphisms
on the right.

(4) For any M € MC, there is an epimorphism A® — M in My.
Tensoring with C yields an epimorphism A™ @4 C — M ®4 C in MC. As
easily checked the structure map oy : M — M ®4 C is a morphism in M€
and hence M is a subobject of a C-generated comodule. O
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3.4. M as Grothendieck category.
For an A-coring C the following are equivalent:

(a) C is a flat left A-module;

(b) every monomorphism in MC is injective;

(c) the forgetful functor M — M4 respects monomorphisms.
If these conditions are satisfied, MC is a Grothendieck category.

Proof. (a) = (b) < (c) are obvious.

(¢) = (a) For any monomorphism f : N — L in M4, the map f® 1T :
N®4C — L®4C is a monomorphism in M¢ (by 3.3(2)) and hence injective
by assumption. This shows that —®4C : M4 — Z-Mod is exact and hence
C is a flat left A-module.

Now assume that (a)-(c) are satified. Then M is abelian and cocomplete.
Since C is a subgenerator it is routine to show that the subcomodules of
C", n € IN, form a generating set for MC. Hence MC is a Grothendieck
category. [

Every right C-comodule M allows a left *C-module structure by
-~ "CQ@z M — M, fom— (Iof)oonu(m).
With this structure any comodule morphisms M — N is *C-linear, i.e.
HomC(M, N) C Hom.¢(M, N),

and hence MC is a subcategory of «cM. As shown in [3, Lemma 4.3], MC
can be identified with M provided C is finitely generated and projective as
left A-module.

Notice that in any case C is a faithful *C-module since f—c = 0 for all
c € C implies f(c¢) =¢e(f—c) =0 and hence f = 0.

The question arises when, more generally, M is a full subcategory of
.M, i.e., when Hom®(M, N) = Hom.c(M, N), for any M, N € M. The
answer is given in our main theorem:

3.5. MC as full subcategory of .M
For the A-coring C, the following are equivalent:

(a) ME = U[*CC];
(b) MC is a full subcategory of «cM;
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(¢) for all M, N € M€, Hom®(M, N) = Hom.¢(M, N);
(d) C satifies the a-condition as left A-module;
(e) every *C-submodule of C*, n € IN, is a subcomodule of C";

(f) C is locally projective as left A-module.

If these conditions are satisfied we have, for any family {My}a of right
A-modules,

(1,0 @ac ~ [[ (M @a0) c [, (M ©a0).

Proof. The implications (a) < (b) < (¢) = (e) are obvious.
(a) = (d) By 3.4 4C is flat. For any N € M4 we prove the injectivity of
the map

a:N®4C— Homgz(*C,N), nec— [f— nf(c)].

Considering Homgz(*C, N) and the right C-comodule N ®,4 C as left *C-
modules in the canonical way, we observe that « is *C-linear. So for any right
C-comodule L we have the commutative diagram

Hom(L,«)

Hom:c(L, N ®4C) — Hom«c(L, Homz(*C, N))

L)

Homy (L, N) - Homy (L, N),

where the first vertical isomorphism is obtained by assumption and 3.3,
Hom.¢(L, N ®4C) = Hom®(L, N ® 4 C) ~ Homyu(L, N),
and the second one by canonical isomorphisms
Hom-¢(L,Homyz(*C, N)) ~ Homy(*C ®«¢ L, N) ~ Homg (L, N).

This shows that Hom(L, ) is injective and so (by 2.5) the corestriction of «
is a monomorphism in MC€. Since 4C is flat this implies that « is injective
(by 3.4).

(e) = (a) First we show that every finitely generated module N € o[.cC]
is a C-comodule. There exists some *C-submodule X C C*, n € IN, and
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an epimorphism h : X — N. By assumption X and the kernel of h are
comodules and hence N is a comodule.

Now for any L € o[-¢C] the finitely generated submodules are comodules
and hence L is a comodule.

For any *C-morphism in o[«¢C], the kernel is a *C-submodule and hence
a comodule. As easily verified this implies that monomorphisms and epi-
morphisms in o[«C] are comodule morphisms and hence this is true for all
morphisms in o[«C].

(d) < (f) follows by 2.3.

(d) = (e) We show that for right C-comodules M, any *C-submodule N
is a subcomodule. For this consider the map

py : N — Homa("C,N), n+ [f — f-n].

With the inclusion ¢ : N — M, we have the commutative diagram with exact
lines

0 N M P M/N 0
lglﬂ
0 NesC —2 o~ Mo, —22L -~ M/Neac 0

lOéN,c laM,c lal\l/N,C
Hom(*C,7)

0 —> Homa(*C,N) 22" Hom(*C, M) —> Homu(*C, M/N) :

where all the a’s are injective and Hom(*C, %) o py = aurc © o © 4. This
implies (p® I)oppro0t = 0, and by the kernel property, oas oi factors through
N — N ®4 C thus yielding a C-coaction on V.

The final assertion follows by 2.6 and the characterization of products in
o[«cC] (see 2.7). O

As a corollary we can show when all *C-modules are C-comodules. This
includes the reverse conclusion of [3, Lemma 4.3] and extends [11, Lemma
33].

3-6- MC == *CM.
For any A-coring C, the following are equivalent:
(CL) MC = *CM;
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(b) the functor — @4 C : My — «cM has a left adjoint;
(c) 4C is finitely generated and projective;
(d) AC is locally projective and C is finitely generated as right C*-module.
Proof. (a) = (b) and (¢) = (d) are obvious.
(b) = (c¢) By 2.6, —®4C preserves monomorphisms (injective morphisms)

and hence 4C is flat. Moreover we obtain, for any family { M)} in M4, the
isomorphism

(H M,) ®4C =~ H(M,\ ®a4C),

which implies that 4C is finitely presented (e.g., [8, 12.9]) and hence projec-
tive.

(d) = (a) Recall that C* is the endomorphism ring of the faithful module
«cC. Hence Cc- finitely generated implies M€ = o[-cC] = «cM (see 2.7). [

Acknowledgement. The author is very grateful to Jawad Abuhlail for
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