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Abstract
It is well known that the category MC of right comodules over an

A-coring C, A an associative ring, is a subcategory of the category of
left modules ∗CM over the dual ring ∗C. The main purpose of this
note is to show that MC is a full subcatgeory in ∗CM if and only if C
is locally projective as a left A-module.

1 Introduction

For any coassociative coalgebra C over a commutative ring R, the convolu-
tion product turns the dual module C∗ = HomR(C,R) into an associative
R-algebra. The category MC of right comodules is an additive subcate-
gory of the category C∗M of left C∗-modules. MC is an abelian (in fact a
Grothendieck) category if and only if C is flat as an R-module. Moreover,
MC coincides with C∗M if and only if C is finitely generated and projective
as an R-module (e.g. [11, Corollary 33]).

In case C is projective as an R-module, MC is a full subcategory of

C∗M and coincides with σ[C∗C], the category of submodules of C-generated
C∗-modules (e.g. [9, 3.15, 4.3]). It was well understood from examples that
projectivity of C as an R-module was not necessary to achieveMC = σ[C∗C]
and that the equality holds provided C satisfies the α-condition, i.e., the
canonical maps N ⊗R C → HomZZ(C∗, N) are injective for all R-modules N
(e.g. [1, Satz 2.2.13], [2, Section 2], [10, 3.2]). It will follow from our results
that this condition is in fact equivalent toMC = σ[C∗C] and also to C being
locally projective as an R-module.

We do investigate the questions and results mentioned above in the more
general case of comodules over any A-coring, A an associative ring, and it
will turn out that the above observations remain valid almost literally in this
extended setting.
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2 Some module theory

Let A be any associative ring with unit and denote (−)∗ = HomA(−, A). We
write AM (MA) for the category of unital left (right) A-modules. I (or IN)
will denote the identity map (of the module N).

2.1. Canonical maps. For any left A-module K, consider the maps

ϕ̃K : K
ϕK−→ K∗∗

i−→ AK
∗
,

k 7→ [f 7→ f(k)] 7→ (f(k))f∈K∗ .

For any right A-module N define the maps

αN,K : N ⊗A K → HomZZ(K∗, N), n⊗k 7→ [f 7→ nf(k)],

ψN : N ⊗A AK
∗ → NK∗ , n⊗ (af )f∈K∗ 7→ (naf )f∈K∗ .

By the identification Map(K∗, N) = NK∗ we have the commutative dia-
gram

N ⊗A K
I⊗ϕ̃K //

αN,K

��

N ⊗A AK
∗

ψN
��

n⊗k //

��

n⊗(f(k))f∈K∗

��
0 // HomZZ(K∗, N) // NK∗ , [f 7→ nf(k)] // (nf(k))f∈K∗ .

2.2. Injectivity of αN,K. We stick to the notation above.

(1) The following are equivalent:

(a) αN,K is injective;

(b) for u ∈ N ⊗A K, (I⊗f)(u) = 0 for all f ∈ K∗, implies u = 0.

(2) The following are equivalent:

(a) For every finitely presented right A-module N , αN,K is injective;

(b) ϕ̃K : K → AK
∗

is a pure monomorphism.

Proof. (1) Let u =
∑r

i=1 ni⊗ki ∈ N⊗AK. Then (I⊗f)(u) =
∑r

i=1 nif(ki) =
0, for all f ∈ K∗ if and only if u ∈ KeαN,K .

(2) For N finitely presented, ψN is injective (bijective) and so αN,K is
injective if and only if IN⊗ϕ̃K is injective. Injectivity of IN⊗ϕ̃K for all finitely
presented N characterizes ϕ̃K as a pure monomorphism (e.g., [8, 34.5]).
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We say that K satisfies the α-condition provided αN,K is injective for all
right A-modules N . Such modules are named universally torsionless (UTL)
in [4] and we recall some of their characterizations.

The module K is called locally projective (see [12]) if, for any diagram of
left A-modules with exact lines

0 // F
i // K

g

��
L

f // N // 0,

where F is finitely generated, there exists h : K → L such that g◦i = f ◦h◦i.
Clearly every projective module is locally projective. From Garfinkel

[4, Theorem 3.2] and Huisgen-Zimmermann [12, Theorem 2.1] we have the
following characterizations of these modules which are also studied in Ohm-
Bush [5] (as trace modules), and in Raynaud-Gruson [6] (as modules plats et
strictement de Mittag-Leffler).

2.3. Locally projective modules. For the left A-module K, the following
are equivalent:

(a) K is locally projective;

(b) K is a pure submodule of a locally projective module;

(c) αN,K is injective, for any right A-module N ;

(d) αN,K is injective, for any cyclic right A-module N ;

(e) for each m ∈ K, we have m ∈ K∗(m)K;

(f) for each finitely generated submodule i : F → K, there exists n ∈ IN
and maps β : Rn → K, γ : K → Rn with β ◦ γ ◦ i = i.

Recall the following observations. Notice that for a right noetherian ring
A, every product of copies of A is locally projective as left A-module (e.g.
[12, Corollary 4.3]).

2.4. Corollary. Let K be a left A-module.

(1) Every locally projective module is flat and a pure submodule of some
product AΛ, Λ some set.

(2) If K is finitely generated, or A is left perfect, then K is locally projective
if and only if K is projective.
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(3) For a right noetherian ring A, the following are equivalent:

(a) K is locally projective;

(b) K is a pure submodule of a product AΛ, Λ some set.

The following facts from general category theory will be helpful (e.g., [7]).
In any category A, a morphism f : A → B is called a monomorphism if for
any morphisms g, h : C → A the identity f ◦ g = f ◦ h implies g = h.

In an additive category A a morphism γ : K → A is called a kernel of
f : A→ B provided f ◦ γ = 0 and, for every g : C → A with f ◦ g = 0, there
is exactly one h : C → K such that g = γ ◦ h.

Recall the following well-known (and easliy proved) observations.

2.5. Monomorphisms. Let A be any catgeory and f : A→ B a morphism
in A. The following are equivalent:

(a) f is a monomorphism;

(b) the map Mor(L, f) : Mor(L,A) → Mor(L,B), g 7→ f ◦ g, is injective,
for any L ∈ A.

If A is additive and has kernels, then (a)-(b) are equivalent to:

(c) for the kernel γ : K → A of f , K = 0.

The basic properties of adjoint functors will be helpful.

2.6. Adjoint functors. Let A and B be any categories. Assume a functor
F : A → B is right adjoint to a functor G : B → A, i.e.,

MorB(Y, F (X)) ' MorA(G(Y ), X)), for any X ∈ A, Y ∈ B.

Then

(1) F preserves monomorphisms and products,

(2) G preserves epimorphisms and coproducts.

For the study of comodules the following type of module categories is of
particular interest.

2.7. The category σ[K]. For any left A-module K we denote by σ[K] the
full subcategory of AM whose objects are submodules of K-generated mod-
ules. This is the smallest full Grothendieck subcategory of AM containing
K (see [8]).
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σ[K] coincides with AM if and only if A embeds into some (finite) co-
product of copies of K. This happens, for example, when K is a faithful
A-module which is finitely generated as a module over its endomorphism
ring (see [8, 15.4]).

The trace functor T K : AM→ σ[K], which sends any X ∈ AM to

T K(X) :=
∑
{f(N) | N ∈ σ[K], f ∈ HomA(N,X)},

is right adjoint to the inclusion functor σ[K]→ AM (e.g., [8, 45.11]). Hence,
by 2.6, for any family {Nλ}Λ of modules in σ[K], the product in σ[K] is∏K

Λ
Nλ = T K(

∏
Λ
Nλ),

where the unadorned
∏

denotes the usual (cartesian) product of A-modules.
It also follows from 2.6 that for {Nλ}Λ in σ[K] the coproduct in σ[K] and

the coproduct in AM coincide.

3 Corings and comodules

As before, let A be any associative ring with unit.

3.1. Corings and their duals. An A-coring is an (A,A)-bimodule C with
(A,A)-bimodule maps (comultiplication and counit)

∆ : C → C ⊗A C, ε : C → A,

satisfying the identities

(I⊗∆) ◦∆ = (∆⊗I) ◦∆, (I⊗ε) ◦∆ = I = (ε⊗I) ◦∆.

For elementwise description of these maps we adopt the Σ-notation, writ-
ing for c ∈ C,

∆(c) =
∑

c1⊗c2.

Then coassociativity of ∆ is written as∑
∆(c1)⊗c2 =

∑
c1 1⊗c1 2⊗c2 =

∑
c1⊗c2 1⊗c2 2 =

∑
c1⊗∆(c2),

and the conditions on the counit are∑
ε(c1)c2 = c =

∑
c1ε(c2).
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Of course, when A is commutative and ac = ca for all a ∈ A, c ∈ C, the
coring C is just a coalgebra in the usual sense.

For any A-coring C, the maps C → A may be right A-linear or left A-linear
and we denote these by

C∗ := Hom−A(C, A), ∗C := HomA−(C, A),

and for bilinear maps we have HomAA(C, A) = ∗C ∩ C∗.
Both C∗ and ∗C can be turned to associative rings with unit ε by the

(convolution) products

(1) for f, g ∈ C∗, and c ∈ C put f ∗r g (c) =
∑
g(f(c1)c2),

(2) for f, g ∈ ∗C, and c ∈ C put f ∗l g (c) =
∑
f(c1g(c2)).

Notice that for f, g ∈ ∗C ∩ C∗ this yields

f ∗ g (c) =
∑

f(c1)g(c2),

a formula which is well known from coalgebras.
It is easily verified that the maps

ιl : A→ ∗C, a 7→ [c 7→ ε(c)a], and ιr : A→ C∗, a 7→ [c 7→ aε(c)],

are ring anti-morphisms and hence we may consider left ∗C-modules as right
A-modules and right C∗-modules as left A-modules.

3.2. Right comodules. Let C be an A-coring and M a right A-module. An
A-linear map %M : M →M ⊗A C is called a coaction on M , and it is said to
be counital and coassociative provided

(I⊗ε) ◦ %M = I, and (I⊗∆) ◦ %M = (%M⊗I) ◦ %M .

A right C-comodule is a right A-module with a counital coassociative
coaction.

A morphism of right C-comodules f : M → N is an A-linear map such
that

%N ◦ f = (f⊗I) ◦ %M .

We denote the set of comodule morphisms betweenM andN by HomC(M,N).
It is easy to show that this is an abelian group and hence the category MC,
formed by right C-comodules and comodule morphisms, is additive.
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For any right A-module X, the tensor product X ⊗A C is a right C-
comodule by

I⊗∆ : X ⊗A C → X ⊗A C ⊗A C,
and for any A-morphism f : X → Y , the map

f⊗I : X ⊗A C → Y ⊗A C

is a comodule morphism.

3.3. The category MC. Let C be an A-coring.

(1) The category MC has direct sums and cokernels.
It has kernels provided C is flat as a left A-module.

(2) For the functor −⊗A C :MA →MC we have natural isomorphisms

HomC(M,X ⊗A C)→ HomA(M,X), f 7→ (I⊗ε) ◦ f,

for M ∈ MC, X ∈ MA, with inverse map h 7→ (h⊗I) ◦ %M , i.e., the
functor − ⊗A C : MA → MC is right adjoint to the forgetful functor
MC →MA and hence it preserves monomorphisms and products.

(3) For the right comodule endomorphisms we have EndC(C) ' C∗.

(4) C is a subgenerator in MC.

Proof. (1) Consider a family {Mλ}Λ of right C-comodules. It is easy to
prove that the direct sum

⊕
ΛMλ in MA is a right C-comodule and has the

universal property of a coproduct in MC.
For any morphism f : M → N of right C-comodules, the cokernel of f in

MA has a comodule structure and hence is a cokernel in MC. If C is flat as
a left A-module, similar arguments hold for the kernel.

(2) The proof of the corresponding assertion for coalgebras applies (e.g.,
[9, 3.12]) and then refer to 2.6. Note that the adjointness, for example, was
also observed in [3, Lemma 3.1].

(3) The group isomorphism EndC(C) ' C∗ follows from (2) by putting
M = C and X = A. This is a ring isomorphism when writing the morphisms
on the right.

(4) For any M ∈ MC, there is an epimorphism A(Λ) → M in MA.
Tensoring with C yields an epimorphism A(Λ) ⊗A C → M ⊗A C in MC. As
easily checked the structure map %M : M → M ⊗A C is a morphism in MC

and hence M is a subobject of a C-generated comodule.
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3.4. MC as Grothendieck category.
For an A-coring C the following are equivalent:

(a) C is a flat left A-module;

(b) every monomorphism in MC is injective;

(c) the forgetful functor MC →MA respects monomorphisms.

If these conditions are satisfied, MC is a Grothendieck category.

Proof. (a)⇒ (b)⇔ (c) are obvious.

(c) ⇒ (a) For any monomorphism f : N → L in MA, the map f ⊗ I :
N ⊗A C → L⊗A C is a monomorphism inMC (by 3.3(2)) and hence injective
by assumption. This shows that −⊗A C :MA → ZZ-Mod is exact and hence
C is a flat left A-module.

Now assume that (a)-(c) are satified. ThenMC is abelian and cocomplete.
Since C is a subgenerator it is routine to show that the subcomodules of
Cn, n ∈ IN , form a generating set for MC. Hence MC is a Grothendieck
category.

Every right C-comodule M allows a left ∗C-module structure by

⇀ : ∗C ⊗ZZ M →M, f⊗m 7→ (I⊗f) ◦ %M(m).

With this structure any comodule morphisms M → N is ∗C-linear, i.e.

HomC(M,N) ⊂ Hom∗C(M,N),

and hence MC is a subcategory of ∗CM. As shown in [3, Lemma 4.3], MC

can be identified with ∗CM provided C is finitely generated and projective as
left A-module.

Notice that in any case C is a faithful ∗C-module since f⇀c = 0 for all
c ∈ C implies f(c) = ε(f⇀c) = 0 and hence f = 0.

The question arises when, more generally, MC is a full subcategory of
∗CM, i.e., when HomC(M,N) = Hom∗C(M,N), for any M,N ∈ MC. The
answer is given in our main theorem:

3.5. MC as full subcategory of ∗CM
For the A-coring C, the following are equivalent:

(a) MC = σ[∗CC];

(b) MC is a full subcategory of ∗CM;

8



(c) for all M,N ∈MC, HomC(M,N) = Hom∗C(M,N);

(d) C satifies the α-condition as left A-module;

(e) every ∗C-submodule of Cn, n ∈ IN , is a subcomodule of Cn;

(f) C is locally projective as left A-module.

If these conditions are satisfied we have, for any family {Mλ}Λ of right
A-modules,

(
∏

Λ
Mλ)⊗A C '

∏C

Λ
(Mλ ⊗A C) ⊂

∏
Λ
(Mλ ⊗A C).

Proof. The implications (a)⇔ (b)⇔ (c)⇒ (e) are obvious.

(a)⇒ (d) By 3.4 AC is flat. For any N ∈MA we prove the injectivity of
the map

α : N ⊗A C → HomZZ(∗C, N), n⊗c 7→ [f 7→ nf(c)].

Considering HomZZ(∗C, N) and the right C-comodule N ⊗A C as left ∗C-
modules in the canonical way, we observe that α is ∗C-linear. So for any right
C-comodule L we have the commutative diagram

Hom∗C(L,N ⊗A C)
Hom(L,α)//

'
��

Hom∗C(L,HomZZ(∗C, N))

'
��

HomA(L,N) i // HomZZ(L,N),

where the first vertical isomorphism is obtained by assumption and 3.3,

Hom∗C(L,N ⊗A C) = HomC(L,N ⊗A C) ' HomA(L,N),

and the second one by canonical isomorphisms

Hom∗C(L,HomZZ(∗C, N)) ' HomZZ(∗C ⊗∗C L,N) ' HomZZ(L,N).

This shows that Hom(L, α) is injective and so (by 2.5) the corestriction of α
is a monomorphism in MC. Since AC is flat this implies that α is injective
(by 3.4).

(e)⇒ (a) First we show that every finitely generated module N ∈ σ[∗CC]
is a C-comodule. There exists some ∗C-submodule X ⊂ Cn, n ∈ IN , and
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an epimorphism h : X → N . By assumption X and the kernel of h are
comodules and hence N is a comodule.

Now for any L ∈ σ[∗CC] the finitely generated submodules are comodules
and hence L is a comodule.

For any ∗C-morphism in σ[∗CC], the kernel is a ∗C-submodule and hence
a comodule. As easily verified this implies that monomorphisms and epi-
morphisms in σ[∗CC] are comodule morphisms and hence this is true for all
morphisms in σ[∗CC].

(d)⇔ (f) follows by 2.3.

(d) ⇒ (e) We show that for right C-comodules M , any ∗C-submodule N
is a subcomodule. For this consider the map

ρN : N → HomA(∗C, N), n 7→ [f 7→ f⇀n].

With the inclusion i : N →M , we have the commutative diagram with exact
lines

0 // N
i // M

p //

%M

��

M/N // 0

0 // N ⊗A C
i⊗I //

αN,C
��

M ⊗A C
p⊗I //

αM,C
��

M/N ⊗A C //

αM/N,C
��

0

0 // HomA(∗C, N)
Hom(∗C,i)// HomA(∗C,M) // HomA(∗C,M/N) ,

where all the α’s are injective and Hom(∗C, i) ◦ ρN = αM,C ◦ %M ◦ i. This
implies (p⊗I)◦%M ◦ i = 0, and by the kernel property, %M ◦ i factors through
N → N ⊗A C thus yielding a C-coaction on N .

The final assertion follows by 2.6 and the characterization of products in
σ[∗CC] (see 2.7).

As a corollary we can show when all ∗C-modules are C-comodules. This
includes the reverse conclusion of [3, Lemma 4.3] and extends [11, Lemma
33].

3.6. MC = ∗CM.
For any A-coring C, the following are equivalent:

(a) MC = ∗CM;
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(b) the functor −⊗A C :MA → ∗CM has a left adjoint;

(c) AC is finitely generated and projective;

(d) AC is locally projective and C is finitely generated as right C∗-module.

Proof. (a)⇒ (b) and (c)⇒ (d) are obvious.

(b)⇒ (c) By 2.6, −⊗AC preserves monomorphisms (injective morphisms)
and hence AC is flat. Moreover we obtain, for any family {Mλ}Λ inMA, the
isomorphism

(
∏
Λ

Mλ)⊗A C '
∏
Λ

(Mλ ⊗A C),

which implies that AC is finitely presented (e.g., [8, 12.9]) and hence projec-
tive.

(d)⇒ (a) Recall that C∗ is the endomorphism ring of the faithful module
∗CC. Hence CC∗ finitely generated implies MC = σ[∗CC] = ∗CM (see 2.7).
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