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Abstract

In the study of algebraic groups the representative functions related to monoid
algebras over fields provide an important tool which also yields the finite dual coal-
gebra of any algebra over a field. The purpose of this note is to transfer this basic
construction to monoid algebras over commutative rings R. As an application we
obtain a bialgebra (Hopf algebra) structure on the finite dual of the polynomial ring
R[x] over a noetherian ring R. Moreover we give a sufficient condition for the fi-
nite dual of any R-algebra A to become a coalgebra. In particular this condition is
satisfied provided R is noetherian and hereditary.

Introduction

Let k be a field and consider a group G. The commutative Hopf algebra Rk(G) of all
k-valued representative functions over G plays a prominent role in the finite dimensional
representation theory of G (e.g., [4]). From the point of view of the algebraic theory
of Hopf algebras, Rk(G) can be considered as the dual Hopf algebra k[G]◦ of the group
algebra k[G]. In fact, the construction of the dual coalgebra A◦ of any k-algebra can be
performed by means of the k-valued representative functions of a monoid (see [1, Ch. 2]).
This leads to the dual Hopf algebra H◦ of any Hopf algebra H over the field k. In this
paper we study to which extent these basic constructions are possible for (Hopf) algebras
over commutative rings.

The definition of comultiplication over the finite dual A◦ of a k-algebra uses the exact-
ness of the tensor product bifunctor −⊗k−, and the existence of a basis in any vector space
(cf. [1, Ch. 2]). Considering algebras A over a commutative ring R, technical difficulties
arise at the very beginning because of the lack of these properties. Of course, if A is finitely
generated and projective over R then A◦ is just A∗ = homR(A,R), which is known to be
an R-coalgebra, without any condition on R. The construction of the coalgebra structure
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of the finite dual A◦ for algebras over fields (see [8, Ch. VI]) is extended to (non finitely
generated) projective R-algebras in Cao-Yu - Nichols [2], provided R is a Dedekind domain.

Here we choose a different approach to this problem (similar to [1]) by first considering
representative functions of a monoid G to R (Section 1). For the following results we need
R to be a noetherian ring.

Considering any R-algebra A as a multiplicative monoid, we define the finite dual A◦

and - assuming that A◦ ⊂ RA is a pure R-submodule - we obtain that A◦ is a coalgebra
(Theorem 2.8). This implies that A◦ is a coalgebra, provided R is a noetherian hereditary
ring, e.g., a Dedekind domain (Proposition 2.11, Corollary 2.14).

Under the condition that the finite dual R[G]◦ of the monoid R-algebra R[G] is R-pure
in R[G]∗, we prove that R[G]◦ is a bialgebra isomorphic to the bialgebra of all R-valued
representative functions (Theorem 2.13). In Section 3 we show in particular that for the
polynomial algebra R[x], the finite dual R[x]◦ is a bialgebra. Another possibility for a
coproduct on R[x] is to consider x as a primitive element. This makes R[x] a Hopf R-
algebra and moreover yields a Hopf R-algebra structure on R[x]◦.

In Section 4 we show that R[x]◦ can be identified with the linearly recursive sequences
over R which can be given an R-bialgebra structure and a Hopf R-algebra structure cor-
responding to those on R[x]◦ (introduced in Section 3).

1 Representative functions

Let R be a noetherian commutative ring. For any set S, consider the R-algebra RS of
all maps f : S → R. The symbol ⊗ always denotes the tensor product over R.

1.1. Canonical map. Let S, T be sets. For R-submodules X ⊆ RS and Y ⊆ RT , define
the canonical map

π : X ⊗ Y → RS×T ,

given on generators by π(f⊗g)(s, t) = f(s)g(t), for every f⊗g ∈ X⊗Y and (s, t) ∈ S×T .
Observe that the canonical map depends on the R-submodules X and Y but we will always
denote it with the same letter π. The map

π : RS ⊗RT → RS×T

is a homomorphism of R-algebras. Since R is noetherian, RS and RT are flat R-modules.

1.2. Proposition. The canonical map π : RS ⊗RT → RS×T is injective.

Proof. Let M be a f.g. submodule of RS. Since R is noetherian we have

M ⊗RT 'MT ⊂ (RS)T ' RS×T ,

and this monomorphism is just the restriction of π to M ⊗RT . Going to the direct limit,
we see that π is injective.
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1.3. Monoid algebras. Let G be a monoid with neutral element e and denote by R[G]
the associated monoid algebra. The algebra RG is endowed with a structure of an R[G]-
bimodule as follows: For x, y ∈ G and f ∈ RG consider xfy ∈ RG, defined by xfy(z) =
f(yzx) for all z ∈ G. These left and right G-actions are extended in a unique way to make
RG an R[G]-bimodule.

1.4. Maps between RG and RG×G. Let m : G × G → G be the multiplication map of
the monoid G. It induces an R-module homomorphism

m• : RG → RG×G given by m•(f)(x, y) = f(xy), for every f ∈ RG, x, y ∈ G.

Consider the maps I ×m,m× I : G×G×G→ G×G, where I denotes the identity map
on G. The associativity of m implies

(I ×m)• ◦m• = (m× I)• ◦m•.

On the other hand, defining α, β : RG×G → RG by α(h)(x) = h(x, e), and β(h)(x) =
h(e, x) for every h ∈ RG×G, x ∈ G, we have

α ◦m• = I = β ◦m•.

We are now ready to study R-valued representative functions on the monoid G.

1.5. Finiteness conditions. Let B be an R[G]-subbimodule of RG. Define

fB = {b ∈ B | R[G]b is f.g. as an R-module}, and

Bf = {b ∈ B | bR[G] is f.g. as an R-module}.

It is easy to prove that fB is a left and Bf is a right R[G]-submodule of B.

The following is the technical result that supports all our constructions.

1.6. Proposition. For an element f ∈ RG the following are equivalent:

(i) f ∈ fB; (i)′ f ∈ Bf ;
(ii) m•(f) ∈ π(B ⊗RG); (ii)′ m•(f) ∈ π(RG ⊗B);

(iii) m•(f) ∈ π(fB ⊗RG); (iii)′ m•(f) ∈ π(RG ⊗Bf);
(iv) m•(f) ∈ π(fB ⊗RG) ∩ π(RG ⊗Bf);
(v) f ∈ B and R[G]fR[G] is

finitely generated as an R-module.

As a consequence Bf = fB and Bf is an R[G]-subbimodule of B.

Proof. (i) ⇒ (iii). We have that R[G]f is a finitely generated R-submodule of fB.
Hence, there are b1, . . . , bn ∈ fB such that R[G]f =

∑n
i=1 Rbi. For each y ∈ G, choose

f1(y), . . . , fn(y) ∈ R such that yf =
∑n

i=1 fi(y)bi. Now, for x, y ∈ G,

m•(x, y) = f(xy) = (yf)(x) =
n∑
i=1

fi(y)bi(x) = π(
n∑
i=1

bi ⊗ fi)(x, y)
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Thus, m•(f) ∈ π(fB ⊗RG).

(iii)⇒ (ii). This is evident since fB ⊆ B.

(ii)⇒ (i)′. First we prove f ∈ B. In fact, for x ∈ G, we have

f(x) = f(xe) = m•(x, e) =
n∑
i=1

bi(x)fi(e),

where m•(f) = π(
∑n

i=1 bi ⊗ fi), bi ∈ B and fi ∈ RG. Hence, f =
∑n

i=1 fi(e)bi ∈ B. Now,
for y, x ∈ G,

(fy)(x) = f(yx) = m•(f)(y, x) =
n∑
i=1

bi(y)fi(x) =

(
n∑
i=1

bi(y)fi

)
(x).

Therefore, fy ∈ Rf1 + · · · + Rfn. Since R is noetherian, fR[G] is a finitely generated
R-module.

(i)′ ⇒ (iii)′ ⇒ (ii)′ ⇒ (i) follow by symmetry.

(iii), (iii)′ ⇔ (iv) and (v)⇒ (i) are clear.

(i) ⇒ (v) For any x, y ∈ G, we will prove that xfy is contained in a fixed finitely
generated R-module. Let b1, . . . , bn ∈ B be such that R[G]f =

∑n
i=1 Rbi. Now, R[G]bi ⊆

R[G]f , whence R[G]bi is finitely generated, and thus bi ∈ fB. We have already proved that
(i) ⇒ (i)′, so bi ∈ Bf . This means that biR[G] is finitely generated as an R-module and,
therefore, xfy ∈

∑n
i=1 biR[G] which is a finitely generated R-module that does not depend

on x, y ∈ G.

1.7. Representative functions. Consider the particular case B = RG. Given a function
f ∈ RG, it follows from Proposition 1.6 that R[G]f is finitely generated as an R-module if
and only if fR[G] is. In this case, f will be said to be an R-valued representative function on
the monoid G. The set RR(G) of all representative functions on G is an R[G]-subbimodule

of RG, since RR(G) = (RG)
f
. Moreover we deduce from Proposition 1.6:

1.8. Corollary. The following conditions are equivalent for f ∈ RG:

(i) f ∈ RR(G),

(ii) m•(f) ∈ π(RG ⊗RG),

(iii) m•(f) ∈ π(RR(G)⊗RG),

(iii)′ m•(f) ∈ π(RG ⊗RR(G)),

(iv) m•(f) ∈ π(RR(G)⊗RG) ∩ π(RG ⊗RR(G)).

Recall that an R-submodule W ⊂ V is pure if, for each R-module X, the canonical
map W ⊗X → V ⊗X is injective.
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1.9. Comultiplication on Bf. Assume for an R[G]-subbimodule B ⊂ RG, Bf is a pure
R-submodule of RG. So, by Proposition 1.6, for any b ∈ Bf and π : RG ⊗RG → RG×G,

m•(b) ∈ π(RG ⊗Bf) ∩ π(Bf ⊗RG) = π((RG ⊗Bf) ∩ (Bf ⊗RG)) = π(Bf ⊗Bf).

Therefore we have the R-linear map

∆ := Bf m•−→ π(Bf ⊗Bf)
π−1

−→ Bf ⊗Bf

We show that this comultiplication on Bf is co-associative. For this consider the diagram

RG

m•

��

m• // RG×G

(I×m)•

��

Bf

eeKKKKKKKKKKK

∆
��

∆ // Bf ⊗Bf

66nnnnnnnnnnnn

I⊗∆
��

Bf ⊗Bf

yyssssssssss

∆⊗I // Bf ⊗Bf ⊗Bf

((PPPPPPPPPPPP

RG×G
(m×I)• // RG×G×G.

The external rectangle is commutative because m is an associative map. Also, all the
trapezia, whose non parallel edges are the obvious canonical maps, are commutative. Since
Bf is pure in RG, the canonical map Bf ⊗Bf ⊗Bf → RG×G×G is injective. Therefore, the
internal square is commutative.

1.10. Counit. With the neutral element e of the monoid G, we define

ε : RG → R, h 7→ h(e),

and use the same letter to denote the restriction

ε : Bf → R, h 7→ h(e).

It is easy to prove that ε is a counit for the comultiplication ∆ : Bf → Bf ⊗ Bf . So we
have shown:

1.11. Theorem. If Bf is pure as an R-submodule of RG, then (Bf ,∆, ε) is a co-associative
co-unitary R-coalgebra.

1.12. Corollary. If RR(G) is pure in RG as an R-module, then (RR(G),∆, ε) is a co-
associative co-unitary R-coalgebra. Moreover, with this coalgebra structure, RR(G) is an
R-bialgebra when considered as a subalgebra of RG.

Proof. Notice that if B = RG, then Bf = RR(G), whence it is an R-coalgebra. Now a
straightforward computation shows that RR(G) is a subalgebra of RG and that ∆ is an
algebra map.
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2 Dual coalgebra

Let (A,mA, uA) be an associative unitary R-algebra. Throughout this section we will
assume R to be noetherian. Denote by A∗ the R-submodule of RA consisting of all R-linear
maps, i.e., A∗ = homR(A,R). For any R-map f : M → A, where M is an R-module, put
f ◦ := f ∗|A◦ : A◦ →M∗.

2.1. The monoid ring R[A]. Considering A as a multiplicative monoid we have the
monoid ring R[A]. The R[A]-bimodule structure on RA is given as follows. For (ra)a∈A ∈
R[A], f ∈ RA and b ∈ A we put

((ra)a∈A · f) (b) =
∑
a∈A

raf(b a) and (f · (ra)a∈A) (b) =
∑
a∈A

raf(ab).

It can be easily checked that A∗ is an R[A]-subbimodule of RA. On the other hand, A∗ has
the structure of an A-bimodule which coincides on elements of A with the previous one,
that is, for a, b ∈ A and f ∈ A∗, we have

(af)(b) = f(ba) and (fa)(b) = f(ab).

2.2. Lemma. Let X ⊆ A∗ be an R-submodule. Then X is a left (resp. right) R[A]-
submodule of A∗ if and only if X is a left (resp. right) A-submodule of A∗. In particular,
the R[A]-subbimodules and the A-subbimodules of A∗ coincide.

Proof. Straightforward.

2.3. Finite dual of A. Adopting the notation used for algebras over fields we define

A◦ = {f ∈ A∗ | Af is f.g. as an R-module}.

Observe that, for f ∈ A∗, Af = R[A]f and fA = fR[A]. It follows from Proposition 1.6
and Lemma 2.2 that A◦ = (A∗)f and, hence, A◦ is an A-subbimodule of A∗. Moreover, we
have the equality

A◦ = {f ∈ A∗ | fA is f.g. as an R-module}.

The following proposition is a particular case of Proposition 1.6.

2.4. Proposition. For f ∈ RA, the following statements are equivalent:

(i) f ∈ A◦;
(ii) m•(f) ∈ π(A∗ ⊗RA); (ii)′ m•(f) ∈ π(RA ⊗ A∗);

(iii) m•(f) ∈ π(A◦ ⊗RA); (iii)′ m•(f) ∈ π(RA ⊗ A◦);
(iv) m•(f) ∈ π(A◦ ⊗RA) ∩ π(RA ⊗ A◦);
(v) f ∈ A∗ and AfA is finitely

generated as an R-module.
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2.5. Cofinite submodules. An R-submodule X of A is called R-cofinite if A/X is a
finitely generated R-module. With this notion we recover the characterization of the finite
dual of algebras over fields.

2.6. Proposition. The following statements are equivalent for f ∈ A∗:

(i) f ∈ A◦;

(ii) Ker f contains an R-cofinite ideal of A;

(iii) Ker f contains an R-cofinite left ideal of A;

(iv) Ker f contains an R-cofinite right ideal of A.

Proof. (i) ⇒ (ii) If f ∈ A◦ then, by Proposition 2.4, AfA is finitely generated as an R-
module. Let f1, . . . , fn be a set of generators and consider I =

⋂n
i=1 Kerfi. It is clear that

I is an R-cofinite R-submodule of A. Moreover, I ⊆ Kerf . Let us see that I is an ideal of
A. For a, b ∈ A and c ∈ I, we have fi(acb) = (bfia)(c). Since bfia ∈ AfA =

∑n
i=1 Rfi, it

follows that (bfia)(c) = 0, whence acb ∈ I.

(ii)⇒ (iii) This is evident.

(iii) ⇒ (i) Let I be an R-cofinite left ideal of A contained in Kerf . Define ϕ : Af →
homR(A/I,R) by ϕ(af)(b + I) = (af)(b) = f(ba). Easy computations show that ϕ is
a well-defined injective homomorphism of R-modules. Since R is noetherian and A/I is
R-finitely generated, it follows that homR(A/I,R) is a finitely generated R-module. But
Af is isomorphic to an R-submodule of homR(A/I,R), which implies that Af is finitely
generated as an R-module. By definition, f ∈ A◦.

Finally, the equivalence between (iv) and (i) follows by symmetry.

2.7. Dual coalgebra. The constructions in 1.9 and 1.10 can be reinterpreted here as
follows. Assume that A◦ is pure in RA as an R-module. For every f ∈ A◦ there is a unique∑n

i=1 fi ⊗ gi ∈ A◦ ⊗ A◦ such that

f(ab) =
n∑
i=1

fi(a)gi(b),

for every a, b ∈ A. Then the map

m◦A : A◦ → A◦ ⊗ A◦, f 7→
n∑
i=1

fi ⊗ gi ,

is a well-defined co-associative R-linear comultiplication over A◦. Moreover, the restriction

u◦A : A◦ → R, f 7→ f(1A),

defines a counit.
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2.8. Theorem. Let R be noetherian and assume A◦ to be pure in RA as an R-module.
Then

(i) (A◦,m◦A, u
◦
A) is a co-associative co-unitary R-coalgebra.

(ii) Assume (A,mA, uA,∆A, εA) is an R-bialgebra. Then (A◦,∆◦A, ε
◦
A,m

◦
A, u

◦
A) is an R-

bialgebra. Moreover if A is a Hopf R-algebra with antipode SA, then A◦ is a Hopf
R-algebra with antipode S◦A.

Proof. (i) By 2.7 this is a specialization of Theorem 1.11.

(ii) The proof is similar to the argument in [5, 9.1.3] due to the fact that over noetherian
rings, submodules of finitely generated modules are again finitely generated.

2.9. Let R[A] be the free R-module with basis A and consider the surjective homomor-
phism of R-modules R[A] → A sending every a ∈ A to itself. Moreover, by the universal
property of free modules, we have an isomorphism of R-modules R[A]∗ ∼= RA, given by
restriction to the basis A of linear maps defined over R[A]. Notice that the composition
A∗ → R[A]∗ ∼= RA is just the inclusion A∗ ⊆ RA.

2.10. There are various kinds of conditions which imply that A◦ is an R-pure submodule
of RA. For example, if A is a left semisimple algebra (left artinian with zero Jacobson
radical) then A◦ is a direct summand of RA as a left A-module and so, in particular, it
is an R-pure submodule. One might also ask which conditions on the ring R imply this
property. Clearly for every field or semisimple ring this is the case. Proposition 2.11
describes two more situations where A◦ is an R-pure submodule of RA.

The ring R is hereditary if every ideal is projective. A noetherian ring R is hereditary
if and only if every submodule of an R-cogenerated module is flat (e.g., [9, 39.13]).

2.11. Proposition. Let A be an algebra over a noetherian ring R.
(i) Assume R to be hereditary. Then A◦ is pure in RA.

(ii) Assume A to be projective as an R-module. Then A◦ is a pure R-submodule of A∗

if and only if A◦ is pure in RA.

Proof. (i) The conditions on R imply that for every epimorphism of R-modules X → Y ,
the monomorphism Y ∗ → X∗ is pure. So in particular the monomorphism A∗ → R[A]∗

given in 2.9 is pure, i.e., A∗ is a pure submodule of RA.
It remains to prove that A◦ is a pure submodule of A∗. For each ideal I of A, define

I⊥ = {f ∈ A∗ | I ⊆ Ker(f)},

which is an R-submodule of A∗. By Proposition 2.6, A◦ =
⋃
I⊥, where I ranges over

all cofinite ideals of A. On the other hand, I⊥ is the image of the pure monomorphism
0→ (A/I)∗ → A∗, associated to the canonical projection A→ A/I → 0 and so it is a pure
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submodule of A∗. Hence A◦ is a direct union of pure submodules of A∗ and therefore it is
pure in A∗.

(ii) Since A is projective as an R-module, the epimorphism R[A]→ A given in 2.9 splits
and so A∗ → R[A]∗ ∼= RA is a splitting monomorphism. Hence the assertion is evident.

Remark. In case R is a noetherian hereditary ring, Proposition 2.11 (i) combined with
Theorem 2.8 sharpen the main result in [2] where the coalgebra structure of A◦ is defined
over Dedekind domains R.

2.12. Let G be any monoid, R a noetherian commutative ring, and R[G] the monoid
algebra. The image of R[G]◦ under the isomorphism R[G]∗ ' RG given in 2.9 is precisely
the algebra of all representative functions RR(G). In fact, R[G]◦ is a subalgebra of R[G]∗

and, thus, we have an isomorphism of R-algebras R[G]◦ ∼= RR(G). Moreover, RR(G) is
R-pure in RG if and only if R[G]◦ is R-pure in R[G]∗, so that we obtain the following result
from Corollary 1.12 and Theorem 2.8:

2.13. Theorem. Let G be any monoid, R noetherian, and R[G] the monoid algebra. As-
sume that R[G]◦ is R-pure in R[G]∗. Then R[G]◦ and RR(G) are isomorphic R-bialgebras.

2.14. Corollary. Let R be noetherian and hereditary. Then for any monoid G, R[G]◦

and RR(G) are isomorphic R-bialgebras.

2.15. Corollary. Let G be a group and assume R to be noetherian. Then the bialgebra
R[G] is a Hopf algebra with antipode

S : R[G]→ R[G], g 7→ g−1, for g ∈ G.

Assume the conditions of Theorem 2.13 (resp. Corollary 2.14) hold. Then

S◦ : R[G]◦ → R[G]◦, α 7→ [g 7→ α(g−1), for g ∈ G]

yields an antipode for the bialgebra R[G]◦, which becomes a Hopf R-algebra.

3 The bialgebra R[x]◦

As an application of Theorem 2.13 consider the case G = IN = {0, 1, 2, ...} and any
commutative ring R. Using the fact that the monoid algebra R[IN ] and the polynomial
algebra R[x] are isomorphic, we show that - for R noetherian - R[x]◦ ' R[IN ]◦ is a pure
R-submodule of R[x]∗, and so has a structure of an R-bialgebra.

An ideal I ⊂ R[x] is called monic if it contains a polynomial with leading coefficient
1. The following properties of such ideals will be of importance.

3.1. Proposition. 1. Let I ⊂ R[x] be a monic ideal. Then R[x]/I is f.g. as an R-
module.
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2. Assume R is noetherian and R[x]/I is f.g. as an R-module. Then I is a monic ideal
in R[x].

Proof. (1) Let g(x) = xk + ak−1x
k−1 + ... + a0 ∈ I, and h(x) ∈ R[x]. Then there exist

q(x), r(x) ∈ R[x], such that

h(x) = q(x)g(x) + r(x), where deg(r(x)) < k.

So {1 + I, x+ I, . . . , xk−1 + I} is a finite generating set of R[x]/I over R.

(2) Assume R[x]/I is f.g. as an R-module. Consider the chain

R{1 + I} ⊂
1∑
i=0

R{xi + I} ⊂
2∑
i=0

R{xi + I} ⊂ · · ·

of R-submodules of R[x]/I. Since R is noetherian and R[x]/I is f.g., R[x]/I is also noethe-
rian as an R-module. Hence there exists a positive integer n with

n−1∑
i=0

R{xi + I} =
n∑
i=0

R{xi + I},

and so there are r0, r1, ..., rn−1 ∈ R, such that

xn − rn−1x
n−1 − ...− r1x− r0 ∈ I,

showing that I is a monic ideal in R[x].

3.2. The coalgebra R[x]◦. Let R be noetherian. Then R[x]◦ is a co-associative co-unitary
R-coalgebra with coproduct

∆ : R[x]◦ → R[x]◦ ⊗R[x]◦, α 7→ [xi ⊗ xj 7→ α(xi+j), i, j ≥ 0],

and counit

ε : R[x]◦ → R, α 7→ α(1).

Proof. By Theorem 2.13 it suffices to show that R[x]◦ is a pure R-submodule of R[x]∗.
As a consequence of Proposition 3.1, R[x]◦ may be identified with the direct union of
(R[x]/(g(x)))∗ for all monic polynomials g(x). Note that for a monic polynomial g(x), the
canonical R–linear map R[x]→ R[x]/(g(x)) splits because R[x]/(g(x)) is a free R–module
and so (R[x]/(g(x)))∗ is a direct summand of R[x]∗. Hence

R[x]◦ =
⋃

(R[x]/(g(x)))∗

is pure in R[x]∗.
The coproduct on R[x]◦ is induced by the usual product of polynomials in R[x], m :

xi ⊗ xj 7→ xi+j, and the counit is induced by the unit of the algebra R[x], 1 7→ x0 and so
we have the formulas given above.
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3.3. The algebra structures on R[x]◦. Algebra structures on R[x]◦ are induced by
coalgebra structures on R[x]. We consider two of these, given by the following coproducts
and counits:

∆1 : R[x]→ R[x]⊗R[x], xi 7→ xi ⊗ xi, ε1 : R[x]→ R, xi 7→ 1, i ≥ 0;

∆2 : R[x]→ R[x]⊗R[x], xi 7→
∑i

j=0

(
i
j

)
xj ⊗ xi−j, ε2 : R[x]→ R, xi 7→ δi,0, i ≥ 0.

For α, β ∈ R[x]◦, ∆1 and ε1 induce the product and the unit

(α · β)(xi) = (α⊗ β) ∆1(xi) = α(xi)β(xi), i ≥ 0,
u1 : R→ R[x]◦, 1 7→ [xi 7→ 1, i ≥ 0].

whereas ∆2 and ε2 induce the product and the unit

(α ∗ β)(xi) = (α⊗ β)∆2(xi) =
i∑

j=0

(
i
j

)
α(xj)β(xi−j), i ≥ 0

u2 : R→ R[x]◦, 1 7→ [xi 7→ δi,0, i ≥ 0].

It is easy to see that the coproduct ∆1 and the counit ε1 are compatible with the usual
algebra structure of R[x] giving R[x] an R-bialgebra structure. The same holds for ∆2

and ε2. In case R is a field it was shown in [3] that these are in fact the only possible
R-bialgebra structures on R[x].

Note that the R-bialgebra (R[x],m, u,∆1, ε1) cannot be given a Hopf R-algebra struc-
ture because x is a group like element and in a Hopf algebra such elements have to be
invertible.

3.4. A bialgebra structure on R[x]◦. Let R be noetherian. As proved in 3.2, R[x]◦ is R-
pure in R[x]∗ and (R[x]◦,∆, ε) is an R-coalgebra. Combining this coalgebra structure with
the algebra structure defined by “·” and u1 (3.3), and applying Theorem 2.13, it follows that
(R[x]◦, ·, u1,∆, ε) is an R-bialgebra which is dual to the R-bialgebra (R[x],m, u,∆1, ε1).

3.5. A Hopf algebra structure on R[x]◦. For the R-bialgebra (R[x],m, u,∆2, ε2),

S : R[x]→ R[x], xi 7→ (−1)i xi, i ≥ 0,

is an antipode and (R[x],m, u,∆2, ε2, S) is a Hopf R-algebra.
Let R be noetherian. It is easy to see that ∆ and ε are R-algebra morphisms for

(R[x]◦, ∗, u2) and so (R[x]◦, ∗, u2,∆, ε) is an R-bialgebra. Simple computations show that
the R-linear map (induced by S)

S◦ : R[x]◦ → R[x]◦, α 7→ [xi 7→ (−1)i α(xi), i ≥ 0],

is an antipode and so (R[x]◦, ∗, u2,∆, ε, S
◦) is a Hopf R-algebra which is dual to the Hopf

R-algebra (R[x],m, u,∆2, ε2, S).
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4 Linearly recursive sequences:

In this section we identify R[x]◦ with the R-module IL of linearly recursive sequences
over R. Applying our previous results we show that IL allows an R-bialgebra structure
and a Hopf R-algebra structure corresponding to those on R[x]◦ (given in Section 3). In
case R is a field this is explained in Peterson-Taft [7] and Chin-Goldman [3]. For details
on linearly recursive sequences we refer to [6].

4.1. Definition. Let S = {µ : IN → R} be the set of all sequences over R. S has a
structure of an R[x]-module as follows:
For h(x) = a0 + a1x+ ...+ anx

n ∈ R[x] and w ∈ S, define

h(x) · w = µ ∈ S, where µ(i) =
n∑
j=0

ajw(i+ j) for all i ∈ IN.

The set of linearly recursive sequences (abbreviated l.r.s.) over R is defined as

IL = {w ∈ S | g(x) · w = 0 fore some monic polynomial g(x) ∈ R[x]}.

Notice that for g(x) = a0 + a1x+ . . . ak−1x
k−1 + xk and w ∈ S, this condition means

w(i+ k) = −
k−1∑
j=0

ajw(i+ j), for all i ≥ 0.

Putting n = i+ k we have

w(n) = −(ak−1w(n− 1) + ...+ a0w(n− k)),

which is usual the definition of linearly recursive sequences.
We call (w(0), . . . , w(k− 1)) the initial vector of w and g(x) a characteristic poly-

nomial of w.
For g(x) ∈ R[x] and µ ∈ S, we define the annihilators

AnS(g(x)) = {µ ∈ S | g(x) · µ = 0}, AnR[x](µ) = {g(x) ∈ R[x] | g(x) · µ = 0}.

Clearly AnS(g(x)) is an R[x]-submodule of S, AnR[x](µ) is an ideal of R[x] and µ ∈ IL if
and only if AnR[x](µ) is a monic ideal in R[x].

4.2. Lemma. (Compare [6, 2.2]) Let g(x) = xk + ak−1x
k−1 + ...+ a1x+ a0 ∈ R[x]. Then

AnS(g(x)) is a free R-submodule of L with basis {eg0, ..., e
g
k−1} given by

egi (j) =

{
1, for j = i,

0, for j 6= i, j = 0, . . . , k − 1.
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4.3. Canonical isomorphisms. There is an R-module isomorphism

Φ : R[x]∗ → S, ϕ 7→ µ ∈ S, where µ(i) = ϕ(xi), for all i ≥ 0.

If R is noetherian, then its restriction to R[x]◦ yields an isomorphism

Φ′ : R[x]◦ → IL.

Proof. It is easy to verify that Φ is an isomorphism. For the second assertion we first
show Φ′(R[x]◦) ⊂ IL. Assume ϕ ∈ R[x]◦. By Proposition 2.6 there exists a cofinite ideal
I ⊂ R[x], such that ϕ(I) = 0. Since R is noetherian, I is a monic ideal (by Proposition
3.1) containing some monic polynomial g(x) = a0 + a1x+ · · ·+ ak−1x

k−1 + xk ∈ R[x] with
ϕ(g(x)) = 0 . For this we also have

ϕ(xi g(x)) = 0, for all i ≥ 0,

and so

a0ϕ(xi) + a1ϕ(xi+1) + · · ·+ ak−1ϕ(xi+k−1) + ϕ(xi+k) = 0.

Putting µ = Φ(ϕ), this means (with ak = 1)

k∑
j=0

ajµ(i+ j) = 0, for all i ≥ 0.

So we have g(x) · µ = 0, and by definition µ ∈ IL.
Now let µ ∈ IL and ϕ = Φ−1(µ). Then there exists some monic polynomial g(x) with

g(x) · µ = 0. Assuming g(x) to be of the form given above, this yields

0 =
k∑
j=0

aj µ(i+ j) = ϕ(xig(x)), for each i ≥ 0,

which implies ϕ(( g(x)) ) = 0. Since ( g(x)) is a monic ideal we conclude from Proposition
2.6 and Proposition 3.1 that ϕ ∈ R[x]◦.

From now let R be a noetherian ring. By the isomorphism Φ′ the structure of R[x]◦

transfers to IL in the following way:

4.4. Coporoduct. (Compare [6, 14.16]) (IL,∆, ε) is a coalgebra by

∆(µ) =
k−1∑
i=0

(xi · µ)⊗ egi , ε(µ) = µ(0), for µ ∈ IL,

where g(x) is a characteristic polynomial of µ of degree k and {eg0, ..., e
g
k−1} is the basis of

AnS(g(x)) from Lemma 4.2. Note that this coproduct on IL corresponds to the coproduct
on R[x]◦ given in 3.2.

13



Besides this we have two products on IL:

4.5. The Hadamard product. The algebra (R[x]◦, ·, u1) (see 3.3) yields the multiplica-
tion

· : IL⊗ IL→ IL, v ⊗ w 7−→ (v · w)(i) = v(i)w(i), i ≥ 0,

with identity element u1 : R→ IL, 1 7−→ (1, 1, 1, ...).
Together with ∆ and ε we have a bialgebra structure on IL.

4.6. The Hurwitz product. The algebra (R[x]◦, ∗, u2) (see 3.3) yields the multiplication

∗ : IL⊗ IL→ IL, v ⊗ w 7−→ (v ∗ w)(i) =
i∑

j=0

(
i

j

)
v(j)w(i− j), i ≥ 0,

with identity u2 : R→ IL, 1 7−→ (1, 0, 0, ...).
Together with ∆ and ε we have a Hopf R-algebra structure on IL, where the antipode

is given by S◦ : IL→ IL, S◦(µ)(i) = (−1)iµ(i).

Acknowledgment: The authors are most grateful to the referee for helpful remarks.
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University of Düsseldorf Universidad de Granada
D-40225 Düsseldorf, Germany E-18071 Granada, Spain
abuhlail@math.uni-duesseldorf.de torrecil@ugr.es
wisbauer@math.uni-duesseldorf.de

15


