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Abstract

An associative ring R is a left Kasch ring if it contains a copy of

every simple left R-module. Transferring this notion to modules we

call a left R-module M a Kasch module if it contains a copy of every

simple module in σ[M ]. The aim of this paper is to characterize and

investigate this class of modules.

Introduction

Let M be a left R-module over an associative unital ring R, and denote

by σ[M ] the full subcategory of R-Mod consisting of all M -subgenerated

R-modules.

In section 1 we collect some basic facts about σ[M ], torsion theories,

and modules of quotients in σ[M ]. In section 2 we introduce the concept

of a Kasch module. M is a Kasch module it its M -injective hull M̂ is an

(injective) cogenerator in σ[M ]. For RM = RR we regain the classical

concept of left Kasch ring. Various characterizations of Kasch modules are

provided. In section 3 we present some properties of Kasch modules.

Note that the notion of Kasch module in [10] and [16] is different from

ours. Also the notion of Kasch ring used in these papers (R is a Kasch ring

if RR and RR are injective cogenerators in Mod-R and R-Mod respectively)

is different from the usual one.

1 Preliminaries

Throughout this paper R will denote an associative ring with nonzero iden-

tity, R-Mod the category of all unital left R-modules and M a fixed left

R-module. The notation RN will be used to emphasize that N is a left R-

module. Module morphisms will be written as acting on the side opposite

to scalar multiplication. All other maps will be written as acting on the

left.
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Any unexplained terminology or notation can be found in [7], [13], [14]

and [15].

1.1 M-(co-)generated modules. A left R-module X is said to be M -

generated (resp. M -cogenerated) if there exists a set I and an epimorphism

M (I) −→ X (resp. a monomorphism X −→M I). The full subcategory of

R-Mod consisting of all M -generated (resp. M -cogenerated) R-modules is

denoted by Gen(M) (resp. Cog(M)).

1.2 The category σ[M ]. A left R-module X is called M -subgenerated

if X is isomorphic to a submodule of an M -generated module, and the

full subcategory of R-Mod consisting of all M -subgenerated R-modules

is denoted by σ[M ]. This is a Grothendieck category (see [14]) and it

determines a filter of left ideals

FM = { I ≤ RR |R/I ∈ σ[M ] } ,

which is precisely the set of all open left ideals of R in the so called M -adic

topology on R (see [6]).

For any X ∈ σ[M ] we shall denote by X̂ the injective hull of X in σ[M ],

called also the M -injective hull of X. With this terminology, the injective

hull of X in R-Mod is the R-injective hull, denoted in the sequel by E(X).

It is known (see e.g. [14, 17.9]) that X̂ = Tr(M,X) = Tr(σ[M ], X), where

Tr(M,X) (resp. Tr(σ[M ], X)) denotes the trace of M (resp. σ[M ]) in X.

1.3 Hereditary torsion theories in σ[M ]. The concept of a torsion

theory can be defined in any Grothendieck category (cf. [8]), so in particular

in σ[M ]. A hereditary torsion theory in σ[M ] is a pair τ = (T ,F) of

nonempty classes of modules in σ[M ] such that T is a hereditary torsion

class or a localizing subcategory of σ[M ] (this means that it is closed under

subobjects, factor objects, extensions, and direct sums) and

F = {X ∈ σ[M ] |HomR(T,X) = 0 , ∀T ∈ T } .

The objects in T are called τ -torsion modules, and the object in F are

called τ -torsionfree modules.

For any X ∈ σ[M ] we denote by τ(X) the τ -torsion submodule of X,

which is the sum of all submodules of X belonging to T . Clearly, one has

X ∈ T ⇔ τ(X) = X , and X ∈ F ⇔ τ(X) = 0.
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Note that any hereditary torsion theory τ = (T ,F) in σ[M ] if com-

pletely determined by its first component T , and so usually the hereditary

torsion theories are identified with hereditary torsion classes.

Any injective object Q ∈ σ[M ], i.e., any M -injective module belonging

to σ[M ], determines a hereditary torsion theory τQ = (TQ,FQ), called the

hereditary torsion theory in σ[M ] cogenerated by Q :

TQ = {X ∈ σ[M ] |HomR(X,Q) = 0 } and FQ = Cog(Q) ∩ σ[M ] .

Note that for any N ∈ σ[M ], Cog(N) ∩ σ[M ] is precisely the class

CogM (N) of all objects in σ[M ] which are cogenerated by N in the category

σ[M ] (i.e., are embeddable in direct products in σ[M ] of copies of N).

According to [15, 9.4, 9.5], any hereditary torsion theory τ = (T ,F) in

σ[M ] has this form, i.e., for any such τ there exists an M -injective module

Q in σ[M ] with τ = τQ .

For any M -injective module Q in σ[M ] we can also consider the heredi-

tary torsion theory τE(Q) = (TE(Q),FE(Q)) in R-Mod cogenerated by E(Q):

TE(Q) = {RX |HomR(X,E(Q)) = 0 } and FE(Q) = Cog(E(Q)) .

Since for any X ∈ σ[M ] and f ∈ HomR(X,E(Q)), one has Im(f) ∈
Tr(σ[M ], E(Q)) = Q̂ = Q , we deduce that

TQ = TE(Q) ∩ σ[M ] and FQ = FE(Q) ∩ σ[M ] ,

that is, any hereditary torsion theory τ = (T ,F) in σ[M ] is the ”trace”

τ ′ ∩ σ[M ] of a certain hereditary torsion theory τ ′ = (T ′,F ′) in R-Mod:

this means that

T = T ′ ∩ σ[M ] and F = F ′ ∩ σ[M ] .

1.4 The Lambek torsion theory in σ[M ]. The M -injective hull M̂ of

the module RM cogenerates a hereditary torsion theory τ
M̂

= (T
M̂
,F

M̂
)

in σ[M ], namely:

T
M̂

= {X ∈ σ[M ] |HomR(X, M̂) = 0 } ,

F
M̂

= CogM (M̂) = σ[M ] ∩ Cog(M̂) ,

called the Lambek torsion theory in σ[M ]. Note that this torsion theory

depends on the choice of the subgenerator of σ[M ]. If σ[M ] = σ[N ] for

some RN , then in general τ
M̂
6= τ

N̂
.
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If RM = RR then we obtain the torsion theory τE(R) on R-Mod, which

is precisely the well-known Lambek torsion theory in R-Mod. The corre-

sponding Gabriel topology on R is the set

DR = { I ≤ RR |HomR(R/I,E(R)) = 0 }

of all dense left ideals of R.

In the sequel, we shall denote by DM the Gabriel topology on R corre-

sponding to the hereditary torsion theory in R-Mod cogenerated by E(M),

DM = { I ≤ RR |HomR(R/I,E(M)) = 0 } .

1.5 Modules of quotients in σ[M ]. Let τ = (T ,F) be a hereditary

torsion theory in σ[M ]. For any module X ∈ σ[M ] one defines the τ -

injective hull of X (see [15, 9.10]) as being the submodule Eτ (X) of the

M -injective hull X̂ of X for which

Eτ (X)/X := τ(X̂/X) .

The module of quotients Qτ (X) of X with respect to τ is defined (see

[15, 9.14]) by

Qτ (X) := Eτ (X/τ(X)) .

In particular one can consider for any X ∈ σ[M ] the module of quotients

of X with respect to the Lambek torsion theory τ
M̂

in σ[M ].

The module of quotients of a module RX with respect to the Lambek

torsion theory τE(R) in R-Mod is denoted by Qmax(X) and is called the

maximal module of quotients of X. For RX = RR one obtains a ring

denoted by Q`max(R) and called the maximal left ring of quotients of R.

2 Definition and Characterizations

The following result is well-known (see e.g. [13, Lemma 5.1, p. 235]):

2.1 Proposition. The following assertions are equivalent for a ring R:

(1) DR = {R};
(2) E(R) is an injective cogenerator of R-Mod;

(3) Every simple left R–module is isomorphic to a (minimal) left ideal

of R;

(4) HomR(C,R) 6= 0 for every nonzero cyclic left R-module C;

(5) `(I) 6= 0 for every left ideal I of R, where `(I) = { r ∈ R | rI = 0 }.
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A ring satisfying one of the equivalent conditions above is called a left

Kasch ring .

The above proposition suggests the following:

2.2 Definition. A module RM is called a Kasch module if M̂ is an

(injective) cogenerator in σ[M ].

So, the ring R is a left Kasch ring if and only if RR is a Kasch module.

2.3 Remarks. (1) Clearly, if M is a Kasch module, then so is M ⊕N for

any N ∈ σ[M ].

(2) For any RN there exists RK ∈ σ[N ] such that σ[N ] = σ[K] and K

is a Kasch module. Indeed, σ[N ] has an injective cogenerator, say Q (see

e.g. [14, 17.12]). Then K = N ⊕Q is the desired Kasch module.

(3) If M is a Kasch module and RN is such that σ[M ] = σ[N ], then

the module N is not necessarily a Kasch module. To see this, take as N a

module which is not Kasch and as M the module K considered in (2).

(4) Clearly if RM is a cogenerator in σ[M ], then M is a Kasch module.

The converse is not true, as the following example shows: let F be a field

and denote by R the ring F [[X]] of all formal series in the indeterminate X

over F . Then R is a local ring having P = (X) as the only maximal ideal,

R/P ' F ≤ R, but R is not a cogenerator of R-Mod since E(R/P ) cannot

be embedded in R.

2.4 Examples. (1) Any semisimple module M is a Kasch module.

(2) If M is a non-singular module in σ[M ], i.e. M is polyform (see

[15]), then M is a Kasch module if and only if M is semisimple. Indeed,

one implication is obvious. For the other one, if M is a non-singular module

in σ[M ], then according to [15, 10.2], N ∈ σ[M ] is M -singular if and only if

HomR(N, M̂) = 0. But, if M is a Kasch module, then such an N must be

necessarily zero (see also 2.6). It follows that for any K �M , where ”�”

means ”essential submodule”, one obtains an M -singular module M/K,

which must be 0. Thus, M has no proper essential submodules, which

implies that M is semisimple.

(3) For any nonzero n ∈ IN , the ZZ-module ZZ/nZZ is a Kasch module,

which is polyform if and only if n is square-free, i.e., if and only if it is

semisimple.

(4) Any torsion abelian group is a Kasch ZZ-module. More generally,

any usual torsion module over a Dedekind domain D is a Kasch module.
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Indeed, it is known (see e.g. [3, Proposition 2.2.3]) that the usual torsion

modules over a Dedekind domain D which is not a field are precisely the

semi-ArtinianD-modules, and moreover, any torsionD-module is the direct

sum of its U–primary components (see section 3 for definitions). Apply now

3.2 and 3.6.

2.5 Lemma. The following assertions are equivalent for X ∈ σ[M ]:

(1) HomR(X,E(M)) = 0;

(2) HomR(X, M̂)) = 0;

(3) HomR(C,M) = 0 for any (cyclic) submodule C of X.

Proof: Since for any f ∈ HomR(X,E(M)), one has

Im(f) ∈ Tr(σ[M ], E(M)) = M̂ ,

one deduces that (1)⇔ (2).

The equivalence (1)⇔ (3) is an immediate consequence of [13, Lemma

3.8, p. 142]. 2

2.6 Proposition. The following properties are equivalent for the module

RM :

(1) M is a Kasch module;

(2) Any simple module in σ[M ] can be embedded in M ;

(3) Any simple module in σ[M ] is cogenerated by M ;

(4) T
M̂

= {0};
(5) F

M̂
= σ[M ];

(6) {RX |X ≤ RN and HomR(N/X,E(M)) = 0 } = {N} for any

N ≤ RM ;

(7) FM ∩DM = {R};
(8) HomR(C,M) 6= 0 for any nonzero (cyclic) left R-module C from

σ[M ];

(9) N = Qτ
M̂

(N) for any N ∈ σ[M ], i.e., any module in σ[M ] is its

own module of quotients with respect to the Lambek torsion theory τ
M̂

in

σ[M ].

Proof: (1) ⇒ (2) It is known (see [14, 17.12]) that an injective object

RQ in σ[M ] is a cogenerator of σ[M ] if and only if it contains a copy of

each simple module in σ[M ]. So, (1) implies that for any simple object

U ∈ σ[M ] there exists a monomorphism αU : U −→ M̂ . It follows that

Im(αU ) ∩M 6= 0, and then Im(αU ) ∩M = Im(αU ) because U ' Im(αU )
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is a simple module. Thus U ' Im(αU ) ≤M , which proves the implication

(1)⇒ (2).

(2)⇒ (3) is obvious.

(3) ⇒ (1) Let U be an arbitrary simple module in σ[M ]. Since U ∈
Cog(M), it follows that there exists a nonzero morphism f : U −→ M ,

which is necessarily injective because U is a simple module. Thus, any

simple module in σ[M ] can be embedded in M , and so in M̂ , showing that

M̂ is a cogenerator in σ[M ].

(1) ⇒ (4) If X ∈ T
M̂

then HomR(X, M̂) = 0. Assume that X 6= 0.

Then, there exists a nonzero morphism h : X −→ M̂ because M̂ is a

cogenerator in σ[M ], a contradiction.

(4)⇔ (5) and (4)⇒ (6) are clear.

(6) ⇒ (2) Assume that (2) is not satisfied. Then, there exists a sim-

ple module U ∈ σ[M ] such that U cannot be embedded in M . Then

HomR(U,M) = 0, and so HomR(U,E(M)) = 0. But every module in

σ[M ] is an epimorphic image of a submodule of M , i.e., it is a subfactor

of M . So, there exists X ≤ N ≤ M such that U ' N/X. It follows that

HomR(N/X,E(M)) = 0, and by assumption, we deduce that X = N , a

contradiction because U 6= 0. This proves the desired implication.

(4)⇒ (7), (7)⇒ (8) and (8)⇒ (4) follow from 2.5.

(4) ⇒ (9) Assume that T
M̂

= {0}. Then F
M̂

= σ[M ]. Let N ∈ σ[M ].

Then, the module of quotients Qτ
M̂

(N) of N with respect to the Lambek

torsion theory τ
M̂

in σ[M ] is

Qτ
M̂

(N) = Eτ
M̂

(N/τ
M̂

(N)) .

But τ
M̂

(N) = 0 and

Eτ
M̂

(N)/N = τ
M̂

(N̂/N) = 0 ,

by hypothesis. So Eτ
M̂

(N) = N , and consequently Qτ
M̂

(N) = N for any

N ∈ σ[M ].

(9)⇒ (5) Suppose that M is such that Qτ
M̂

(N) = N for any N ∈ σ[M ].

Since Qτ
M̂

(N) ∈ F
M̂

for all N ∈ σ[M ], we deduce that F
M̂

= σ[M ]. 2

2.7 Remark. Suppose that RM is such that any simple module from

σ[M ] is M -cyclic, i.e., isomorphic to a factor module of M . This happens

e.g. when RM = RR or when M is a self-generator. Then, by the proof of
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2.6, one deduces that in this case we can add to the equivalent conditions

from 2.6 also the following one:

(10) {RX |X ≤ RM and HomR(M/X,E(M)) = 0 } = {M} ,

in other words, the only rational submodule of M is M itself.

As an immediate consequene of 2.6 we obtain the following characteri-

zation of left Kasch rings:

2.8 Corollary. The following are equivalent for the ring R:

(1) R is a left Kasch ring;

(2) Any left R-module X is its own maximal module of quotients.

2.9 Example. The example from [12] we are going to present now pro-

vides a module which is its own module of quotients in the Lambek topology,

but which is not Kasch. This shows that in 2.6 (resp. 2.8) we need the

condition (9) (resp. (2)) to be fulfilled for all X ∈ σ[M ], and not only for

M (resp. for all X in R-Mod, and not only for RR).

Let R denote the direct product
∏
λ∈Λ Fλ of an infinite family (Fλ)λ∈Λ

of fields. Then, according to [11, Proposition 9, p. 100], one has

Qmax(R) = Qmax(
∏
λ∈Λ

Fλ) '
∏
λ∈Λ

Qmax(Fλ) =
∏
λ∈Λ

Fλ = R ,

which shows that R is its own maximal ring of quotients. However, R is

not a Kasch ring: indeed, if we consider the proper ideal I =
⊕

λ∈Λ Fλ of

R, then clearly `(I) = 0 , and consequently, by 2.1 one deduces that R is

not a Kasch ring.

3 Properties of Kasch modules

Denote by K the class of all Kasch left R-modules. Consider a module RN

which is not a Kasch module, let Q be a cogenerator of σ[N ], and denote

K = N ⊕Q. Then N is isomorphic to a submodule, as well as to a factor

module of the Kasch module K, which shows that the class K need not to

be closed under subobjects nor under factor objects. The above example

shows also that a direct summand of a Kasch module is not necessarily a

Kasch module.
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We are going now to show that the class K is closed under direct sums.

We need first the following:

3.1 Lemma. Let (Mλ)λ∈Λ be a nonempty family of nonzero left R-

modules. Then, for any simple module U ∈ σ[
⊕

λ∈ΛMλ] there exists a

µ ∈ Λ such that U ∈ σ[Mµ].

Proof: Denote M =
⊕

λ∈ΛMλ and consider the injective hull Û of U

in σ[M ]. Then, as known, Û is M -generated, so there exists a nonzero

morphism h : M −→ Û . Denote by Ũ the image of h. It follows that

U � Ũ � Û , and so, we obtain an epimorphism of R-modules

g :
⊕
λ∈Λ

Mλ −→ Ũ .

Denote for each λ ∈ Λ by ελ : Mλ −→ M the canonical injection. Then,

surely there exists a µ ∈ Λ such that εµg 6= 0, which produces a nonzero

morphism gµ : Mµ −→ Ũ . Since U� Ũ we deduce that U is an epimorphic

image of a submodule of Mµ. Thus U ∈ σ[Mµ]. 2

3.2 Proposition. The class K is closed under arbitrary direct sums and

essential submodules.

Proof: Let (Mλ)λ∈Λ be an arbitrary nonempty family of left R-modules,

and U ∈ σ[
⊕

λ∈ΛMλ] a simple module. By the previous lemma, there

exists a µ ∈ Λ such that U ∈ σ[Mµ]. Since Mµ is a Kasch module, we de-

duce that U can be embedded in Mµ , and consequently also in
⊕

λ∈ΛMλ,

proving that
⊕

λ∈ΛMλ is a Kasch module.

The last statement of the proposition is obvious. 2

We are going now to recall some definitions and results from [1], [2], [4]

and [9]. For any full subcategory C of R-Mod we shall denote by Sim(C) a

representative system of all isomorphism classes of simple modules belong-

ing to C. Clearly, Sim(C) is a set, possibly empty. For any RX we shall

denote

Sim(X) := Sim(σ[X]) .

So, Sim(R) denotes Sim(R-Mod). We allways shall assume that Sim(C) ⊆
Sim(R) for any full subcategory C of R-Mod.

Clearly, for any module RX one has:

Sim(X) = {U ∈ Sim(R) | ∃ X ′ ≤ X and ∃ V ≤ X/X ′ with V ' U } .
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The next result collects some of the basic properties of ”Sim”:

3.3 Proposition. The following assertions hold:

(1) For an RX one has Sim(X) = ∅ ⇔ X = 0 .

(2) If RX is a module and Y ∈ σ[X], then Sim(Y ) ⊆ Sim(X) .

(3) For any exact sequence in R-Mod:

0 −→ X ′ −→ X −→ X ′′ −→ 0 ,

one has

Sim(X) = Sim(X ′) ∪ Sim(X ′′) .

(4) For any family of (Mλ)λ∈Λ of left R-modules one has

Sim(
⊕
λ∈Λ

Mλ) =
⋃
λ∈Λ

Sim(Mλ) .

Proof: (1) If X 6= 0, then there exists x ∈ X , x 6= 0. But, the nonzero

cyclic module Rx has a maximal submodule Z, and so, Rx/Z is a simple

module in σ[X].

(2) is obvious.

(3) Since X ′ , X ′′ ∈ σ[X] it is clear that Sim(X ′)∪Sim(X ′′) ⊆ Sim(X) .

Let now U ∈ Sim(X) . Without loss of generality, we can suppose that

X ′ ≤ X and X ′′ = X/X ′. There exists a submodule Y of X and an

epimorphism f : Y −→ U .

Two cases arise: (Y ∩X ′)f = 0 and (Y ∩X ′)f 6= 0 . In the first case

f induces an epimorphism (Y + X ′)/X ′ ' Y/(Y ∩ X ′) −→ U , and so

U ∈ Sim(X ′′) .

In the second case, f |Y ∩X′ yields an epimorphism Y ∩X ′ −→ U , and

then U ∈ Sim(X ′) .

(4) is essentially a reformulation of . 2

Recall that a module RX is called a semi-Artinian (or Loewy ) module

if any nonzero factor module of X contains a simple submodule.

If U ∈ Sim(R), a module RX is said to be U -primary whenever X/X ′

contains a simple module isomorphic to U for any X ′ ≤ X , X ′ 6= X.

The class L of all semi-Artinian left R-modules is a localizing sub-

category of R-Mod, as well as, for each U ∈ Sim(R), the class LU of all

U -primary left R-modules. For any RX and U ∈ Sim(R) we shall de-

note by XU the greatest U -primary submodule of X, called the U -primary

component of X.
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If X is a left R-module, then the set

S(X) = {U ∈ Sim(R) |XU 6= 0 }

is called the support of X. One says that X is a module with finite support

in case S(X) is a finite set.

It is known that if X ∈ L, then the sum
∑
U∈Sim(R)XU is a direct sum

and
⊕

U∈Sim(R)XU � X (cf. [8]), but in general X 6=
⊕

U∈Sim(R)XU .

Following [2], the module X is said to be Dickson decomposable if X =⊕
U∈Sim(R)XU .

Following [9] (resp. [1]), the ring R is said to be a left T–ring (resp. a

left FT–ring) in case any semi-Artinian module (resp. any semi-Artinian

module with finite support) in R-Mod is a Dickson decomposable module.

By [1, Corollaire 6], any commutative ring is an FT–ring.

We can extend very naturally these definitions as follows:

3.4 Definitions. The module RM is called a T -module (resp. FT -

module) in case any semi-Artinian module (resp. any semi-Artinian module

with finite support) in σ[M ] is Dickson decomposable.

3.5 Lemma. Let X be a left R-module and U ∈ Sim(R). Then

X ∈ LU ⇔ X ∈ L and Sim(X) = {U} .

Proof: If X is U -primary, then obviously X is semi-Artinian. Let V ∈
Sim(X). Then some quotient module X/X ′ of X contains a simple module

W isomorphic to V . Then V ∈ LU , and consequently V = U . The converse

implication is clear. 2

3.6 Lemma. For any U ∈ Sim(R) , LU ⊆ K .

Proof: If X is a nonzero U -primary module, then the socle Soc(X) of

X contains at least a simple submodule of X isomorphic to U , hence any

simple module in Sim(X) = {U} can be embedded in X, showing that X

is a Kasch module. 2

3.7 Proposition. Let (Uλ)λ∈Λ be a family of simple modules in Sim(R)

and Xλ ∈ LUλ for each λ ∈ Λ. Then
⊕

λ∈ΛXλ ∈ K . In particular any

Dickson decomposable module is a Kasch module.

Proof: Apply 3.6 and 3.2. 2
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3.8 Corollary. If RM is a T -module (resp. an FT -module), then any

semi-Artinian module (resp. semi-Artinian module with finite support) in

σ[M ] is a Kasch module.

Proof: By definition, any semi-Artinian module (resp. semi-Artinian mod-

ule with finite support) in σ[M ] is a Dickson decomposable module. Apply

now 3.7. 2

3.9 Corollary.

If RM be a semi-Artinian module with finite support, and R is an FT–

ring, then any module in σ[M ] is a Kasch module.

Proof: According to [1, Corollaire 8], for any exact sequence in R-Mod:

0 −→ X ′ −→ X −→ X ′′ −→ 0 ,

with X a semi-Artinian module with finite support, one has

S(X) = S(X ′) ∪ S(X ′′) .

It follows that for each X ∈ σ[M ] one has S(X) ⊆ S(M), and so X is also

with finite support. Note that σ[M ] ⊆ L since M ∈ L. Consequently, any

X ∈ σ[M ] is Dickson decomposable. Apply now 3.7. 2

If R is a commutative ring, then Ass(X) will denote the ”Assasin” of

X (see [13]).

3.10 Corollary. Let M be a semi-Artinian module over the commutative

ring R. If Ass(M) is a finite set, then any module in σ[M ] is a Kasch

module.

Proof: As noted above, any commutative ring is an FT–ring. Since M

has finite support if and only if Ass(M) is a finite set, the result follows

now from 3.3. 2

3.11 Corollary. If M be a semi-Artinian module over the commutative

semi-local ring R, then any module in σ[M ] is a Kasch module.

Proof: By [2, Proposition 1], any P ∈ Ass(M) is a maximal ideal of R.

Apply now 3.10. 2

3.12 Corollary. If R is a commutative semi-local semi-Artinian ring,

then any R-module is a Kasch module.
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3.13 Corollary. Any module over a commutative Artinian ring is a

Kasch module.

3.14 Remarks. (1) The observation in 3.13 does not hold for noncom-

mutative Artinian rings. For this let R be the ring of upper triangular

(2,2)-matrices over a field F . The left R-module

M =

(
0 F

0 F

)
has socle S =

(
0 F

0 0

)
,

and M/S is not isomorphic to S. Hence M is not a Kasch module.

(2) In case any factor module of M is a Kasch module, then M must

be necessarily a semi-Artinian module, as this can be shown by considering

the ascending Loewy series of M .

(3) The result in 3.10 fails if Ass(M) is an infinite set. To see this,

consider the following example given in [4, 3.34]:

Let F a field and Λ an infinite set. Denote by B the direct product∏
Λ Fλ , where Fλ = F for all λ ∈ Λ , and by A the subring

⊕
Λ Fλ + Fe

of B , where e is the identity element of B. Denote for each λ ∈ Λ by

ελ : Fλ −→
⊕

µ∈Λ Fµ the canonical injection, and Uλ = ελ(Fλ) . Then∑
λ∈Λ

Uλ =
⊕
λ∈Λ

Uλ =
⊕
λ∈Λ

Fλ ,

is precisely the socle Soc(A) of A, this is a maximal ideal of A, Uλ’s are

mutually nonisomorphic simple A-modules, and Uλ 6' U0 for all λ ∈ Λ ,

where U0 = A/Soc(A) . The ring A is a semi-Artinian regular ring with the

Loewy length 2 which is not semi-simple, the A-module A is not Dickson

decomposable, Ass(A) is an infinite set, and A is not a Kasch ring.

The exact sequence

0 −→ Soc(A) −→ A −→ U0 −→ 0

of A modules shows also that K need not to be closed under extensions.

(4) The example considered in 2.9 shows that K is not closed under

direct products. Let R denote the direct product
∏
λ∈Λ Fλ of an infinite

family (Fλ)λ∈Λ of fields. Each Fλ is a simple R-module in a canonical way,

but their product is R itself, which as we have already seen in 2.9, is not a

Kasch module.

(5) We are going now to show that a direct sum of two modules which

both are not Kasch could be a Kasch module. For this, consider the example

due to P.M. Cohn, exhibited in [9]:
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Let F be any field possesing an endomorphism ϕ : F −→ F which is

not onto, and denote by A the skew polynomial ring F [X,ϕ] consisting

of all polynomials
∑

0≤i≤nX
iai , where ai ∈ F , with the multiplication

aX = Xϕ(a) for any a ∈ F . Then A is a principal right ideal domain.

Let β ∈ F \ ϕ(F ) and consider the elements a = X , b = X + β. If we

denote U = A/aA and V = A/bA then V ' aA/abA and U ' bA/baA ,

U and V are simple right A-modules which are not isomorphic, and the

canonical exact sequences

0 −→ aA/abA −→ A/abA −→ A/aA −→ 0

0 −→ bA/baA −→ A/baA −→ A/aA −→ 0

are not splitting. This shows that both the right A-modules A/abA and

A/baA are not Kasch modules, but their direct sum is a Kasch module.

3.15 Proposition. Any faithful left R-module over a left Kasch ring R

is a Kasch module.

Proof: If N is a faithful module over the Kach ring R, then the module RR

can be embedded in NN , hence any simple left R-module is cogenerated by

N , proving that N is a Kasch module. 2

We have proved so far that K is closed under direct sums and under

essential subobjects, but need not to be closed under subobjects, nor factor

objects, nor extensions and nor direct products.

Some natural questions arise:

Question 1. For which rings R is the class K of all left Kasch R-

modules K closed under extensions resp. direct products?

Question 2. Let M be a Kasch module. When is any submodule (resp.

factor module) of M again a Kasch module?

Question 3. For which modules M is any module in σ[M ] a Kasch

module? In particular, for which rings R are all left R-modules Kasch

modules?

If all modules in σ[M ] are homo-serial then they are all Kasch modules

(see [14, 56.7, 56.8]). As a special case all left (and right) R-modules are

Kasch provided R is left and right an artinian and principal ideal ring (see
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[14, 56.9]). Moreover all modules over commutative (semi-) local (semi-)

Artinian rings are Kasch (by 3.12).
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