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Abstract

Let ω ≥ 2 be a cardinal and S a class of semisimple left R-modules (closed under isomorphisms). A

module RM is called ω-thick relative to S, if dimS < ω for each subfactor S of M with S ∈ S. This notion

allows to study from a unified point of view ω-distributive modules, i.e., modules satisfying

A+
⋂
λ∈Λ

Bλ =
⋂
λ∈Λ

(A+
⋂

µ∈Λ\{λ}

Bµ)

for all submodules A and families {Bλ}Λ of submodules with cardinality |Λ| = ω, and ω-thick modules, i.e.,

modules which are ω-thick relative to the class of all semisimple left R-modules. In particular 2-distributive

modules coincide with distributive modules, 2-thick modules coincide with uniserial modules, ℵ0-thick mod-

ules coincide with q.f.d. modules, i.e., modules whose factor modules have finite uniform dimension.

We also consider relative ω-quasi-invariant, relative ω-noetherian and relative ω-Bézout modules. Prop-

erties of modules from these classes are investigated including the relationship between them. Moreover, for

modules RM and RU , the relationship between ω-distributivity of M and properties of the left EndR(U)-

module HomR(U,M) and the right EndR(U)-module HomR(M,U) are studied.

1. Introduction and preliminaries. 2. (Co-)independent families of submodules. 3. Characterizations of
relative ω-thick modules. 4. ω-thick and ω-(co-)quasi-invariant modules. 5. ω-thick and ω-(hyper-)distributive
modules. 6. ω-thick, ω-noetherian and ω-Bézout modules. 7. Hom-functor and ω-distributive modules.

1 Introduction and preliminaries

In this paper associative rings with unit and unital modules will be considered, and homomorphisms will be
written on the opposite side to the scalars. Terminology and general notations will be taken from [1] without
reference.

Throughout ω will denote a cardinal and n a finite cardinal. We write ω+ for the smallest cardinal larger
than ω. The notation |X| is used for the cardinality of any set X, and L∗ for the partially ordered set which is
dual to a partially ordered set L.

R will always be an associative ring with unit, R-Mod (resp. Mod-R) denote the category of unital left (resp.
right) R-modules, and M will be a left or right R-module depending on the situation, and we will write RM or
MR if it is appropriate to indicate the side of the module.

J(M), L(M), End(M) and max(M) will stand for the Jacobson radical, the lattice of submodules, the
endomorphism ring and the set of all maximal submodules of M . M (ω) and Mω denote the direct sum and the
direct product of ω copies of M , and dimV denotes the dimension of any semisimple module V (the cardinal
number of simple summands of V , e.g. [1, 20.5]).
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Moreover, for any element x and subset A of RM , we put

(A : x) = {r ∈ R | rx ∈ A} and `(x) = (0 : x).

Submodules of factor modules are called subfactors of M . By crs(M) we denote the cardinality of a representing
set of all simple subfactors of M . In particular, crs(R) is the cardinality of all (non-isomorphic) simple left R-
modules, and for any semisimple module V , crs(V ) coincides with the cardinality of the set of all homogeneous
components of V .

Let us recall some definitions from set theory. For ω ≥ 2 the cofinal character cf(ω) is defined as the smallest
cardinal %, such that there exists a family {αξ}Ξ of cardinals, where |Ξ| = %, αξ < ω for all ξ ∈ Ξ, and

∑
Ξ αξ = ω.

The cardinal ω is called regular provided cf(ω) = ω, and ω is said to be singular if ω is not regular.
Usually these definitions are only applied to an infinite ω. However it will be convenient for us to use them

also for the case of finite ω. Hereby, obviously, cf(n) = 2 for any finite cardinal n ≥ 2, and hence the cardinal 2
is regular whereas any finite cardinal n ≥ 3 is singular.

In module theory theorems are of importance which describe the structure of modules by modules with a
relatively simple structure, for example uniserial modules. Natural generalizations of uniserial modules are first
of all distributive modules, i.e., modules with a distributive lattice of submodules, and, secondly, AB5∗ modules,
i.e., modules satisfying

A+
⋂
Λ

Bλ =
⋂
Λ

(A+Bλ)

for all submodules A and inverse families of submodules {Bλ}Λ.
In contrast to distributivity no convenient criterion is known for the AB5∗ condition and this makes the

investigation of AB5∗ modules more difficult. To overcome this problem in [2] a weaker condition was introduced -
countably distributive modules. In [3] it was suggested to treat this as a special case of the notion of ω-distributive
modules, where ω ≥ 2 is any cardinal, corresponding to ω = ℵ0.

Recall some definitions and propositions from [3]. Let ω ≥ 2 and n ≥ 2 a natural number. A lattice is called
ω-distributive, if any non-empty subset of cardinality not greater than ω has a greatest lower bound, and

a ∨
∧
λ∈Λ

bλ =
∧
λ∈Λ

(a ∨
∧

µ∈Λ\{λ}

bµ),

for all elements a ∈ L and families {bλ}Λ of elements, where |Λ| = ω.
A module M is called ω-distributive if the lattice L(M) is ω-distributive. Hereby 2-distributivity of a lattice

(module) coincides with the usual distributivity of a lattice (module). The investigation of n-distributive lattices
was initiated in [4], [5]. Some differences in the terminology should be pointed out: an n-distributive lattice in
the sense defined above corresponds exactly to an (n− 1)-distributive lattice in the sense of [5].

As usual, for any property IP of a module we say that the ring R has this property on the left (right) provided
the module RR (respectively RR) has property IP . Left noetherian, local left n-distributive rings were studied
in [6]. Left countably distributive rings appeared in connection with the study of weakly injective modules in [7,
Theorem 3.2] and [8, Corollary 9]. In [3] the following generalization of a well-known criterion of distributivity
for modules (see [9, Theorem 1.6], [10, Lemma 1.3]) is shown.

1.1 Lemma. For RM and ω ≥ 2, the following are equivalent:

(a) M is ω-distributive;

(b)
∑
λ∈Λ((

∑
µ∈Λ\{λ}Raµ) :aλ) = R, for any family {aλ}Λ of elements of M , where |Λ| = ω;

(c)
∑

Λ `(aλ) = R, for each independent family {Raλ}Λ of cyclic submodules of any factor module of M , where
|Λ| = ω.
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A number of characterizations of distributive modules is known involving uniserial modules (see, for example,
[10 - 16]).

In view of extending suitable results to ω-distributive modules, a generalization of uniserial modules will be
introduced - ω-thick modules. Moreover we will show that ω-distributive and ω-thick modules may be considered
from a unified point of view by introducing relative ω-thick modules.

1.2 Abstract classes of modules. A class of left R-modules is called abstract if it is closed under isomorphic
images. In what follows S will denote an abstract class of semisimple left modules, K a class of simple left
R-modules and K′ the abstract closure of the class K, i.e.

K
′

= {RQ | Q ' P for some P ∈ K}.

The modules in K′ will be called K-simple. A submodule A of RM is said to be K-maximal if the factor module
M/A is K-simple. By S1(K) we will denote the class of all semisimple modules RM , for which Q ∈ K′ for each
simple submodule Q of M . In case K is determined by a single module K we write S1(K) = S1(K).

Clearly S1(K) = S1(K′), and we have the obvious characterization of classes of this type:

1.3 Lemma. The following properties of an abstract class of semisimple left R-modules are equivalent:

(a) S is closed with respect to submodules and direct sums;

(b) S = S1(K) for some class K of simple left R-modules.

For any RM we put
SocS(M) =

∑
{N ⊆M | N ∈ S}.

If the abstract class S of semisimple left R-modules is closed with respect to submodules and direct sums, then
S is also closed with respect to factor modules and hence SocS(M) is the largest submodule of M belonging to
S. Hereby

SocS(M) =
∑
{Q ⊆M | Q ∈ K

′
},

where K is any class of simple left R-modules with S1(K) = S.
A module RM is called ω-thick relative to S provided dimS < ω for any subfactor S of M with S ∈ S.
By T we denote the class of all semisimple modules. Given a property IP of modules relative to any class S

we will simply say that a module M has property IP if M has property IP relative to T .
Modules which are ℵ0-thick relative to S1(K) were studied in [8] under the name countably thick relative to

K. The smallest cardinality ω for which a module M is ω-thick is called thickness of the module M . A notion
similar to our thickness is considered in [17].

In Section 2 suitable techniques are developed to handle independent and coindependent families of submod-
ules.

In Section 3 these techniques are applied to the investigation of modules M over arbitrary rings, which are
ω-thick relative to S. Theorem 3.1 contains several characterizations of such modules in terms of families of
submodules of M or of any subfactor of M . A very transparent form of these characterizations is obtained for
ω-thick modules. They are collected in Corollary 3.5.

A module is called q.f.d. (quotient finite dimensional) if all its factor modules have finite uniform dimension.
By Corollary 3.5, 2-thick modules coincide with uniserial modules, and ℵ0-thick modules are just q.f.d. modules.

With any abstract class S of semisimple left R-modules we associate the class S̃ consisting of all modules
N ∈ S which are not square free, i.e., which have at least one homogeneous component of dimension > 1, and
put S2(K) = ˜S1(K). We call M ω-hyperdistributive, if M is ω-thick relative to T̃ .

By a well-known criterion for distributivity of modules [18, Theorem 1], 2-hyperdistributivity of a module
is equivalent to its distributivity. In [3] a generalization of this criterion for distributivity is proved which we
formulate using the definition given above:
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1.4 Lemma. For RM and ω ≥ 2, the following are equivalent:

(a) M is ω-distributive;

(b) for any simple module RP , M is ω-thick relative to S1(P );

(c) for any simple module RP , M is ω-thick relative to S2(P ).

The lemma allows to deduce several characterizations of ω-distributivity of modules from Theorem 3.1. This is
done in Corollary 3.7.

For any cardinality ω ≥ 2 we define a cardinality ω − 1 in the following way:
If ω < ℵ0, i.e. ω = n, then we put ω − 1 = n− 1.
If ω ≥ ℵ0, then we put ω − 1 = ω.

1.5 Semi-minimal (-maximal) submodules. We call a submodule A of M ω-semi-minimal relative to S,
if A ∈ S and dimA = ω − 1. Dually, a submodule A of M is called ω-semi-maximal relative to S, provided
the factor module M/A ∈ S and dimM/A = ω − 1. A submodule A of M will be called ω-semi-minimal
(ω-semi-maximal) if A is ω-semi-minimal (resp., ω-semi-maximal) relative to T .

1.6 (Co-) quasi-invariant submodules. Recall that a module M is said to be quasi-invariant (see [16])
provided every maximal submodule is fully invariant in M . Dually, we say that M is co-quasi-invariant, if
every minimal submodule is fully invariant in M . Generalizing these definitions we call M ω-quasi-invariant
relative to S, provided any submodule, which is ω-semi-maximal relative to S, is fully invariant in M . Similarly,
M is said to be ω-co-quasi-invariant relative to S if any submodule, which is ω-semi-minimal relative to S, is
fully invariant in M . By definition quasi-invariance (co-quasi-invariance) of a module M is equivalent to its
2-quasi-invariance (2-co-quasi-invariance).

It is well-known that distributivity of a module is equivalent to quasi-invariance of all its subfactors. One
direction of this is proved in [9], the converse implication is shown in [16]. In Section 4 a generalization of these
facts is obtained (see 4.4). In particular, ω-hyperdistributive modules are characterized by ω-quasi-invariant and
ω-co-quasi-invariant modules (see 4.5).

Consider abstract classes L and S of semisimple left R-modules. Clearly, if L ⊆ S then any module which is
ω-thick relative to S is also ω-thick relative to L. From this and Lemma 1.4 we deduce that

(1) any ω-thick module is ω-hyperdistributive;

(2) any ω-hyperdistributive module is ω-distributive.

In Section 5 we ask how to describe rings for which, for a given ω ≥ 2,

(1) all ω-(hyper-)distributive left modules are ω-thick;

(2) all ω-distributive left modules are ω-hyperdistributive.

The answers are given in Lemma 5.2, 5.6 and 5.7, and Theorem 5.9, 5.10.
In Corollary 5.11 and 5.12, rings R with only finitely many non-isomorphic simple modules are characterized

in terms of ω-thick, ω-hyperdistributive, and ω-distributive R-modules. Corollary 5.13 generalizes the well-
known characterization of distributive commutative rings by localization with respect to all maximal ideals [13]
to the case of n-distributive commutative rings.

A module M is said to be fully cyclic [15] if all its submodules are cyclic, and M is a Bézout module if all its
finitely generated submodules are cyclic. It is well-known (see, for example, [9], [15] - [16]) that fully cyclic and
Bézout modules are closely related to distributive and uniserial modules. To establish analogous relationships
for relative ω-thick modules we define the notions of relative ω-noetherian and relative ω-Bézout modules.
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1.7 Relative ω-noetherian modules. A module M is called ω-noetherian relative to S, provided for any
of its subfactors S, whose semisimple subfactors belong to S, there exists a cardinality % < ω such that S is
%-generated (i.e., has a generating set of cardinality %). Considering the special case S = T it is easy to see the
equivalence of the following properties of RM :

(a) M is ω-noetherian;

(b) for any submodule A of M , there exists a cardinality % < ω such that A is %-generated;

If ω = n is finite then these assertions are obviously equivalent to:

(c) all submodules of M are (n− 1)-generated.

Obviously ℵ0-noetherian modules coincide with noetherian modules, and 2-noetherian modules coincide with
fully cyclic modules. Notice that ω-noetherian modules were introduced in Osofsky [19] in a slightly different
way: as modules for which all submodules are ω-generated. So the ω-noetherian modules in the sense of Osofsky
correspond exactly to ω+-noetherian modules in our sense.

1.8 Relative ω-Bézout modules. We call a module RM ω-Bézout relative to S, provided for any ω-generated
subfactor S, whose semisimple subfactors belong to S, there exists a cardinal % < ω such that S is %-generated.
Putting S = T we easily obtain the equivalence of the following properties of a module RM :

(a) M is ω-Bézout;

(b) for every ω-generated submodule A of M , there exists a cardinality % < ω such that A is %-generated;

If ω = n is a finite cardinality then these assertions are equivalent to:

(c) all finitely generated submodules of M are (n− 1)-generated.

RM will be called homogeneously ω-noetherian provided M is ω-noetherian relative to S1(P ), for every simple
R-module RP . M will be called homogeneously fully cyclic (homogeneously Bézout) if M is homogeneously 2-
noetherian (respectivly, homogeneously 2-Bézout).

If L ⊆ S, where L and S are abstract classes of semisimple left R-modules, then - as in the case of relative
ω-thick modules - we have:

(1) any module which is ω-noetherian to S is ω-noetherian relative to L;

(2) any module which is ω-Bézout relative to S is ω-Bézout relative to L.

In particular, all ω-noetherian modules are homogeneously ω-noetherian, and all ω-Bézout modules are
homogeneously ω-Bézout.

It is easy to see that a ring R is left quasi-invariant if and only if all cyclic left R-modules are quasi-invariant.
We call a ring R generalized left quasi-invariant provided all cyclic semisimple left R-modules are quasi-invariant.

For any module M and cardinality ω ≥ 2 consider the conditions:

(i) M is ω-noetherian; (v) M is ω-distributive;
(ii) M is homogeneously ω-noetherian; (vi) M is ω-hyperdistributive;
(iii) M is ω-Bézout; (vii) M is ω-thick.
(iv) M is homogeneously ω-Bézout;

In Section 6 the study of relationships between the conditions (i)-(vii) will be continued, which was begun in
Section 5 for the properties (v)-(vii). The implications (i)⇒(iii) and (ii)⇒(iv) are obvious. The implications
(i)⇒(ii), (iii)⇒(iv), (vii)⇒(vi)⇒(v) were observed above.

In Theorem 6.11 rings are characterized for which all Bézout left R-modules are distributive. From the other
results of Section 6 we mention the following:
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(1) If ω is infinite then (iii)⇒(vii) and (iv)⇒(v) hold (Corollary 6.5);

(2) if ω is finite then (vii)⇒(iii) (Lemma 6.7);

(3) if R is a left perfect ring then (v)⇒(i) (Lemma 6.14(2));

(4) if R is a semilocal ring and ω finite, then (v)⇒(iii) (Lemma 6.14(1)).

A detailled list of the interdependence of the above mentioned properties will be given in Theorem 6.17.
As corollaries to these assertions we obtain well-known facts about the relationships between fully cyclic,

Bézout, distributive and uniserial modules (see [9], [15]-[16]), results about connections between ℵ0-distributive
and noetherian modules [3], and also a theorem about left noetherian local rings proved in [6].

Let RU and RM denote left R-modules and E = EndR(U). Considering U as a bimodule RUE in the usual
way we have the functors

hU = HomR(U,−) : R-Mod→ E-Mod, and

hU = HomR(−, U) : R-Mod→ Mod-E.

Section 7 is devoted to the study of the relationships between ω-distributivity of the module M and properties
of the E-modules hU (M) and hU (M). Notice that for ω = 2 such connections were already investigated (see, for
example, [11], [12], [14], [16]). The interest in this kind of questions stems, in particular, from their application
to the study of endomorphism rings (for M = U we have EE = hU (U) and EE = hU (U)), and also from the
application to the study of U as a module over its endomorphims ring (for M = R we have UE ' hU (R)).

Lemma 7.6 gives a sufficient, and Lemma 7.13 gives a necessary condition for the ω-distributivity of the left
E-module hU (M). The dual results on ω-distributivity of the right E-module HomR(M,U) are considered in
Lemma 7.7 and 7.14. Moreover, Theorem 7.16 and 7.17 contain characterizations of ω-distributive modules M
by properties of the left E-module hU (M) and the right E-module hU (M).

In Corollary 7.19 we collect applications of these results to endomorphism rings and modules over their
endomorphism rings. Our observations generalize many known results about distributivity of modules (see [11],
[12], [16], a.o.).

2 (Co-)independent families of submodules

In this section techniques suggested in [3] for handling independent and coindependent families of submodules
are further developed. Our considerations will be summed up by Lemma 2.2 improving Lemma 4 in [3].

For any module RX and set Λ of cardinality |Λ| ≥ 2, we denote by F0(X,Λ) the set of all families Y = {Yλ}Λ
of submodules of X. Define maps

Σ : F0(X,Λ)→ L(X), Y 7→
∑

Λ Yλ,

Γ : F0(X,Λ)→ L(X), Y 7→
⋂

Λ Yλ.

Moreover, we consider the maps

σ : F0(X,Λ)→ F0(X,Λ), Y 7→ {σ(Y)λ}Λ, where σ(Y)λ =
∑

Λ\{λ} Yµ,

γ : F0(X,Λ)→ F0(X,Λ), Y 7→ {γ(Y)λ}Λ, where γ(Y)λ =
⋂

Λ\{λ} Yµ.

To any Y = {Yλ}Λ ∈ F0(X,Λ) and submodule Z of Γ(Y) we associate a factor family

Y/Z = {(Y/Z)λ}Λ ∈ F0(X/Z,Λ), setting (Y/Z)λ = Yλ/Z.

Y is called a correct family if Σ(Y) = X, and is called co-correct if Γ(Y) = 0.
We define an order relation on the set F0(X,Λ), by putting

Y = {Yλ}Λ ≤ Y
′

= {Y ′λ}Λ provided Yλ ⊆ Y
′

λ for each λ ∈ Λ.
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For a family Y = {Yλ}Λ ∈ F0(X,Λ) consider the conditions:

(i1) Yλ ∩
∑

Θ\{λ} Yµ = 0 for any finite subset ∅ 6= Θ ⊆ Λ and λ ∈ Θ;

(i2) Yλ ∩ σ(Y)λ = 0 for each λ ∈ Λ;

(i3) Γ(σ(Y)) = 0;

(i4) γ(σ(Y)) = Y and Γ(σ(Y)) = 0;

and dually:

(c1) Yλ +
⋂

Θ\{λ} Yλ = X, for any finite subset ∅ 6= Θ ⊆ Λ and λ ∈ Θ;

(c2) Yλ + γ(Y)λ = X for each λ ∈ Λ;

(c3) Σ(γ(Y)) = X;

(c4) σ(γ(Y)) = Y and Σ(γ(Y)) = X.

It is easy to see that the conditions (i1)-(i4) are equivalent and characterize independent families Y of submodules
of X. Concerning the conditions (c1)-(c4), we know by [3, Lemma 2],

(1) the implications (c4)⇒(c3)⇒(c2)⇒(c1) hold;

(2) if Y is cocorrect then (c4)⇔(c3);

(3) if σ(γ(Y)) = Y, then (c4)⇔(c3)⇔(c2);

(4) if X is an AB5∗ module then (c4)⇔(c3)⇔(c2)⇔(c1).

A family Y = {Yλ}Λ of submodules of a module X is called coindependent in the sense of Takeuchi [21]
(weakly coindependent, coindependent, strongly coindependent), if Y satisfies the conditions (c1) (respectively,
(c2), (c3), (c4)). Notice that weakly coindependent families of submodules are considered in [22] under the name
”coindependent”.

In the partially ordered set F0(X,Λ) we introduce two subsets:

I0(X,Λ), consisting of all correct independent families Y = {Yλ}Λ, and

C0(X,Λ), consisting of all cocorrect strongly coindependent families Y = {Yλ}Λ.

We immediately obtain:

2.1 Lemma. For any RX and set Λ with |Λ| ≥ 2, the following are equivalent:

(a) σ and γ establish a Galois correspondence between F0(X,Λ) and F0(X,Λ)∗;

(b) σ and γ induce an anti-isomorphism of partially ordered sets between I0(X,Λ) and C0(X,Λ);

(c) the following diagrams are commutative:

F0(X,Λ) σ→ F0(X,Λ)
γ→ F0(X,Λ)

Σ ↘ ↙Σ

L(X)
,

F0(X,Λ)
γ→ F0(X,Λ) σ→ F0(X,Λ)

Γ ↘ ↙Γ

L(X)
.

We call a family Z = {Zλ}Λ of left R-modules S-suitable provided there exist simple subfactors Pλ of Zλ
(λ ∈ Λ) such that

⊕
Λ Pλ ∈ S. A family Y = {Yλ}Λ of submodules of a module RX is called S-cosuitable if the

family {X/Yλ}Λ is S-suitable.
Submodules A and B of a module RX are called coisomorphic provided the factor modules X/A and X/B

are isomorphic. A submodule A of X is called K-specific if A has a K-simple subfactor. Dually A is said to be
K-cospecific if the factor module X/A has a K-simple subfactor.
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For any RM and set Λ with |Λ| ≥ 2, a pair (S,K), consisting of a subfactor S of M and a family K = {Kλ}Λ
of submodules of S is called an (M,Λ)-family.

Let IP be any property of families of submodules of some module. We say that an (M,Λ)-family (S,K) has
property IP if the family K of submodules of S satisfies property IP .

By F(M,Λ) (respectively, W(M,Λ), D(M,Λ), I(M,Λ), C(M,Λ)) we denote the set of all (respectively, all
correct, all cocorrect, all correct independent, all cocorrect strongly coindependent) (M,Λ)-families. In view of
the condition |Λ| ≥ 2 it is easy to see that

I(M,Λ) ⊆ D(M,Λ) and C(M,Λ) ⊆W(M,Λ).

Let A = (V/B,A/B), where B ⊆ Aλ ⊆ V ⊆M for each λ ∈ Λ, be any (M,Λ)-family. We define mappings

αM,Λ : F(M,Λ) ⇀↽ F(M,Λ) : βM,Λ,

ϕM,Λ : W(M,Λ) ⇀↽ D(M,Λ) : ψM,Λ,

putting
αM,Λ(A) = (Σ(A)/B,A/B);
βM,Λ(A) = (V/Γ(A),A/Γ(A));

ϕM,Λ(αM,Λ(A)) = (Σ(A)/Γ(σ(A)), σ(A)/Γ(σ(A)));
ψM,Λ(βM,Λ(A)) = (Σ(γ(A))/Γ(A), γ(A)/Γ(A)).

On the set of all subfactors of M , we introduce an order relation by the condition

V/B ≤ V
′
/B
′
, provided V ⊂ V

′
and B ⊂ B

′
,

where B ⊂ V and B
′ ⊂ V

′
are any submodules of M . Then F(M,Λ) (and its subsets W(M,Λ), D(M,Λ),

I(M,Λ), C(M,Λ)) is turned into a partially ordered set by putting for any A = (S,A), A′ = (S
′
,A
′
) in

F(M,Λ),

A ≤ A′ provided S ≤ S′ and Aλ ≤ A
′

λ, for each λ ∈ Λ.

2.2 Lemma. Let RM be a module, Λ any set of cardinality |Λ| ≥ 2, S an abstract class of semisimple left
R-modules and A = (V/B,A/B) an (M,Λ)-family, where B ⊆ Aλ ⊆ V ⊆M for all λ ∈ Λ. Then:

(1) αM,Λ and βM,Λ are coclosure operations on the partially ordered sets F(M,Λ) and F(M,Λ)∗, respectively,
where
αM,Λ(F(M,Λ)) = W(M,Λ) and βM,Λ(F(M,Λ)∗) = D(M,Λ)∗.

(2) ϕM,Λ and ψM,Λ yield a Galois correspondence between W(M,Λ) and D(M,Λ)∗, where
ϕM,Λ(W(M,Λ)) = C(M,Λ)∗ and ψM,Λ(D(M,Λ)∗) = I(M,Λ).

(3) If A/B is an S-suitable independent family of submodules of V/B, then σ(A)/Γ(σ(A)) is an S-cosuitable,
cocorrect and strongly coindependent family of submodules of Σ(A)/Γ(σ(A)).

(4) If A/B is an independent family of non-zero (K-simple, pairwise isomorphic, K-cospecific) submodules
of V/B, then σ(A)/Γ(σ(A)) is a cocorrect, strongly coindependent family of proper (K-maximal, pairwise
coisomorphic, K-cospecific) submodules of Σ(A)/Γ(σ(A)).

(5) If A/B is an S-cosuitable weakly coindependent family of submodules of V/B, then γ(A)/Γ(A) is an
S-suitable independent family of submodules of
Σ(γ(A))/Γ(A).

(6) If A/B is a weakly coindependent family of proper (K-maximal, pairwise coisomorphic, K-cospecific) sub-
modules of V/B, then γ(A)/Γ(A) is an independent family of non-zero (K-simple, isomorphic copies,
K-cospecific) submodules of Σ(γ(A))/Γ(A).
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Proof. (1) is obvious.
(2) Clearly the maps ϕM,Λ : W(M,Λ) ⇀↽ D(M,Λ)∗ : ψM,Λ are antitone.
We want to show that

A ≤ ψM,Λ(ϕM,Λ(A)) and A′ ≥ ϕM,Λ(ψM,Λ(A′)),

for any A = (Σ(A)/B,A/B) ∈ W(M,Λ), A′ = (V ′/Γ(A′),A′/Γ(A′)) ∈ D(M,Λ)∗. For this notice that by
Lemma 2.1(c),

ψM,Λ(ϕM,Λ(A)) = (Σ(A)/Γ(σ(A)), γ(σ(A))/Γ(σ(A))),

ϕM,Λ(ψM,Λ(A′)) = (Σ(γ(A′))/Γ(A′), σ(γ(A′))/Γ(A′)).

Applying Lemma 2.1(a) we obtain our assertion.
It remains to prove that ϕM,Λ(W(M,Λ)) = C(M,Λ)∗ and ψM,Λ(D(M,Λ)∗) = I(M,Λ):

Indeed, A′ ∈ C(M,Λ)∗ means that B′ = Γ(A′), σ(γ(A′)) = A′ and Σ(γ(A′)) = V ′, implying the first equality.
Similarly the second equality is obtained.

(3),(4) By (2), the direct decomposition

Σ(A)/B = (Aλ/B)⊕ (σ(A)λ/B),

and the isomorphisms
(Σ(A)/Γ(σ(A)))/(σ(A)λ/Γ(σ(A))) ' Aλ/B,

hold for any λ ∈ Λ.
(5),(6) Since weak coindependence of the family A/B of submodules of V/B implies weak coindependence

of the correct family A/Γ(A) of submodules of V/Γ(A), in view of (2) the direct decompositions

V/Γ(A) = (Aλ/Γ(A))⊕ (γ(A)λ/Γ(A)),

and isomorphisms
(V/B)/(Aλ/B) ' γ(A)λ/Γ(A),

hold for each λ ∈ Λ. 2

3 Characterizations of relative ω-thick modules

Now the techniques developed in Section 2 will be applied to study modules which are ω-thick relative to S over
abitrary rings.

A class S of semisimple left R-modules will be called weakly hereditary if for any module X ∈ S and cardinal
ω with 2 ≤ ω ≤ dimX, there exists a submodule Y ⊆ X such that Y ∈ S and dimY = ω. In particular, every
hereditary (i.e. closed under submodules) class of semisimple modules is weakly hereditary. As an example of a
weakly hereditary class of semisimple left R-modules which is not hereditary, one may consider S̃, where S is a
hereditary class of semisimple R-modules.

3.1 Theorem. For any module RM , ω ≥ 2, and any abstract class S of semisimple left R-modules, the following
are equivalent:

(a) M is ω-thick relative to S;

(b) any S-suitable independent family {Kλ}Λ of submodules of any subfactor S of M has |Λ| < 2;

(c) any cocorrect strongly coindependent family {Kλ}Λ of maximal submodules of any subfactor S of M , for
which

⊕
Λ(S/Kλ) ∈ S, has |Λ| < ω;

(d) any S-cosuitable weakly coindependent family {Kλ}Λ of submodules of any subfactor S of M has |Λ| < ω;
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(e) for any family A = {Aλ}Λ of submodules of M with |Λ| ≥ ω, the family γ(A)/Γ(A) of submodules of
Σ(Γ(A))/Γ(A) is not S-suitable;

(f) for any family A = {Aλ}Λ of submodules of M with |Λ| ≥ ω, the family σ(A)/Γ(σ(A)) of submodules of
Σ(A)/Γ(σ(A)) is not S-cosuitable.

If the class S is weakly hereditary the following are equivalent to (a)-(f):

(g) for any family A = {Aλ}Λ of submodules of M with |Λ| = ω, the family γ(A)/Γ(A) of submodules of
Σ(γ(A))/Γ(A) is not S-suitable;

(h) for any family A = {Aλ}Λ of submodules of M with cardinality |Λ| = ω, the family σ(A)/Γ(σ(A)) of
submodules of Σ(A)/Γ(σ(A)) is not S-cosuitable.

The proof of Theorem 3.1 follows immediately from Lemma 3.2 and 3.3 below. To formulate these we need one
more definition. We call a module RM ω-pseudo-thick relative to S, if S 6∈ S for any semisimple subfactor of M
with dimS = ω.

3.2 Lemma. For any module RM , ω ≥ 2, and any abstract class S of semisimple left R-modules, the following
are equivalent:

(a) M is ω-thick relative to S;

(b) M is %-pseudo-thick relative to S, for any cardinality % ≥ ω.

If the class S is weakly hereditary, the following is equivalent to (a)-(b):

(c) M is ω-pseudo-thick relative to S.

The proof of the lemma is obvious.

3.3 Lemma. For any module RM , ω ≥ 2, and any abstract class S of semisimple left R-modules, the following
are equivalent:

(a) M is ω-pseudo-thick relative to S;

(b) any independent family {Kλ}Λ of submodules of any subfactor S of M , with |Λ| = ω, is not S-suitable;

(c)
⊕

Λ(S/Kλ) 6∈ S for any cocorrect strongly coindependent family {Kλ}Λ of maximal submodules of any
subfactor S of M with |Λ| = ω;

(d) any weakly coindependent family {Kλ}Λ of submodules of any subfactor S of M , with |Λ| = ω, is not
S-cosuitable;

(e) for any family A = {Aλ}Λ of submodules of M with |Λ| = ω, the family γ(A)/Γ(A) of submodules of
Σ(γ(A))/Γ(A) is not S-suitable;

(f) for any family A = {Aλ}Λ of submodules of M with |Λ| = ω, the family σ(A)/Γ(σ(A)) of submodules of
Σ(A)/Γ(σ(A)) is not S-cosuitable.

Proof. (a)⇒(b) Assume {Kλ}Λ to be an independent S-suitable family of submodules of a subfactor S of M
and cardinality |Λ| = ω. Then there exist simple subfactors Pλ of Kλ (λ ∈ Λ) with

⊕
Λ Pλ ∈ S. This is a

contradiction since
⊕

Λ Pλ is a subfactor of M and dim (
⊕

Λ Pλ) = ω.
(b)⇒(d) By Lemma 2.2(5), the assumption of the existence of an S-cosuitable weakly coindependent family

A/B of submodules of a subfactor V/B of M , where {Aλ}Λ, |Λ| = ω, and B ⊆ Aλ ⊆ V ⊆M for all λ ∈ Λ, leads
to an S-suitable independent family γ(A)/Γ(A) of submodules of Σ(γ(A))/Γ(A). This yields a contradicition
to condition (b).
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(d)⇒(c) is obvious.
(c)⇒(a) In contrast to (a), assume there exists an independent family A/B of simple submodules of the

subfactor V/B of M , A = {Aλ}Λ, |Λ| = ω,
⊕

Λ(Aλ/B) ∈ S and B ⊆ Aλ ⊆ V ⊆ M for all λ ∈ Λ. In
view of Lemma 2.2(4), σ(A)/Γ(σ(A)) is a cocorrect strongly coindependent family of maximal submodules of
Σ(A)/Γ(σ(A)) where Σ(A)/σ(A)λ ' Aλ/B, for all λ ∈ Λ. This contradicts condition (c).

(b)⇒(e) It suffices to recall that, by Lemma 2.2(2), the family γ(A)/Γ(A) of submodules of Σ(γ(A))/Γ(A)
are independent.

(e)⇒(d) Arguing by contradiction, let us assume the existence of an S-cosuitable weakly coindependent
family A/B of submodules of the factor module V/B of M , where A = {Aλ}Λ, |Λ| = ω and B ⊆ Aλ ⊆ V ⊆M
for all λ ∈ Λ. By Lemma 2.2(5) we obtain an S-suitable independent family γ(A)/Γ(A) of submodules of
Σ(γ(A))/Γ(A), which contradicts condition (e).

(d)⇒(f) It suffices to recall that, by Lemma 2.2(2), the family σ(A)/Γ((σ(A)) of submodules of Σ(A)/Γ(σ(A))
are strongly (and hence, in particular, weakly) coindependent.

(f)⇒(b) In contrast to (b), assume that there exists an S-suitable independent family A/B of submodules of
a subfactor V/B of M , where A = {Aλ}Λ, |Λ| = ω and B ⊆ Aλ ⊆ V ⊆M for all λ ∈ Λ. By Lemma 2.2(3), we
have an S-cosuitable family σ(A)/Γ(σ(A)) of submodules of Σ(A)/Γ(σ(A)), which is impossible by (f). This
completes the proof of the Lemma. 2

Putting S = S1(K), we obtain from Theorem 3.1:

3.4 Corollary. For any module RM , ω ≥ 2, and class K of simple left R-modules the following are equivalent:

(a) M is ω-thick relative to S1(K);

(b) any independent family {Kλ}Λ of K-specific submodules of any subfactor S of M has |Λ| < ω;

(c) any cocorrect strongly coindependent family {Kλ}Λ of K-maximal submodules of any subfactor S of M has
|Λ| < ω;

(d) any weakly coindependent family {Kλ}Λ of K-cospecific submodules of any subfactor S of M has |Λ| < ω;

(e) for any family A = {Aλ}Λ of submodules of M with |Λ| = ω, there exists λ ∈ Λ, such that γ(A)λ/Γ(A) is
not a K-specific submodule in Σ(γ(A))/Γ(A);

(f) for any family A = {Aλ}Λ of submodules of M with |Λ| = ω, there exists some λ ∈ Λ, such that
σ(A)λ/Γ(σ(A)) is not a K-cospecific submodule in Σ(A)/Γ(σ(A)).

Continuing the specialization of Theorem 3.1, we obtain by Corollary 3.4 for K = P, the class of all simple
left R-modules:

3.5 Corollary. For any module RM and ω ≥ 2, the following are equivalent:

(a) M is ω-thick;

(b) any independent family {Kλ}Λ of non-zero submodules of any subfactor S of M has |Λ| < ω;

(c) any cocorrect strongly coindependent family {Kλ}Λ of maximal submodules of any subfactor S of M has
|Λ| < ω;

(d) any weakly coindependent family {Kλ}Λ of proper submodules of any subfactor S of M has |Λ| < ω;

(e) for any family {Aλ}Λ of submodules of M and |Λ| = ω, there exists λ ∈ Λ, such that

Aλ ⊇
⋂

Λ\{λ}

Aµ;
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(f) for any family {Aλ}Λ of submodules of M and |Λ| = ω, there exists λ ∈ Λ, such that

Aλ ⊆
∑

Λ\{λ}

Aµ.

3.6 Remark. The equivalence of the condition (a) and (b) in Corollary 3.5 shows, that ℵ0-thick modules coincide
with q.f.d. modules generalizing a well-known characterization of q.f.d. modules [20, Lemma]. For ω = ℵ0 the
conditions (e) and (f) provide new characterizations of q.f.d. modules. The equivalence of the conditions (a) and
(e) (or (a) and (f)) shows that 2-thick modules coincide with uniserial modules.

3.7 Corollary. For any module RM and ω ≥ 2, the following are equivalent:

(a) M is ω-distributive;

(b) any independent family {Kλ}Λ of isomorphic simple submodules of any subfactor S of M has |Λ| < ω;

(c) any independent family {Kλ}Λ of isomorphic non-zero submodules of any subfactor S of M has |Λ| < ω;

(d) any cocorrect strongly coindependent family {Kλ}Λ of coisomorphic maximal submodules of any subfactor
S of M has |Λ| < ω;

(e) any weakly coindependent family {Kλ}Λ of coisomorphic proper submodules of any subfactor S of M has
|Λ| < ω;

(f) for any family A = {Aλ}Λ of submodules of M with |Λ| = ω, and any simple module RP , there exists
some λ ∈ Λ, such that γ(A)λ/Γ(A) has no subfactor isomorphic to P ;

(g) for any family A = {Aλ}Λ of submodules of M with |Λ| = ω, and any simple module RP , there exists
some λ ∈ Λ, such that Σ(A)/σ(A)λ has no subfactor isomorphic to P .

Proof. The conditions (a) and (b) are equivalent by Lemma 1.4. Moreover, notice that any family {Kλ}Λ of
pairwise isomorphic non-zero submodules in S form a family of {P}-specific submodules of S, for some simple
module RP (depending on {Kλ}Λ). Similarly, any family of coisomorphic proper submodules of S form a family
of {P}-cospecific submodules of S, for some simple module RP . Therefore the equivalence of the conditions
(b)-(g) follows from Corollary 3.4. 2

3.8 Remark. The equivalence of the conditions (a)-(e) in Corollary 3.7 were proved in [3, Theorem 1]. Corollary
3.7 generalizes many known results about distributive modules ([23, Proposition 4.1.1], [9, p. 293, Corollary 1],
[18, Theorem 1] and others).

4 ω-thick and ω-(co-)quasi-invariant modules

The following observation is obvious.

4.1 Lemma. For any module RM , ω ≥ 2, and any abstract class S of semisimple left R-modules, the following
are equivalent:

(a) M is ω-thick relative to S;

(b) all subfactors of M are ω-thick relative to S;

(c) all semisimple subfactors of M are ω-thick relative to S.

Putting some conditions on the class of semisimple modules we have:

4.2 Lemma. Let ω ≥ 2 and let S be an abstract class of semisimple left R-modules which is closed under
submodules and finite direct sums. Then every module M which is ω-thick relative to S̃ is ω-quasi-invariant
relative to S and ω-co-quasi-invariant relative to S.
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Proof. Let RM be ω-thick relative to S̃. We prove that M is ω-quasi-invariant relative to S. Assuming the
contrary, consider a submodule A ⊆ M which is ω-semi-maximal relative to S, but is not fully invariant in M .
Then S = M/A ∈ S and dimS = ω − 1, and (A)α 6⊆ A, for some α ∈ EndR(M).

We have a monomorphism M/(A)α−1 → S, x+ (A)α−1 7→ (x)α+A.
Moreover, the module N = M/((A)α−1∩A) embeds into (M/(A)α−1)⊕S, and hence there exists a monomor-

phism N → S2. Since S2 ∈ S, we have N ∈ S. Noticing that (A)α 6⊆ A, we deduce that the natural epimorphism
π : N → S has kernel Keπ = A/((A)α−1 ∩A) 6= 0. So N ' Keπ ⊕ S ∈ S̃ and dimN ≥ ω. This contradicts the
fact that M is ω-thick relative to S.

Dually the co-quasi-invariance of M relative to S is established. 2

4.3 Lemma. For any semisimple module RT , ω ≥ 2, and any abstract class S of semisimple left R-modules,
which is closed under submodules and finite direct sums, the following are equivalent:

(a) T is ω-thick relative to S̃;

(b) T is ω-quasi-invariant relative to S;

(c) T is ω-co-quasi-invariant relative to S.

Proof. (a)⇒(b) and (a)⇒(c) follow from Lemma 4.2.
(b)⇒(a) Assume that, in contrast to (a), the module T is not ω-thick relative to S̃. Then by the weak

hereditariness of the class S̃, there exists a submodule S of T , such that S ∈ S̃ and dimS = ω. Then T = S⊕V
for some submodule V of T . For a decomposition S =

⊕
Λ Pλ, where Pλ are simple modules, there exist ξ, η ∈ Λ,

such that ξ 6= η and Pξ ' Pη. Since T/(Pξ ⊕ V ) '
⊕

Λ\{ξ} Pλ, the submodule Pξ ⊕ V of T is semi-maximal
relative to S. However, Pξ ⊕ V is not a fully invariant submodule in T , since there exists α ∈ EndR(M), for
which (Pξ ⊕ V )α ⊆ Pη ⊕ V , a contradiction.

(c)⇒(a) This is shown with dual arguments. 2

4.4 Theorem. For any module RM , ω ≥ 2, and any abstract class S of semisimple left R-modules, which is
closed under submodules and finite direct sums, the following are equivalent:

(a) M is ω-thick relative to S̃;

(b) each subfactor of M is ω-quasi-invariant relative to S;

(c) each semisimple subfactor of M is ω-quasi-invariant relative to S;

(d) each subfactor of M is ω-co-quasi-invariant relative to S;

(e) each semisimple subfactor of M is ω-co-quasi-invariant relative to S.

Proof. (a)⇒(b) and (a)⇒(d) follow from Lemma 4.1 and 4.2.
(b)⇒(c) and (d)⇒(e) are obvious.
(c)⇒(a) and (e)⇒(a) follow from Lemma 4.1 and 4.3. 2

Putting S = T , we obtain from Theorem 4.4:

4.5 Corollary. For a module RM and ω ≥ 2, the following are equivalent:

(a) M is ω-hyperdistributive;

(b) each subfactor of M is ω-quasi-invariant;

(c) each semisimple subfactor of M is ω-quasi-invariant;

(d) each subfactor of M is ω-co-quasi-invariant;

(e) each semisimple subfactor of M is ω-co-quasi-invariant.
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4.6 Remark. Putting ω = 2, we obtain from Corollary 4.5 the well-known equivalence of the following properties
of a module RM :

(a) M is distributive;

(b) each subfactor of M is quasi-invariant;

(c) each subfactor of M is co-quasi-invariant.

The implications (a)⇒(b), (a)⇒(c) are shown in [9, Page 293, Corollary 4], and (b)⇒(a) is proved in [16, Lemma
12].

5 ω-thick and ω-(hyper-)distributive modules

As already mentioned in Section 1, any ω-thick module is ω-hyperdistributive and any ω-hyperdistributive
module is ω-distributive. We are going to investigate conditions under which the converse implications hold.

For convenient reference we formulate the obvious

5.1 Lemma. Let RT be a semisimple module, ω ≥ 2, and S an abstract class of semisimple left R-modules
closed under submodules and direct sums. Then:

(1) T is ω-thick relative to S if and only if dim SocS(T ) < ω.

(2) T is ω-thick relative to S̃ if and only if one of the following conditions holds:

(i) dim SocS(T ) < ω;

(ii) dim SocS(T ) ≥ ω and dim SocS(T ) is square free.

(3) T is ω-thick if and only if dim (T ) < ω.

(4) T is ω-hyperdistributive if and only if one of the following conditions holds:

(i) dim (T ) < ω;

(ii) dim (T ) ≥ ω and T is square free.

(5) T is ω-distributive if and only if each of its homogeneous components has dimension less than ω.

5.2 Lemma. For any module RM and ω ≥ 2, the following are equivalent:

(a) M is ω-thick;

(b) M is ω-hyperdistributive and crs(S) < ω, for any semisimple subfactor S of M .

Proof. (a)⇒(b) It suffices to notice that by condition (a), for any semisimple subfactor S of M we have
crs(S) ≤ dimS < ω.

(b)⇒(a) By Lemma 4.1 and 5.1(4), for any semisimple subfactor S of M one of the following condition is
satisfied:

(i) dimS < ω; (ii) dimS ≥ ω and S is square free.

Since condition (ii) contradicts (b), we conclude that (i) holds. 2

5.3 Corollary. For ω ≥ 2 and a module RM , satisfying crs(M) < ω, the following are equivalent:

(a) M is ω-thick;

(b) M is ω-hyperdistributive.
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Bad and good modules. Let RT be a semisimple module and ω ≥ 2. T is called ω-bad if dimT ≥ ω and
every homogeneous component of T has dimension less than ω. We call T ω-quasi-bad, if T is ω-bad and is not
square free. T is called ω-good (ω-quasi-good), if T is not ω-bad (respectively, ω-quasi-bad).

If the module T is ω-bad, then we say that a cardinal % is ω-bad for T , if % = crs(V ) for some submodule
V of T of dimension dimV = ω (such a submodule V is necessarily ω-bad). If T is ω-quasi-bad, we say that a
cardinal % is ω-quasi-bad for T , if % = crs(V ) for some ω-quasi-bad submodule V of T of dimension dimV = ω.

Moreover, we define cardinals cfT (ω) and qcfT (ω), which we will call, respectively, cofinal character of the
cardinal ω relative to T , and quasi-cofinal character of ω relative to T :

If T is ω-good, we put cfT (ω) = qcfT (ω) = ω. If T is ω-bad we define cfT (ω) as smallest ω-bad cardinality
of T . If T is ω-bad and square free, we put qcfT (ω) = (dimT )+. Finally, if T is ω-quasi-bad we define qcfT (ω)
as smallest ω-quasi-bad cardinality of T . Obviously:

5.4 Lemma. For any semisimple module RT and ω ≥ 2 we have

2 ≤ cf(ω) ≤ cfT (ω) ≤ ω, cfT (ω) ≤ qcfT (ω) ≤ (dimT )+.

In particular, if ω is regular then cfT (ω) = ω.

5.5 Lemma. If ω ≥ 2 and R satisfies crs(RR) ≥ cf(ω), then there exists some ω-distributive semisimple module
RT , for which crs(T ) = cf(ω), and moreover,

(1) cfT (ω) = cf(ω);

(2) if ω ≥ 3 then qcfT (ω) = cf(ω).

Proof. By definition of cf(ω), there exists a family of cardinalities {αξ}Ξ, such that αξ < ω for each ξ ∈ Ξ,∑
Ξ αξ = ω and |Ξ| = cf(ω). Let {Pξ}Ξ be a family of pairwise non-isomorphic simple left R-modules. Putting

T =
⊕

Ξ P
(αξ)
ξ and recalling the definition of cfT (ω) and cf(ω), it is easily seen that (1) holds.

We procede to the proof of (2). If ω ≥ 3 is regular, then ω is infinite. This gives the possibility to assume
that αξ ≥ 2 for some ξ ∈ Ξ (otherwise we may replace T by T ⊕ Pξ). If ω ≥ 3 is singular, then again αξ ≥ 2 for
some ξ ∈ Ξ (otherwise

∑
Ξ αξ = cf(ω) 6= ω). So in both cases the module T is ω-quasi-bad. Now referring to

the definition of qcfT (ω) and cf(ω), we easily derive that qcfT (ω) = cf(ω). 2

5.6 Lemma. For any module RM and ω ≥ 2, the following are equivalent:

(a) M is ω-thick;

(b) M is ω-distributive and each semisimple subfactor of M is ω-good;

(c) M is ω-distributive and crs(S) < cfS(ω), for any semisimple subfactor S of M .

Proof. (a)⇒(b) is obvious.
(b)⇒(a) It suffices to notice that, by Lemma 4.1 and 5.1(5), dimS < ω for any ω-good semisimple subfactor

S of M .
(b)⇔(c) This follows from the fact that for any ω-distributive semisimple module S, the condition crs(S) <

cfS(ω) is equivalent to S being ω-good. 2

Now we turn to the study of the relations between ω-hyperdistributivity and ω-distributivity. First recall
that for any module RM the following are equivalent:

(a) M is 2-hyperdistributive; (b) M is 2-distributive; (c) M is distributive.

5.7 Lemma. For any module RM and ω ≥ 2, the following are equivalent:

(a) M is ω-hyperdistributive;
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(b) M is ω-distributive and every semisimple subfactor of M is ω-quasi-good;

(c) M is ω-distributive and crs(S) < qcfS(ω), for any semisimple subfactor S of M .

The proof is similar to the proof of Lemma 5.6 which also implies:

5.8 Corollary. For ω ≥ 2 and a module RM with crs(M) < cf(ω), the following are equivalent:

(a) M is ω-thick;

(b) M is ω-hyperdistributive;

(c) M is ω-distributive.

The next results show the influence of the number of simple modules on the relation between thickness and
distributivity.

5.9 Theorem. For any ring R and ω ≥ 2, the following are equivalent:

(a) crs(RR) < ω;

(b) every ω-hyperdistributive left R-module is ω-thick;

(c) every ω-hyperdistributive semisimple left R-module is ω-thick.

Proof. (a)⇒(b) follows from Corollary 5.3; (b)⇒(c) is obvious.
(c)⇒(a) Let {Pξ}Ξ be a representing family of all simple left R-modules. Assuming, contrary to (a), that

|Ξ| ≥ ω, we consider the module T =
⊕

Ξ Pξ. By Lemma 5.1(3),(4), T is ω-hyperdistributive and is not ω-thick
contradicting (c). 2

5.10 Theorem. For any ring R and ω ≥ 2, the following are equivalent:

(a) crs(RR) < cf(ω);

(b) every ω-distributive left R-module is ω-thick;

(c) every ω-distributive semisimple left R-module is ω-thick;

(d) every ω-distributive semisimple left R-module is ω-good.

If ω ≥ 3 then (a)-(d) are equivalent to:

(e) every ω-distributive left R-module is ω-hyperdistributive;

(f) every ω-distributive semisimple left R-module is ω-hyperdistributive;

(g) every ω-distributive semisimple left R-module is ω-quasi-good.

Proof. (a)⇒(b) follows from Corollary 5.8; (b)⇒(c) is obvious.
(c)⇒(a) Assume crs(RR) ≥ cf(ω). Then by Lemma 5.5, there exists an ω-distributive semisimple module

RT , for which crs(T ) = cfT (ω). By Lemma 5.6, the module T is not ω-thick, contradicting condition (c).
(c)⇔(d) follows from Lemma 5.1(3), (5).
(b)⇒(e)⇒(f) are obvious: (f)⇔(g) follows by Lemma 5.1(4), (5).

For the rest of the proof we assume ω ≥ 3.
(f)⇒(a) Assume that, contrary to (a), we have crs(RR) ≥ cf(ω). Then by Lemma 5.5, there exists an ω-

distributive semisimple module RT , for which crs(T ) = qcfT (ω). By Lemma 5.7, T is not ω-hyperdistributive,
contradicting (f). 2
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5.11 Corollary. For a ring R the following are equivalent:

(a) crs(RR) = 1;

(b) for ω ≥ 2, all ω-distributive left R-modules are ω-thick;

(c) for some n ≥ 2, all n-distributive semisimple left R modules are n-thick;

(d) for ω ≥ 2, all ω-distributive left R-modules are ω-hyperdistributive;

(e) for some n ≥ 3, all n-distributive semisimple left R-modules are n-hyperdistributive;

(f) for ω ≥ 2, all ω-hyperdistributive left R-modules are ω-thick;

(g) all distributive semisimple left R-modules are uniserial.

Proof. The equivalence of (a)-(e) follows from Theorem 5.10 and the fact that
cf(n) = 2 ≤ cf(ω), for any finite n ≥ 2 and any ω ≥ 2.

The equivalence of (a), (f) and (g) follows from Theorem 5.9. 2

5.12 Corollary. For any ring R the following are equivalent:

(a) crs(RR) < ℵ0;

(b) for infinite ω, all ω-distributive left R-modules are ω-thick;

(c) all ℵ0-distributive semisimple left R-modules are ℵ0-thick;

(d) for infinite ω, all ω-distributive left R-modules are ω-hyperdistributive;

(e) all ℵ0-distributive semisimple left R-modules are ℵ0-hyperdistributive;

(f) for infinite ω, all ω-hyperdistributive left R-modules are ω-thick;

(g) all ℵ0-hyperdistributive semisimple left R-modules are ℵ0-thick.

Proof. The equivalence of (a)-(e) follows from Theorem 5.10 and the fact that
cf(ℵ0) = ℵ0 ≤ cf(ω), for any infinite ω.

The equivalence of (a), (f) and (g) follows from Theorem 5.9. 2

5.13 Corollary. For R commutative and n ≥ 2, the following are equivalent:

(a) R is n-distributive;

(b) the localization of R at any maximal ideal is an n-thick ring.

Proof. Let Rm be the localization of R at the ideal m ∈ max(RR) and ρm the canonical map of the lattice of
ideals of R to the lattice of ideals of Rm, defined by

ρm(I) = {a/b | a ∈ I, b ∈ R\m}, for I ∈ L(RR).

It is well-known that ρm is a lattice homomorphism and the family {ρm(I)}m∈max(R) uniquely determines
the ideal I. Therefore the n-distributivity of R is equivalent to the n-distributivity of all rings Rm, where
m ∈ max(R). It remains to notice that, by Corollary 5.11, any local ring is n-distributive if and only if it is
n-thick. 2

5.14 Remark. For ω = 2, Corollary 5.3 and 5.8 lead to a well-known result about distributivity of modules [16,
Lemma 16]. Similarly Corollary 5.11 is a generalization of [10, Lemma 1.11], Corollary 5.12 is a generalization
of [3, Corollary 5], and Corollary 5.13 generalizes [13, Lemma 1]. Compare also [25].
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6 ω-thick, ω-noetherian and ω-Bézout modules

We will need the obvious

6.1 Lemma. If the module RM satisfies crs(S) = 1, for any semisimple subfactor S of M (e.g., if crs(M) = 1),
then for any ω ≥ 2 we have:

(1) M is ω-noetherian if and only if M is homogeneously ω-noetherian;

(2) M is ω-Bézout if and only if M is homogeneously ω-Bézout.

6.2 Lemma. For a semisimple module RT and any infinite cardinal %, the following are equivalent:

(a) T is %-generated;

(b) dim (T ) ≤ %.

Proof. (a)⇒(b) Assume ω = dim (T ) > %. Then considering for T a generating set of cardinality %, it is easy
to see that ω ≤ %ℵ0 = % < ω, a contradiction.

(b)⇒(a) is obvious. 2

6.3 Lemma. For a semisimple module RT , ω ≥ 2, and an abstract class S of semisimple left R-modules,
consider the conditions

(1) T is ω-thick relative to S;

(2) T is ω-noetherian relative to S;

(3) T is ω-Bézout relative to S.

Then (1)⇒(2)⇒(3). If ω is infinite and S is weakly hereditary then (3)⇒(1).

Proof. (1)⇒(2) For S ∈ S ∩ L(T ) put % = dimS. Then S is %-generated and hence % < ω by (1).
(2)⇒(3) is obvious.
(3)⇒(1) It suffices to show that dim (S) < ω, for any S ∈ S ∩ L(T ). Assume that dimS ≥ ω, for some

S ∈ S ∩L(T ). Since S is weakly hereditary there exists some submodule V ⊆ S, V ∈ S, with dimV = ω. From
(3) and Lemma 6.2 it follows that dimV ≤ %, for some cardinal % < ω, a contradiction. 2

6.4 Corollary. For a semisimple module RT and ω ≥ 2 consider the conditions:

(1) T is ω-thick; (4) T is ω-distributive;
(2) T is ω-noetherian; (5) T is homogeneously ω-noetherian;
(3) T is ω-Bézout; (6) T is homogeneously ω-Bézout.

Then (1)⇒(2)⇒(3) and (4)⇒(5)⇒(6).
If ω is infinite, then (3)⇒(1) and (6)⇒(4).

6.5 Corollary. Let R be a ring, ω infinite, and S a weakly hereditary abstract class of semisimple left R-modules.
Then all left R-modules which are ω-Bézout relative to S are ω-thick relative to S.

In particular, all ω-Bézout left R-modules are ω-thick and all homogeneously ω-Bézout left R-modules are
ω-distributive.

Proof. Since all semisimple subfactors of a module M which are ω-Bézout relative to S, are ω-Bézout relative
to S, it suffices to apply Lemmata 6.3 and 4.1. 2
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6.6 Example. Let R = Kn - the (n, n)-matrix ring over a field K. Then RR ' Pn, where RP is a simple
R-module. The module RR is fully cyclic (and hence n-noetherian, Bézout, n-Bézout) however it is not n-
distributive (and hence not n-thick). This shows that the condition ω ≥ ℵ0 in the formulation of Lemma 6.3
and Corollaries 6.4, 6.5 is essential.

6.7 Lemma. For any ring R and n ≥ 2, every n-thick left R-module is n-Bézout.

Proof. If RM is an n-thick module, then by Corollary 3.5, for any n-generated submodule A =
∑n
i=1Rai ⊆M ,

there exists i ∈ {1, 2, . . . , n}, such that
Rai ⊆

∑
1≤j≤n
j 6=i

Raj .

Therefore A is (n− 1)-generated. 2

6.8 Remark. Lemma 6.7 generalizes the well-known fact that every uniserial module is Bézout (e.g., [1,
Theorem 55.1(2)(ii)]).

6.9 Lemma. Let RT be a semisimple module and n ≥ 2. If T is n-distributive and finitely generated, then T is
(n− 1)-generated.

Proof. For any α ∈ {0, 1} and module RM , denote by M [α] the left R-module 0 if α = 0, and the module
M itself if α = 1. Without loss of generality we may assume that T 6= 0. Notice that for some pairwise
non-isomorphic simple left R-modules P1, . . . , Pr and natural numbers k1, . . . , kr < n, we have an isomorphism
T '

⊕r
i=1 P

ki
i . Putting k = max1≤i≤rki, we can write T '

⊕k
j=1Qj , where

Qj =
r⊕
i=1

P
[αij ]
i , αij ∈ {0, 1}, ki =

k∑
j=1

αij , 1 ≤ i ≤ r, 1 ≤ j ≤ k.

Since k < n and the modules Q1, . . . , Qk are square free, it remains to show that any finitely generated semisimple
square free left R-module is cyclic. By [1, Theorem 9.12] it suffices to verify that Vi +

⋂
i 6=j Vj = R (1 ≤ i ≤ q),

for any maximal left ideals V1, . . . , Vq of R, for which the left R-modules R/V1, . . . , R/Vq are pairwise non-
isomorphic. Assuming the contrary, there exists i ∈ {1, 2, . . . , q} such that

⋂
j 6=i Vj ⊆ Vi. Considering the

natural epimorphism R/
⋂
j 6=i Vj → R/Vi and the embedding R/

⋂
j 6=i Vj →

⊕
j 6=i(R/Vj), we conclude that

R/Vi embeds into
⊕

j 6=i(R/Vj), which is not possible. 2

6.10 Corollary. Let RT be a semisimple module and ω ≥ 2. If T is ω-distributive and crs(T ) < ℵ0, then T is
%-generated, for some cardinal % < ω.

Proof. If ω < ℵ0 apply Lemma 5.1(5) and 6.9.
If ω ≥ ℵ0 apply Corollary 5.8 and Lemma 5.1(3). 2

6.11 Theorem. For a ring R the following are equivalent:

(a) R is generalized left quasi-invariant;

(b) for any maximal left ideal V of R and a, b ∈ R,

(1 + V : a) ∩ (V : b) = ∅ or (V : a) ∩ (1 + V : b) = ∅;

(c) all semisimple cyclic left R-modules are square free;

(d) for any semisimple module RT and n ≥ 2, the module T is (n−1)-generated if and only if T is n-distributive
and finitely generated;

(e) for some n ≥ 2, all (n− 1)-generated semisimple left R-modules are n-distributive;

19



(f) for ω ≥ 2, all homogeneously ω-Bézout left R-modules are ω-distributive;

(g) all homogeneously Bézout left R-modules are distributive;

(h) all left Bézout-modules are distributive;

(i) for some n ≥ 2, all n-Bézout semisimple left R-modules are n-distributive.

Proof. (a)⇔(c) This follows from the observation that for semisimple modules, quasi-invariance is equivalent
to being square free.

(b)⇔(c) Condition (c) is obviously equivalent to: for any maximal left ideal V of R, the left R-module
(R/V )2 is not cyclic. In other words, there is no epimorphism of left R-modules f : R → (R/V )2. Given any
homomorphism f : R→ (R/V )2, put (1)f = (a+V, b+V ). It remains to recall that surjectivity of f is equivalent
to the existence of x, y ∈ R, for which (1 + V, V ) = (x)f and (V, 1 + V ) = (y)f , i.e.,

x ∈ (1 + V : a) ∩ (V : b) and y ∈ (V : a) ∩ (1 + V : b).

(c)⇒(d) By Lemma 6.9, an n-distributive and finitely generated semisimple module T is (n− 1)-generated.
Conversely, if we know that T is (n− 1)-generated then T =

∑n−1
i=1 Rai, for suitable a1, . . . , an−1 ∈ T . Applying

(c) and Lemma 5.1(5) we conclude that T is n-distributive.
(d)⇒(e) Obvious.
(e)⇒(c) Assuming the contrary there exists a simple module RP such that P 2 is cyclic. Then the module

Pn is (n− 1)-generated and hence n-distributive. This is impossible by Lemma 5.1(5).
(d)⇒(f) If ω ≥ ℵ0 we apply Corollary 6.5. Consider the case ω = n < ℵ0. Since all semisimple subfactors

of a homogeneously n-Bézout module are homogeneously n-Bézout, by Lemma 4.1, it suffices to prove that any
homogeneously n-Bézout semisimple module RT is n-distributive. Assuming the contrary, using Lemma 5.1(5),
we conclude that the module T contains a submodule S isomorphic to Pn, where P is some simple R-module.
Therefore the module S is (n− 1)-generated and n-distributive which is impossible by Lemma 5.1(5).

(f)⇒(g)⇒(h)⇒(i) are obvious, and (i)⇒(e) follows from the fact that any (n − 1)-generated semisimple
module RT is n-Bézout. 2

6.12 Remark. Theorem 6.11 implies the known fact: Over a left quasi-invariant ring all left Bézout modules
are distributive (see [15]).

6.13 Corollary. For a semisimple module RT and n ≥ 2, consider the conditions

(1) T is n-distributive;

(2) T is n-Bézout;

(3) T is homogeneously n-Bézout.

Then (1)⇒(2)⇒(3). If the ring R is generalized left quasi-invariant then (3)⇒(1).

Proof. (1)⇒(2) Any n-generated submodule S of T is (n− 1)-generated by Lemma 6.9.
(2)⇒(3) is obvious, and (3)⇒(1) follows from Theorem 6.11. 2

6.14 Lemma. Let R be a ring, ω ≥ 2 and n ≥ 2. Then:

(1) If R is semilocal, then all n-distributive left R-modules are n-Bézout and all noetherian n-distributive left
R-modules are n-noetherian.

(2) If R is left perfect, then all ω-distributive left R-modules are ω-noetherian.
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Proof. (1) Let RM be an n-distributive module. By Lemma 4.1 and Corollary 6.10, for any finitely generated
submodule A of M , the corresponding left R/J(R)-module A/J(R)A is n-distributive, semisimple and (n− 1)-
generated. Therefore, by the Nakayama Lemma, A is (n− 1)-generated.

(2) Consider any submodule A in an ω-distributive module RM . Applying Lemma 4.1 and Corollary 6.10, we
observe that the left R/J(R)-module A/J(R)A is ω-distributive, semisimple and %-generated, for some cardinal
% < ω. Therefore A is %-generated by the generalized Nakayama Lemma [1, Theorem 43.5]. 2

6.15 Remark. Lemma 6.14 generalizes the following results from [15]:
- over any semilocal ring all distributive left modules are Bézout;
- over any left perfect ring all distributive left modules are fully cyclic.

6.16 Example. Let P denote the set of all prime numbers. Then the semisimple ZZ-module
⊕

P ZZp, where
ZZp = ZZ/pZZ, is distributive (and hence ℵ0-distributive) by Lemma 5.1(5), however it is not ℵ0-Bézout (and not
noetherian). Therefore for infinite cardinality the analogue of Corollary 6.13 is not true in general. Moreover
we observe that the left perfectness of the ring R is essential in the statement of Lemma 6.14(2).

6.17 Theorem. For any module RM and ω ≥ 2, consider the conditions

(1) M is ω-noetherian;

(2) M is homogeneously ω-noetherian;

(3) M is ω-Bézout;

(4) M is homogeneously ω-Bézout;

(5) M is ω-distributive;

(6) M is ω-hyperdistributive;

(7) M is ω-thick.

Then the following assertions hold:

(i) If R is a left quasi-invariant left perfect ring, then (1)-(5) are equivalent.

(ii) If R is a local perfect ring, then (1)-(7) are equivalent.

(iii) If R is a left perfect ring and ω is infinite, then (1)-(7) are equivalent.

(iv) If R is a left quasi-invariant semilocal ring and ω is finite, then (3)-(5) are equivalent.

(v) If R is a local ring and ω is finite, then (3)-(7) are equivalent.

Proof. First observe that the implications (1)⇒(2), (3)⇒(4), (1)⇒(3), (2)⇒(4), (7)⇒(6)⇒(5) hold true for
any ring R.

(i). (4)⇒(5) by Theorem 6.11; (5)⇒(1) by Lemma 6.14(2).
(ii). The equivalence of (1)-(5) follows from (i); (5)⇒(7) by Corollary 5.11.
(iii). (3)⇒(7), (4)⇒(5) by Corollary 6.5; (5)⇒(1) by Lemma 6.14(2).
(iv). (4)⇒(5) by Theorem 6.11; (5)⇒(3) by Lemma 6.14(1).
(v). The equivalence of (3)-(5) follows from (iv); (5)⇒(7) by Corollary 5.11. 2
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6.18 Corollary. For a left noetherian local ring R and n ≥ 2, the following are equivalent:

(a) R is left n-noetherian;

(b) R is left n-distributive;

(c) R is left n-thick.

Proof. (a)⇒(b) by Theorem 6.11; (b)⇒(a) by Lemma 6.14(1); (b)⇔(c) by Theorem 6.17(v). 2

6.19 Remarks. From Theorem 6.11 it is easy to see that a semilocal ring is generalized left quasi-invariant
if and only if it is left quasi-invariant. Moreover it is clear that left quasi-invariant semilocal are in particular
those rings R, for which the factor ring R/J(R) is isomorphic to a finite product of skew fields. The question of
the existence of generalized left quasi-invariant rings which are not left quasi-invariant remains open.

Theorem 6.17 generalizes known results about distributive modules ([15, Proposition 2]; [16, Lemma 18])
and about ℵ0-distributive modules (see [3, Lemma 5]).

In [6], Corollary 6.18 is shown for left noetherian local rings R under the additional assumptions that R is
commutative or

⋂∞
i=1 J(R)i = 0.

7 Hom-functor and ω-distributive modules

Let RM and RU be fixed modules and E = EndR(U). Consider the functors

hU = HomR(U,−) : R-Mod→ E-Mod, and
hU = HomR(−, U) : R-Mod→ Mod-E.

For the investigation of the relationships between ω-distributivity of M and properties of the modules hU (M)
and hU (M) it is convenient to refer to the canonical maps

Im N

L(hU (M)) ⇀↽ L(M) ⇀↽ L(hU (M)),
Q Ke

defined by the conditions

Q(A) = {ϕ ∈ hU (M) | Imϕ ⊆ A}; Im I =
∑
ϕ∈I Imϕ;

N(A) = {ψ ∈ hU (M) | Keψ ⊇ A}; Ke J =
⋂
ψ∈J Keψ.

Recall some definitions from [24]. The module U is called M -finitely generated if Imϕ is finitely generated
for any ϕ ∈ hU (M). Dually, U is called M -finitely cogenerated if Imψ is finitely cogenerated for any ψ ∈ hU (M).
The module U is called M -intrinsically projective if every diagram

U

↓
Um → A → 0,

where m is a natural number, A ∈ L(M), and the row is exact, can be extended commutatively by some
homomorphism U → Um. Dually, U is called M -intrinsically injective if every diagram

0 → M/A → Um

↓
U
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where m is a natural number, A ∈ L(M), and the row is exact, can be extended commutatively by some
homomorphism Um → U . The module U is called intrinsically projective (intrinsically injetive) if U is U -
intrinsically projective (respectively U -intrinsically injective). The module U is called an M -generator if U
generates any submodule of M . Dually, U is called M -cogenerator if U cogenerates any factor module of M .

We recall properties of the canonical mappings Q, N, Im, Ke which will be indispensable for our investigation.

7.1 Lemma. For any modules RM and RU we have:

(1) Q and Im establish a Galois correspondence between L(M)∗ and L(hU (M)).

(2) N and Ke establish a Galois correspondence between L(M) and L(hU (M)).

(3) Q(
⋂

ΛAλ) =
⋂

Λ Q(Aλ), Q(
∑

ΛAλ) ⊇
∑

Λ Q(Aλ),

N(
∑

ΛAλ) =
⋂

Λ N(Aλ), N(
⋂

ΛAλ) ⊇
∑

Λ N(Aλ),
for any family {Aλ}Λ of submodules of M .

(4) If U is M -projective, then Q is a lattice homomorphism.

(5) If U is M -injective, then N is a lattice anti-homomorphism.

(6) If U is M -intrinsically projective then Q(Im I) = I, for all finitely generated submodules I ⊆ hU (M).

(7) If U is M -intrinsically injective, then N(Ke J) = J , for all finitely generated submodules J ⊆ hU (M).

(8) If U is finitely M -generated and M -intrinsically projective, then Q(Im I) = I, for all submodules I ⊆
hU (M).

(9) If U is finitely M -cogenerated and M -intrinsically injective and M is an AB5∗ module, then N(Ke J) = J ,
for all submodules J ⊆ hU (M).

Proof. The assertions (1)-(3) are well-known and obvious. (4), (5) are shown in [26, Proposition 5.4]. (6)-(9)
are proved in [24, Theorem 2.10, 2.10∗, 2.17, 2.18]. 2

For the dualization of some assertions about ω-distributive modules we need the following definitions. We call
a lattice L ω-codistributive if the dual lattice L∗ is ω-distributive. A module M is called ω-codistributive if the
lattice L(M) is ω-codistributive. Since any modular lattice L is n-codistributive if and only if L is n-distributive
(by [5, Proposition 3.1]) we have:

7.2 Lemma. For a module RM and n ≥ 2, the following are equivalent:

(a) M is n-distributive;

(b) M is n-codistributive.

Before explaining what ω-codistributivity of a module means for ω ≥ ℵ0 we recall that the following was
proved in [3]:

7.3 Lemma. Each AB5∗ module is ω-distributive, for any infinite ω.

Since any module satisfies the AB5 condition we have dually to Lemma 7.3:

7.4 Lemma. Every module is ω-codistributive, for any infinite ω.

The following lemma generalizes the arguments used in [14, Lemma 2.7].

7.5 Lemma. For any module RM and ω ≥ 2, the following assertions hold true:
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(1) M is ω-codistributive if and only if

A ∩
∑
λ∈Λ

Bλ =
∑
λ∈Λ

(A ∩
∑

µ∈Λ\{λ}

Bµ),

for any cyclic submodules A, Bλ ⊆M , λ ∈ Λ, |Λ| = ω.

(2) M is ω-distributive if and only if

A+
⋂
λ∈Λ

Bλ =
⋂
λ∈Λ

(A+
⋂

µ∈Λ\{λ}

Bµ),

for any ω-generated submodules A, Bλ ⊆M , λ ∈ Λ, |Λ| = ω.

Proof. (1) The necessity is obvious. Let us prove the sufficiency. For this we verify that

C ∩
∑
λ∈Λ

Dλ =
∑
λ∈Λ

(C ∩
∑

µ∈Λ\{λ}

Dµ),

for any submodules C, Dλ ⊆M (λ ∈ Λ).
Indeed, if a ∈ C ∩

∑
λ∈ΛDλ, then a = bλ1 + . . . + bλm ∈ C for some bλi ∈ Dλi . Putting bλ = 0 for λ ∈

Λ\{λ1, . . . , λm}, A = Ra ⊆ C, and Bλ = Rbλ ⊆ Dλ (λ ∈ Λ), we easily obtain that a ∈
∑
λ∈Λ(C∩

∑
µ∈Λ\{λ}Dµ).

So we have
C ∩

∑
λ∈Λ

Dλ ⊆
∑
λ∈Λ

(C ∩
∑

µ∈Λ\{λ}

Dµ).

The converse inclusion is obvious.
(2) The necessity is clear. We prove the sufficiency. Since the converse inclusion is obvious it only remains

to verify that
C +

⋂
λ∈Λ

Dλ ⊇
⋂
λ∈Λ

(C +
⋂

µ∈Λ\{λ}

Dµ),

for any submodules C, Dλ ⊆M (λ ∈ Λ).
Indeed, if x ∈

⋂
λ∈Λ(C +

⋂
µ∈Λ\{λ}Dµ), then for every λ ∈ Λ, there exist aλ ∈ C and bλ ∈

⋂
µ∈Λ\{λ}Dµ,

such that x = aλ + bλ. Putting A =
∑
λ∈ΛRaλ ⊆ C and Bλ =

∑
µ∈Λ\{λ}Rbµ ⊆ Dλ (λ ∈ Λ), we easily conclude

that x ∈ C +
∑
λ∈ΛDλ. 2

7.6 Lemma. Let ω ≥ 2, and let RM , RU be modules such that U is M -intrinsically projective and M -projective.
Then:

(1) If M is ω-codistributive, then the left EndR(U)-module HomR(U,M) is ω-codistributive.

(2) If M is ω-distributive and U is M -finitely generated, then the left EndR(U)-module HomR(U,M) is ω-
distributive.

7.7 Lemma. Let ω ≥ 2 and RM , RU modules such that U is M -intrinsically injective and M -injective. Then:

(1) If M is ω-distributive, then the right EndR(U)-module HomR(M,U) is ω-co-distributive.

(2) If M is ω-codistributive and AB5∗ and U is M -finitely cogenerated, then the right EndR(U)-module
HomR(M,U) is ω-distributive.

In view of the duality of Lemma 7.6 and 7.7 it suffices to give the
Proof of Lemma 7.7. (1) As shown in Lemma 7.4, we may assume, without loss of generality, that ω is

finite. By Lemma 7.5(1), it suffices to verify that

I ∩
∑
λ∈Λ

Jλ ⊆
∑
λ∈Λ

(I ∩
∑

µ∈Λ\{λ}

Jµ),
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for any cyclic submodules I, Jλ ⊆ hU (M) (λ ∈ Λ, |Λ| = ω). By Lemma 7.1(7), for suitable A, Bλ ∈ L(M)
(λ ∈ Λ), we have I = N(A) and Jλ = N(Bλ) (λ ∈ Λ). Therefore, applying Lemma 7.1(3), we conclude that

I ∩
∑
λ∈Λ

Jλ ⊆ N(A+
⋂
λ∈Λ

Bλ).

By distributivity of M and Lemma 7.1(3),(5) we obtain the desired inclusion.
(2) We prove that

I +
⋂
λ∈Λ

Jλ =
⋂
λ∈Λ

(I +
⋂

µ∈Λ\{λ}

Jµ),

for any submodule I, Jλ ⊆ hU (M) (λ ∈ Λ, |Λ| = ω). Since by Lemma 7.1(9), I = N(A) and Jλ = N(Bλ), for
some A, Bλ ∈ L(M), we conclude by Lemma 7.1(3),(5) that

I +
⋂
λ∈Λ

Jλ = N(A ∩
∑
λ∈Λ

Bλ).

To complete the proof it remains to make use of the ω-codistributivity of M and Lemma 7.1(3),(5). 2

7.8 Remark. In view of Lemma 7.4 the assertions (1) in Lemma 7.6 and 7.7 only hold for finite ω. The
assertions (2) in Lemma 7.6 and 7.7 can only be used for infinite ω, since by Lemma 7.2, for finite cardinality
they are weaker than the corresponding assertions (1).

For infinite cardinality we obtain immediately from Lemma 7.7(2) and 7.4:

7.9 Corollary. If ω is infinte, RM is an AB5∗ module, and RU is M -finitely cogenerated, M -intrinsically
injective and M -injective, then the right EndR(U)-module HomR(M,U) is ω-distributive.

7.10 Proposition. If RM is an AB5∗ module and RU is M -finitely cogenerated, M -intrinsically injective and
M -injective, then the right EndR(U)-module HomR(M,U) is an AB5∗ module.

Proof. Let us prove that hU (M) satisfies the condition

I +
⋂
Λ

Jλ =
⋂
Λ

(I + Jλ),

for all submodules I and inverse systems {Jλ}Λ of submodules.
Putting A = Ke I and Bλ = Ke Jλ (λ ∈ Λ), we obtain a submodule A ⊆ M and a direct system {Bλ}Λ of

submodules of M . Since I = N(A) and Jλ = N(Bλ) (λ ∈ Λ) by Lemma 7.1(9), we easily deduce by Lemma
7.1(3),(5) that

I +
⋂
Λ

Jλ = N(A ∩
∑
Λ

Bλ).

To complete the proof apply the AB5 condition and Lemma 7.1(3), (5). 2

7.11 Lemma. For modules RM and RU , the following assertions hold:

(1) If U is M -projective then hU (A/B) ' Q(A)/Q(B), for any subfactor A/B of M , where B ⊆ A ⊆M .

(2) If U is M -injective then hU (A/B) ' N(A)/N(B), for any subfactor A/B of M , where B ⊆ A ⊆M .

Proof. In view of the duality of (1) and (2) it is enough to prove (2). For this apply the functor HomR(−, U)
to the exact sequence

0→ A/B →M/B →M/A→ 0,

and recall the canonical identification N(A) = HomR(M/A,U). 2
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7.12 Lemma. For modules RM , RU , and an (M,Λ)-family A = (V/B, {Aλ/Bλ}Λ), where B ⊆ Aλ ⊆ V ⊆ M

for all λ ∈ Λ, the following hold:

(1) If the (M,Λ)-family A is independent, then the (hU (M),Λ)-family
(Q(V )/Q(B), {Q(Aλ)/Q(B)}Λ) is independent.

(2) If the (M,Λ)-family A is weakly coindependent, then the (hU (M),Λ)-family (N(B)/N(V ), {N(Aλ)/N(V )}Λ)
is independent.

Proof. In view of the duality of (1) and (2) it suffices to prove (2). Indeed, weak coindependence of the (M,Λ)-
family A means that Aλ +

⋂
Λ\{λ}Aµ = V for all λ ∈ Λ. Applying to both sides of this equality the mapping N

and recalling Lemma 7.1(3), we obtain

N(Aλ) ∩
∑

Λ\{λ}

N(Aµ) ⊆ N(V ).

The converse inclusion is obvious by Lemma 7.1(2). 2

7.13 Lemma. Let ω ≥ 2 and RM , RU modules such that U is M -projective and U generates the simple subfactor
P of M . If the left EndR(U)-module HomR(U,M) is ω-distributive, then M is ω-thick relative to S1(P ).

7.14 Lemma. Let ω ≥ 2 and RM , RU modules such that U is M -injective and U cogenerates the simple
subfactor P of M . If the right EndR(U)-module HomR(M,U) is ω-distributive, then M is ω-thick relative to
S1(P ).

In view of the duality of Lemma 7.13 and 7.14 it is enough to give the
Proof of Lemma 7.14. Assuming the contrary and recalling Corollary 3.4, suppose that there exists a

weakly coindependent (M,Λ)-family (V/B, {Aλ/B}Λ), where |Λ| = ω and V/Aλ ' P , for all λ ∈ Λ. By Lemma
7.12(2), the (hU (M),Λ)-family (N(B)/N(V ), {N(Aλ)/N(V )}Λ) is independent. Applying Lemma 7.11(2) we
conclude that the submodules N(Aλ)/N(V ) ⊆ N(B)/N(V ) are non-zero and pairwise isomorphic. By Corollary
3.7, this contradicts the ω-distributivity of hU (M). 2

7.15 Lemma. Let RM,R U be modules and K ⊂ U a fully invariant submodule.

(1) If U is quasi-projective, then the lattice of submodules of the left EndR(U/K)-module hU/K(M) and the
left EndR(U)-module N(U/K) are isomorphic.

(2) If U is quasi-injective, then the lattice of submodules of the right EndR(K)-module hK(M) and the right
EndR(U)-module Q(K) are isomorphic.

Proof. In view of the duality of (1) and (2) it is enough to prove (2). Using the full invariance of the submodule
K ⊂ U it is easy to verify that Q(K) is a submodule of the right EndR(U)-module hU (M). Considering Q(K)
as a right EndR(U)-module we define mappings

ξ : L(hK(M)) ⇀↽ L(Q(K)) : η,

putting

ξ(I) = {fi | f ∈ I} and η(J) = {f ∈ hK(M) | fi ∈ J},

where I ∈ L(hK(M)), J ∈ L(Q(K)) and i : K → U is the natural inclusion.
Notice that by the full invariance of K ⊆ U , any α ∈ EndR(U) induces some β ∈ EndR(K). Because of

the quasi-injectivity of U the converse is also true: any β ∈ EndR(K) induces some α ∈ EndR(U). In both
situations we have a commutative diagram

K
β→ K

i ↓ ↓ i
U

α→ U

.

Now it is easy to see that the mappings ξ and η are well-defined, isotone and inverse to each other. 2
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7.16 Theorem. For any module RM and ω ≥ 2, the following are equivalent:

(a) M is ω-distributive;

(b) HomR(U,M) is an ω-distributive left EndR(U)-module, for any M -finitely generated, M -intrinsically pro-
jective, M -projective RU ;

(c) HomR(U,M) is an ω-distributive left EndR(U)-module, for any finitely generated projective module RU ;

(d) HomR(U,M) is an ω-distributive left EndR(U)-module, for any finitely generated quasi-projective module
RU which has a projective cover;

(e) HomR(U,M) is an ω-distributive left EndR(U)-module, for any module RU from some class U of left
R-modules with the properties

(i) U generates all simple subfactors of M ;

(ii) every U ∈ U is M -finitely generated, M -intrinsically projective and M -projective.

If ω is finite these conditions are equivalent to:

(f) HomR(U,M) is an ω-distributive left EndR(U)-module, for any M -intrinsically projective, M -projective
module RU ;

(g) HomR(U,M) is an ω-distributive left EndR(U)-module, for any projective module RU ;

(h) HomR(U,M) is an ω-distributive left EndR(U)-module, for any quasi-projective module RU which has a
projectve cover;

(i) HomR(U,M) is an ω-distributive left EndR(U)-module, for any module RU from some class U of left
R-modules with the properties

(i) U generates all simple subfactors of M ;

(ii) every U ∈ U is M -intrinsically projective and M -projective.

If the ring R is semiperfect then (a)-(e) are equivalent to:

(j) HomR(U,M) is an ω-distributive left EndR(U)-module, for any finitely generated quasi-projective module
RU ;

(k) HomR(U,M) is an ω-thick left EndR(U)-module, for the projective cover RU of any simple left R-module;

(l) HomR(U,M) is an ω-thick left EndR(U)-module, for the projective cover RU of any simple subfactor of
M ;

(m) for any primitive idempotent e ∈ R, the left eRe-module eM is ω-thick;

If the ring R is semiperfect and ω is finite, then (a)-(m) are equivalent to:

(n) HomR(U,M) is an ω-distributive left EndR(U)-module, for any quasi-projective module RU .

Proof. (a)⇒(b) follows from Lemma 7.6(2).
(c)⇒(d) Any finitely generated quasi-projective module with a projective cover is isomorphic to the factor

module of some finitely generated projective module by a fully invariant submodule [1, 19.10 (i)]. It remains to
apply Lemma 7.15(1).

(e)⇒(a) From (e) we obtain immediately that for every simple subfactor P of M there exists a module U ∈ U
which generates P . It remains to apply Lemma 7.13 and 1.4.

(a)⇒(f) follows from Lemma 7.6(1) and 7.2.
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(g)⇒(h) As in the proof of the implication (c)⇒(d), it suffices to apply [1, 19.10(7)(i)] and Lemma 7.15(1).
(i)⇒(a) is shown similarly to the implication (e)⇒(a).
(j)⇒(k) follows from well-known properties of the projective cover of simple modules [22, Proposition 17.19]

and Corollary 5.11.
(k)⇔(m) is clear by the obvious semilinear isomorphism between the left EndR(Re)-module HomR(Re,M)

and the left eRe-module eM , where e is an idempotent of the ring R.
It remains to notice that the implications (b)⇒(c)⇒(e), (d)⇒(c), (f)⇒(g)⇒(i), (h)⇒(g), (k)⇒(l)⇒(e) and

the equivalences (d)⇔(j), (h)⇔(n) are obvious. 2

A similar proof yields:

7.17 Theorem. For any module RM and n ≥ 2, the following are equivalent:

(a) M is n-distributive;

(b) HomR(M,U) is an n-distributive right EndR(U)-module, for any M -intrinsically injective M -injective
module RU ;

(c) HomR(M,U) is an n-distributive right EndR(U)-module, for any injective module RU ;

(d) HomR(M,U) is an n-distributive right EndR(U)-module, for any quasi-injective module RU ;

(e) HomR(M,U) is an n-thick and n-Bézout right EndR(U)-module, for the injective envelope RU of any
simple subfactor P of M ;

(f) HomR(M,U) is an n-distributive right EndR(U)-module, for any module RU from some class U of left
R-modules with the properties

(i) U cogenerates all simple subfactors of M ;

(ii) every U ∈ U is M -intrinsically injective and M -injective.

7.18 Remark. Theorem 7.17 is obtained by dualizing the part of Theorem 7.16 which is related to the case
of finite ω. This does not apply to the part for infinite cardinality in Theorem 7.16 for the following reasons.
Firstly, for ω ≥ ℵ0, by Lemma 7.7(2), we have to assume that M is an AB5∗ module. Secondly, for ω ≥ ℵ0,
according to Lemma 7.4, the ω-codistributivity of the module is trivial and so the dualization of Theorem 7.16
leads to an assertion which contains nothing new in comparison with Lemma 7.7(2).

Observing that any quasi-projective (quasi-injective) module is intrinsically projective (intrinsically injective)
[24, Lemma 2.1] we obtain from the Lemmata 7.6, 7.7, 7.13, 7.14, Proposition 7.10 and the Theorems 7.16, 7.17:

7.19 Corollary. For a module RU with endomorphism ring E = EndR(U), ω ≥ 2, and n ≥ 2 we have:

(1) If RU is n-distributive and quasi-projective, then E is left n-distributive.

(2) If RU is ω-distributive, finitely generated, and quasi-projective, then E is left ω-distributive.

(3) If RU is quasi-projective and generates all its simple subfactors, then

(i) if E is left ω-distributive, then RU is ω-distributive;

(ii) RU is n-distributive if and only if E is left n-distributive.

(4) If RU is finitely generated, quasi-projective, and generates all its simple subfactors, then RU is ω-distributive
if and only if E is left ω-distributive.

(5) If RU is n-distributive and quasi-injective, then E is right n-distributive.

(6) If RU is an ω-codistributive, finitely cogenerated, quasi-injective AB5∗ module, then E is a right ω-
distributive right AB5∗ ring.
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(7) If RU is quasi-injective and cogenerates all its simple subfactors, then

(i) if E is right ω-distributive, then RU is ω-distributive;

(ii) RU is n-distributive if and only if E is right n-distributive.

(8) If R is left n-distributive and RU is injective, then UE is n-distributive.

(9) If R is a left ω-codistributive and left AB5∗ ring, and RU is finitely cogenerated and injective, then UE is
an ω-distributive AB5∗ module.

(10) If RU is an injective cogenerator in R-Mod, then

(i) if UE is ω-distributive, then R is left ω-distributive;

(ii) R is left n-distributive if and only if UE is n-distributive.

7.20 Remark. The Lemmata 7.6, 7.7, 7.13, 7.14, the Theorems 7.16, 7.17 and Corollary 7.19 generalize many
known results about distributivity of modules ([11, Lemma 4], [12, Lemma 3], [16, Theorem 2], a.o.).

7.21 Remark. For any module RM and n ≥ 2, the class of all modules RU for which HomR(M,U) is a right n-
distributive right EndR(U)-module is closed under direct products and direct summands. In view of Lemma 1.1
this can be shown in the same way as [16, Lemma 11], where this is proved for n = 2. It is also straightforward
to show the dual assertions about the class of all modules RU , for which HomR(U,M) is an n-distributive
left EndR(U)-module. These assertions give the possibility to extend the list of equivalent conditions in the
Theorems 7.16, 7.17 and Corollary 7.19.
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