Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Prof. Dr. Stefan Schröer

Übungen zu Lineare Algebra I

Blatt 13

Aufgabe 1. Bestimmen Sie mit der Determinante, für welche Parameter $x \in \mathbb{R}$ die reelle Matrix

$$A = \begin{pmatrix} x - 1 & 2 & x \\ -2x + 2 & x + 1 & -2x + 2 \\ -x + 1 & 4x + 18 & -x + 9 \end{pmatrix}$$

invertierbar ist.

Aufgabe 2. Wir betrachten die Bandmatrizen

$$A_n = \begin{pmatrix} -2 & 1 & & \\ 1 & \ddots & \ddots & \\ & \ddots & & 1 \\ & & 1 & -2 \end{pmatrix} \in \operatorname{Mat}_n(\mathbb{Q}).$$

Beweisen Sie mit vollständiger Induktion und Laplace-Entwicklung, dass

$$\det(A_n) = (-1)^n (n+1).$$

Aufgabe 3. Sei $A \in \operatorname{Mat}_n(\mathbb{R})$ eine reelle Matrix, aufgefasst als komplexe Matrix. Verifizieren Sie mit dem charakteristischen Polynom, dass mit jedem komplexen Eigenwert z = x + iy auch die konjugierte Zahl $\bar{z} = x - iy$ ein komplexer Eigenwert ist.

Aufgabe 4. Sei $A \in \operatorname{Mat}_n(\mathbb{Z})$ eine ganzzahlige Matrix. Benutzen Sie die Determinante um zu zeigen: Die Matrix $A \in \operatorname{Mat}_n(\mathbb{Q})$ ist invertierbar genau dann, wenn $A \in \operatorname{Mat}_n(\mathbb{F}_p)$ für eine Primzahl p > 0 invertierbar ist. In diesem Fall ist es sogar über unendlich vielen \mathbb{F}_p inverierbar.

Abgabe: entfällt. Dieses Blatt wird nicht korrigiert und geht nicht in die Wertung ein.