Mathematisches Institut der Heinrich-Heine Universität Düsseldorf Apl. Prof. Dr. Axel Grünrock

Joseph Adams M.Sc.

SoSe 2022 10.05.2022 Blatt 05

ÜBUNGEN ZUR ANALYSIS I

Aufgabe 17 (4 Punkte) Die Folge (x_n) sei rekursiv definiert durch

$$x_1 = 1$$
 $x_{n+1} = \frac{1}{1+x_n}$, $n \ge 1$.

Zeigen Sie, dass $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist, und berechnen Sie den Grenzwert. Ist $(x_n)_{n\in\mathbb{N}}$ monoton (fallend oder wachsend)?

Hinweis: Zum Nachweis, dass $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist, können Sie Satz 2 aus Abschnitt 2.4 der Vorlesung und die anschliessende Bemerkung benutzen.

Aufgabe 18 (4 Punkte) Es seien $p \ge 2$ eine natürliche und a > 0 sowie $x_1 > 0$ reelle Zahlen. Für $n \ge 2$ sei x_n rekursiv definiert durch

$$x_n := \frac{1}{p} \left((p-1)x_{n-1} + \frac{a}{x_{n-1}^{p-1}} \right).$$

Zeigen Sie für $n \geq 2$, dass $x_n > 0$ gilt, sowie

(a)
$$x_n = x_{n-1} \left(1 + \frac{1}{p} \left(\frac{a}{x_{n-1}^p} - 1 \right) \right),$$

(b) $x_n^p \ge a$,

(c)
$$(x_{n+1} - x_n)x_n^{p-1} \le 0$$
.

Folgern Sie, dass $(x_n)_{n\in\mathbb{N}}$ gegen die eindeutig bestimmte positive Lösung der Gleichung $x^p = a$ konvergiert.

Hinweis zu (b): Verwenden Sie die Bernoullische Ungleichung.

Aufgabe 19 (4 Punkte) Für $n \in \mathbb{N}$ sei $e_n^* = (1 + \frac{1}{n})^{n+1}$. Zeigen Sie mit Hilfe der Bernoullischen Ungleichung, dass die Folge $(e_n^*)_{n \in \mathbb{N}}$ streng monoton fallend ist.

Aufgabe 20 (4 Punkte) Es seien $(x_n)_n$ eine beschränkte Folge nichtnegativer reeller Zahlen, $S := \sup \{x_n : n \in \mathbb{N}\}$ und $a_n := \max \{x_k : 1 \le k \le n\}$. Zeigen Sie:

(a)
$$\lim_{n\to\infty} a_n = S$$
,

(b)
$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} x_k^n \right)^{\frac{1}{n}} = S.$$

Hinweis: Für (b) verwende man das "Sandwich-Theorem".

Abgabe: in den entsprechenden Briefkasten bis Di., 17.05.2022, 10.25 Uhr **Besprechung:** ab Di., 24.05.2022, in den Übungen