Heinrich-Heine-Universität Düsseldorf

Prof. Dr. Florian Jarre

Dr. Joseph Adams

1 2 3 4 Σ

ÜBUNGEN ZUR ANALYSIS II BLATT 1

Name: Rückgabe in Gruppe:

MatrNr:

Aufgabe 1 (4 Punkte) Berechnen Sie die folgenden bestimmten Integrale.

(a)
$$\int_{0}^{2} (x-1)^{2} dx$$

(a)
$$\int_0^2 (x-1)^2 dx$$
 (b) $\int_0^2 x^2 \exp(x) dx$ (c) $\int_e^{e^2} \frac{1}{x \ln x} dx$

(c)
$$\int_{e}^{e^2} \frac{1}{x \ln x} \, \mathrm{d}x$$

(d)
$$\int_0^{\sqrt{\pi}} x \sin(x^2) dx$$

Aufgabe 2 (4 Punkte) Berechnen Sie für $k \in \mathbb{Z}$ und geeignete $x \in \mathbb{R}$ die folgenden unbestimmten Integrale.

(a)
$$\int \sqrt{4x-3} \, \mathrm{d}x$$

(a)
$$\int \sqrt{4x-3} \, dx$$
 (b) $\int \frac{1}{\sqrt{4x-3}} \, dx$ (c) $\int \frac{\tan^k(x)}{\cos^2(x)} \, dx$ (d) $\int \arcsin(x) \, dx$

(c)
$$\int \frac{\tan^k(x)}{\cos^2(x)} \, \mathrm{d}x$$

(d)
$$\int \arcsin(x) dx$$

Aufgabe 3 (4 Punkte) Berechnen Sie die folgenden unbestimmten Integrale.

(a)
$$\int \frac{x+8}{4x+x^2} \, \mathrm{d}x$$

(a)
$$\int \frac{x+8}{4x+x^2} dx$$
 (b) $\int \frac{x^3+1}{x^3-x^2+x-1} dx$ (c) $\int \frac{dx}{(x-3)^2}$

(d)
$$\int \frac{x}{(x-1)^2} \, \mathrm{d}x$$

Aufgabe 4 (4 Punkte) Es bezeichne $\phi_n : [0,1] \to \mathbb{R}$ die Treppenfunktionen

$$\phi_n(x) = \begin{cases} n & 1 - \frac{1}{n} \le x < 1 \\ 0 & \text{sonst} \end{cases}.$$

- (a) Berechnen Sie die punktweise Grenzfunktion $\phi(x) = \lim_{n \to \infty} \phi_n(x)$ und $\int_0^1 \phi(x) dx$. (b) Berechnen Sie $\int_0^1 \phi_n(x) dx$ und $\lim_{n \to \infty} \int_0^1 \phi_n(x) dx$.

Zusatzfrage: Welche Erkenntnis ziehen Sie aus diesen Überlegungen?