HEINRICH-HEINE-UNIVERSITÄT DÜSSELDORF PROF. Dr. FLORIAN JARRE

Dr. Joseph Adams

ÜBUNGEN ZUR ANALYSIS II BLATT 3

 Name:
 Rückgabe in Gruppe:

 MatrNr:
 MatrNr:

Aufgabe 9 (4 Punkte) Die Eulersche Beta-Funktion wird definiert durch das (ggf. uneigentliche) Integral

$$B(x,y) := \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

Zeigen Sie:

- (a) B(x,y) konvergiert für alle positiven reellen Zahlen x und y.
- (b) B(x, y) divergiert, falls $x \le 0$ oder $y \le 0$.

Aufgabe 10 (4 Punkte) Zeigen Sie für die in Aufgabe 9 definierte Beta-Funktion, reelle Zahlen x, y und eine natürliche Zahln die Identitäten

(a)
$$B(x,y) = B(y,x)$$
 (b) $B(x,n) = \frac{(n-1)!}{\prod_{k=0}^{n-1} (x+k)}$ (c) $B(x,y) = \int_0^\infty \frac{s^{x-1}}{(1+s)^{x+y}} ds$

Hinweis zu (c): substituieren Sie $s = \frac{t}{1-t}$.

Aufgabe 11 (4 Punkte) Es sei (X, d) ein metrischer Raum und $\emptyset \neq A \subset X$. Der Abstand von $x \in X$ zur Menge A ist definiert als

$$dist(x, A) = \inf \left\{ d(x, y) \mid y \in A \right\}.$$

- (a) Zeigen Sie, es gilt $\operatorname{dist}(x,A)>0$ genau dann, wenn $x\in (X\setminus A)^\circ$ und
- (b) die Abbildung dist $(\cdot, A): X \to \mathbb{R}, x \mapsto \text{dist}(x, A)$, ist Lipschitz-stetig mit Lipschitz-Konstante 1.

Aufgabe 12 (4 Punkte) Wir erinnern an die Definition der beiden unendlich dimensionalen Vektorräume C([0,1]) der stetigen Funktionen auf [0,1] und ℓ^1 der absolut summierbaren Folgen.

$$C([0,1]) = \{f: [0,1] \to \mathbb{R} \mid f \text{ stetig}\} \quad \text{ und } \quad \ell^1 = \left\{ (x_n)_{n \in \mathbb{N}} \mid \sum_{n \in \mathbb{N}} |x_n| < \infty \right\}.$$

Fortan, und insbesondere in dieser Aufgabe, dürfen Sie ohne Beweis verwenden, dass durch $||f||_1 = \int_0^1 |f(x)| dx$ und $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$ Normen auf C([0,1]) gegeben werden und durch $||(x_n)_{n \in \mathbb{N}}||_p = (\sum_{n \in \mathbb{N}} |x_n|^p)^{\frac{1}{p}}$, für $1 \le p < \infty$, und $||(x_n)_{n \in \mathbb{N}}||_{\infty} = \sup\{x_n \mid n \in \mathbb{N}\}$ Normen auf ℓ^1 gegeben werden.

- (a) Zeigen Sie, dass die Normen $\|\cdot\|_1$ und $\|\cdot\|_\infty$ auf dem Vektorraum C([0,1]) nicht äquivalent sind.
- (b) Es seien $p,q \in [1,\infty]$ unterschiedlich. Zeigen Sie, dass die Normen $\|\cdot\|_p$ und $\|\cdot\|_q$ auf dem Folgenraum ℓ^1 nicht äquivalent sind.

Hinweis: Um notatorischen Aufwand zu sparen verwendet man bei Intervallen für sog. Hölder-Exponenten manchmal auch "im unendlichen abgeschlossene" Intervalle, wie z.B. $p \in [1, \infty]$. Die bedeutet lediglich, dass $p \in [1, \infty)$ oder $p = \infty$ gilt, also die Norm $\|\cdot\|_p$ (für $p \in [1, \infty)$) bzw. $\|\cdot\|_\infty$ (für $p = \infty$) gemeint ist.