Klausur zu Mathematik I für Wirtschaftswissenschaftler (A)

1. Entscheiden Sie, ob die folgenden Aussagen richtig ode	r falsch sind. Hier sind nur die
Antworten "richtig", "falsch" oder Enthaltungen möglic	
ankreuzen!	
a) Eine Abbildung $f:X\to Y$ heisst injektiv, wenn zu	jedem $y \in Y$ ein $x \in X$ existiert,
so dass $f(x) = y$.	
Antwort: richtig (falsch (Enthaltu	(2/1/0 P.)
b) Zwischen dem arithmetischen Mittel AM , dem geo	metrischen Mittel GM und dem
quadratischen Mittel QM bestehen immer die Ungle	ichungen $AM \leq GM \leq QM$.
Antwort: richtig (falsch (Enthaltu	(2/1/0 P.)
\	
c) Ist $A \in \mathbb{R}^{4 \times 5}$ und $B \in \mathbb{R}^{5 \times 7}$, so ist $AB \in \mathbb{R}^{4 \times 7}$.	(0/1/0 D)
Antwort: richtig (falsch (Enthaltu	(2/1/0 P.)
d) Eine Matrix $A \in \mathbb{R}^{n \times n}$ ist genau dann regulär, wenn das lineare Gleichungssystem	
$Ax = b$ für jedes $b \in \mathbb{R}^n$ genau eine Lösung besitzt.	
Antwort: richtig (falsch (Enthaltu	(2/1/0 P.)
2 (6 D) Postimmon Sie des evithmetische geometrische u	od harmonische Mittel der Zahlen
2. (6 P.) Bestimmen Sie das arithmetische, geometrische und harmonische Mittel der Zahlen	
1, 2, 4, 8 und 16.	
3. (4×2 P.) Finden Sie alle Lösungen $x \in \mathbb{R}$ der nachstehenden Gleichungen bzw. Un-	
gleichungen:	
a) $x^2 + 6 = 5x$ b) $2 \le x + \frac{1}{x}$ c) $ x + 2 < 2x$ d) $\sqrt{x + 3} = x + 1$.	
c) $ x+2 < 2x$ d) $\sqrt{x+3} = x+1$.	

Bitte wenden!

- 4. (3+3 P.) Drei Unternehmen stellen vergleichbare Produkte P_1 , P_2 und P_3 her, die bei Markteinführung von jeweils 12000 Kunden gekauft werden. Im darauffolgenden Jahr wechseln $\frac{1}{3}$ der Käufer von P_1 zu P_2 , $\frac{1}{6}$ von P_1 zu P_3 , $\frac{1}{4}$ von P_2 zu P_3 und von P_2 zu P_1 , während alle Kunden von P_3 diesem Produkt treu bleiben. Die Gesamtzahl aller Kunden bleibt gleich. Bestimmen Sie
 - a) die Übergangsmatrix für die beschriebene Kundenwanderung,
 - b) die Marktverteilungsvektoren zu Beginn und nach einem Jahr.
- 5. (2+2+2 P.) Für die Vektoren $x = (1,0,-1)^{\top}, y = (1,3,2)^{\top}$ und $z = (3,-3,3)^{\top}$ berechne man
 - a) |y| und |z|,
 - b) $|x y|^2$ und $|z + 3x|^2$,
 - c) $\langle x, y \rangle$ und $\langle y, z \rangle$.
- 6. (6 P.) Lösen Sie das folgende lineare Gleichungssystem:

$$x - y = 1$$

$$x - 2z = 2$$

$$-x + y + 2z = 3$$

7. (9 P.) Für die Matrix

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

und für $k \in \mathbb{Z}$ berechne man A^k . Bestimmen Sie auch det (A).

- 8. (1+2+2+4 P.) Gegeben sei die 2×2 -Matrix $R = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$. Berechnen Sie
 - a) die Determinante von R,
 - b) die inverse Matrix R^{-1} ,
 - c) das charakteristische Polynom $P_R(t)$ dieser Matrix,
 - d) die Eigenwerte von R und
 - e) die dazugehörenden Eigenräume.

Klausur A

• AM
$$(12,4,8,16) = \frac{1+2+4+8+16}{5} = 6.2 \circ (\frac{34}{5})$$

• HM $(12,4,8,16) = \frac{5}{4+2+4+8+16} = \frac{50}{31}$

Aufgabe 3 Richtiges Ergebnis je 2 Punkte (8 Punkte) Falsolus Ergebnis, richtiger (Boungsandate je 1 Punkt)

a)
$$L = \{2,3\}$$
 Ansak: $p-q-Formel$

b) $L = \{x: x>0\}$ Multiplikation wit x
 $= (0,\infty)$ Fallunterscheidung $x>0$

c) $L = \{x: x>2\}$ Beträge richtig auflösen $x>0$
 $x>2$, $x<2$ unterscheiden

d) $L = \{13\}$ Quadrieren, quadr. Gleichung lösen

Klausur A Aufgabe 4 (6 Punkte) (3 Plunkte) Je richtige Spalte, aber Spaltenshmunen)

(alle 1 = 1 Punkt We gauge matrix $H = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & 0 \\ \frac{1}{3} & \frac{1}{2} & 0 \end{pmatrix}$ Richinger Markhurfeilungsbektor zu Beginn $x = \begin{pmatrix} 12000 \\ 12000 \end{pmatrix}$ 1 Punkt Richinger HV-Vertor nooli ainem John Ax = (3000 10000) 2 Punkte

Klausu A

Autobe 5 (6 Punkte)

je richtigen Ergebnis 1 Punkt

$$1x-y|^2 = 18$$

Klausur A Autobe 6 (6 Punkte) Richinger Ergebnis 6 Punkte $L = \begin{pmatrix} 6 \\ 5 \\ 2 \end{pmatrix}$ Ansonsten · Koeffizientenmatrix $\begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Um formungen angeben 2-0 (3) ----> (3) + (A) Riching ausführler 2. Zeile richts

Die Hatrix sielet dans 30 aus: (0 1 -2 / 1)

Bli alternativen Lösungen 99f. nachifiagen

(3 Putte) Klausur A Aufgabe 7

$$det(A) = 1$$

$$\theta = 1$$

•
$$A^{3L} = E_3$$
, $L \in \mathbb{Z}$
 $A^{3L+1} = A$, $L \in \mathbb{Z}$
 $A^{3L+1} = A^2$, $L \in \mathbb{Z}$
 $A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Bei fellunden Teilen:

$$A^{\circ} = E_3$$

$$A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 2 Punkte.

Much

Klausur A Autgabe 8 (M Punkte) a) del (R) = 2 1 Punkt b) R1 = 2 (2-3) 2 Punkte c) $P_{R}(\lambda) = \det \begin{pmatrix} t-t & 3 \\ 0 & 2-t \end{pmatrix} = (t-1)(t-2) 2 Ruckte$ (Falscher Polynou, richige Ausgauer formet noch IP) d) $\lambda_1 = 1, \lambda_2 = 2$ 2 Punkle (je 17) $E_{\lambda_2} = \ker\left(\frac{-\lambda}{0}, \frac{3}{0}\right) = \left\{ \left(\frac{x}{3}\right) \in \mathbb{R}^2 : 3y = x \right\}$ 2 Punkle der (A)t, teR) $E_{\lambda_{1}} = \ker\left(\begin{smallmatrix} 0 & 3 \\ 0 & 1 \end{smallmatrix}\right) = \left\{\begin{smallmatrix} (x) \\ (y) \in \mathbb{R}^{2} : y = 0 \right\}$ 2 Rucke oder ((f)t;teR?

(Fro richiger Ausgangsformet für Exiloris rock 1P)