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Abstract. Categories of logics and translations usually come with a natural notion
of when a translation is an equivalence. The datum of a category with a distinguished
class of weak equivalences places one into the realm of abstract homotopy theory where
notions like homotopy (co)limits and derived functors become available. We analyze
some of these notions for categories of logics. We show that, while logics and flexible
translations form a badly behaved category with only few (co)limits, they form a well
behaved homotopical category which has all homotopy (co)limits. We then outline
several natural questions and directions for further research suggested by a homotopy
theoretical viewpoint on categories of logics.
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1. Introduction
In his opening lecture at Unilog 2010 Jean-Yves Béziau named the following as the main
questions of Universal Logic:

1. What is a logic?
2. What is a translation between logics?
3. When are two logics equivalent?
4. How to combine logics?

Lots of different answers to these questions have been proposed over time, with a
recent increase of activity spurred by the contests of the Unilog conference series.

The consideration of categories of logics is a way of evaluating and comparing such
answers. First observe that answering questions 1 and 2 usually results in a category
whose objects are logics and whose morphisms are translations. One then gets tentative
answers to questions 3 – two logics might be called equivalent if they are isomorphic in
that category – and 4 – a combination of logics may be seen as the formation of a colimit
in this category, following [47]. However, these answers to questions 3. and 4. are rarely
satisfying.
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To see this, let us place ourselves in the setting of Hilbert systems, i.e. formal lan-
guages generated by some primitive connectives and variables and endowed with a conse-
quence relation. A strict translation is a map of the formal languages sending generating
connectives to generating connectives and preserving consequence, while a flexible trans-
lation may send generating connectives to more complex formulas (both are required to
map n-ary connectives to n-ary connectives).

Now for question 3 consider the two presentations of classical propositional logic
CPL1 := 〈∧,¬ | rules . . .〉 and CPL2 := 〈∧,¬,∨,→| rules . . .〉. Clearly one would say that
both are presentations of “the same” logic, since the connectives ∨ and→ appearing ad-
ditionally in the second logic, are expressible, up to logical equivalence, by compositions
of ∧ and ¬, and do not need to be present as primitive symbols. Indeed, the inclusion of
formal languages CPL1 → CPL2 has the property that it is conservative, i.e. inferences
hold in the target logic if and only if they hold in the domain logic, and that any formula
of the target logic is logically equivalent to one in the image. We will call a translation
with these properties a weak equivalence.

But there can be no isomorphism between these logics. There is no strict translation
at all from CPL2 to CPL1, since it would have to map the binary connectives ∨ and →
to the only binary connective ∧ of CPL1, but such a map cannot preserve consequence,
since the connectives satisfy different rules. We do have a flexible translation from CPL2
to CPL1 which maps, for example, − ∨ − to the derived formula ¬(¬(−) ∧ ¬(−)). But
this cannot be part of an isomorphism since going back via the inclusion results in the
map CPL2 → CPL2 which sends − ∨ − to ¬(¬(−) ∧ ¬(−)) – the formulas are logically
equivalent, but not equal, and an the composition of an isomorphism with its inverse has
to give the identity.

Thus we found that a sensible notion of equivalence is an extra notion, and does not
emerge from the categorical structure.

For question 4 about combining logics, the answer that the combination of logics
should be a colimit is often a good one where it applies, but this is only the case for
a restricted class of diagrams of logics. Essentially, only colimits of diagrams of strict
morphisms exist and behave well1. This includes a lot of cases from practice, but it would
be even nicer to be able to combine logics along flexible morphisms.

Consider for example a modal extension of classical propositional logic, presented
by L := 〈∧,¬,∨,→,�,^ | rules . . .〉. It receives an inclusion of classical propositional
logic CPL := 〈∧,¬,∨,→ | rules . . .〉. Now we might be interested in what happens if
we make the underlying propositional logic of L intuitionistic by removing the law of
excluded middle from its rules. For example we might ask whether properties like al-
gebraizability or the validity of a metatheorem of deduction will still hold and how to
construct a semantics for the new logic. Such questions have been amply adressed in the
theory of fibring of logics, so we could try to express our “intuitionistified” logic Lint as a

1see Example 2.8 for a colimit of flexible morphisms which does exist, but does not behave right.
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fibring, i.e. a pushout, of logics:

CPL � � //

¬¬

��

L

��
IPL // Lint

The idea is that we embed the classical propositional sublogic of L into intuitionistic logic
IPL along the double negation translation (the left vertical arrow), and glue the extra, not
doubly negated, layer that intuitionistic logic has in comparison to CPL, to the modal
logic L while maintaining the place that was formerly occupied by CPL.

The problem is that this colimit does not exist in the category of Hilbert systems and
flexible translations, and indeed very few colimits exist there.

The conclusion that we draw from these observations is that it is better to regard
questions 1, 2 and 3 as fundamental questions: We should first ask for notions of logic,
translation and weak equivalence. Then we have a category with an additional structure, a
distinguished class of morphisms given by the weak equivalences. As harmless as it looks,
this has vast implications: Such a pair consisting of a category and a class of morphisms,
also called a relative category, is all one needs, to do an abstract form of homotopy theory.

The usual categorical notions and constructions can now be accompanied with their
“derived” versions. For example there is the notion of homotopy colimit: Usual colimits
do not need to preserve weak equivalences, i.e. given two weakly equivalent diagrams,
their colimits need not be weakly equivalent. A homotopy colimit can roughly be thought
of as the best approximation of a colimit construction which preserves weak equivalences.
One could argue that, if one devises a logically meaningful construction of a new logic
from some given other logics, then one would like equivalent inputs to lead to equivalent
outputs and that thus the derived notions are the better ones. Maybe more importantly,
homotopy (co)limits can exist where (co)limits do not exist. Indeed, for Hilbert systems
all homotopy colimits do exist.

Another benefit from working with relative categories is this: Relative categories are
commonly regarded not as the important objects in themselves, but rather as presentations
of a so-called (∞, 1)-category. As an analogy, in group theory one can have different pre-
sentations by generators and relations of a group, and these can be useful for answering
different questions about the group, while the actual object of interest is still (the iso-
morphism class of) the group itself. Analogously there can be different relative categories
which are presentations of the same (∞, 1)-category, and when asking questions whose
answers are invariant under equivalence, there is no harm in switching to a better suited
presentation. There is a theory of (∞, 1)-categories, very much parallel to usual category
theory, where one studies such invariant properties and the (∞, 1)-categories of logics that
we consider here have much better properties in this realm, than in the usual category
theoretical world where they arose.

Overview of the article. In this article we explore a bit of the homotopy theoretical
perspective on logics that we have hinted at. In Chapter 2 we review usual categories of
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logics and pin down, what is the problem with categories of flexible morphisms. In Chap-
ter 3 we give a quick tour through some concepts of abstract homotopy theory to explain
the setting in which we wish to study categories of logics. Here we can only serve some
rough ideas of a huge area, but we need very little of the full scope of abstract homotopy
theory and the next chapter – particularly Section 4.2 – can be read with very few pre-
requisites. The main ingredients that will be used from here are simplicial categories and
how they arise from 2-categories as well as the the notion of equivalence of simplicial
categories.

Chapter 4 is the technical heart of the article, where we investigate categories of
Tarski style logics. We first introduce, in Section 4.1, the two different notions of homo-
topy equivalence and weak equivalence and see how they relate differently in the strict
and flexible settings. We next, in Section 4.2, give a short preview on work to appear that
adresses the so-called the hammock localization of the category of Hilbert systems. It is
in this setting that we can particularly well handle the combination of logics along flex-
ible translations, which we hinted at above. In particular we get preservation results for
homotopy colimits parallel to those for fibring, which was what motivated our discussion
of question 4. Our treatment of this, however, uses a particular kind of presentation of an
(∞, 1)-category, which we felt was too much to expose here in detail.

Section 4.3 exploits the fact that the set of translations between two logics carries
a natural equivalence relation: Two translations f , g : L → L′ can be called equivalent if
for every formula ϕ of L the images f (ϕ) and g(ϕ) are mutually derivable from each other
in L′. Equivalence relations are a special kind of groupoid and thus categories of logics
can be seen as 2-categories and come with a natural notion of equivalence, which under
mild hypotheses coincides with the ones of section 4.1. The resulting (∞, 1)-categories,
which we call the 2-categorical localizations, are homotopy theoretically very simple;
their mapping spaces are homotopy discrete. This means that they are equivalent to the
quotient categories with respect to the above equivalence relations. These quotient cat-
egories have been studied by Mariano and Mendes in [41] and [42], where they show,
among other things, that the quotient category of congruential Hilbert systems is complete
and cocomplete. In section 4.3.2 we show how these results of Mariano and Mendes, can
be cast into the language of (∞, 1)-categories, here embodied by categories enriched in
simplicial sets. On the one hand this is because, in our view, the simplicial categories are
the natural objects one would want to study, and that this boils down to the study of their
homotopy categories could be seen as merely a technical convenience. On the other hand
this is to offer the reader an easy entry point to get acquainted with the language – it is the
language that will be needed for the more refined categories of logics of Section 5.3.

It is in Section 4.3 that the main technical results of the article appear. These are:
Theorem 4.26 (crucially relying on work of Mariano and Mendes), which asserts that in
the world of (∞, 1)-categories the category of logics and flexible morphisms is a reflective
subcategory of that of strict morphisms, Theorem 4.39, which asserts that the category of
logics and flexible morphisms has all homotopy limits (contrary to the 1-categorical case)
and the discussion of Section 4.3.3, which asserts the existence of all homotopy colimits.
We chose to construct homotopy limits in a pedestrian way to give a feeling of how one
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can handle single logics homotopically, and to sketch a proof of the existence of homotopy
colimits by abstract results, to give a different sample of homotopy theoretical methods.

In the remaining Chapter 5 we gather questions and prospects for further develop-
ments suggested by the homotopy theoretical viewpoint on logic.

Acknowledgements and birthday wishes: I thank Eyjafjallajökull for letting me give a
“volcanic lecture” on these, then still very vague, thoughts at the Unilog 2010. I am greatly
indebted to Hugo Mariano for helpful conversations, for sharing the work [42] with me on
which some of the key results here rely and which made me notice an error in an earlier
version, and for his very stimulating interest in these ideas. I thank Markus Spitzweck
for helpful conversations and Oliver Bräunling, Moritz Groth, Krzysztof Kapulkin, Caio
Mendes, Darllan Pinto and Michael Völkl for their comments on an earlier version. And
I give my thanks to Jean-Yves for the spirit of the Unilogs and the whole endeavour of
Universal logic, where such ideas can flourish.
Happy birthday, Jean-Yves!!

2. Categories of logics
2.1. Signatures
Definition 2.1. A signature S is a sequence of sets (S n, n ∈ N).

We think of the elements of S n as the generating n-ary connectives of a formal
language. We fix once and for all a set Var := {xn | n ∈ N} of variables and denote as
usual by Fm(S ) the absolutely free algebra with signature S generated by Var. We have
a decomposition Fm(S ) =

∐
n∈N Fm(S )[n], where Fm(S )[n] denotes the set of formulas

with n free variables. We also denote by Fm(S )[x1, . . . , xn] the set of formulas containing
exactly the variables x1, . . . , xn.

Definition 2.2. A strict morphism f : S → S ′ of signatures is a sequence of maps
( fn : S n → S ′n, n ∈ N).

A flexible morphism, or simply a morphism, f : S → S ′ of signatures is a sequence
of maps ( fn : S n → Fm(S ′)[x1, . . . , xn], n ∈ N).

Thus a strict morphism is an arity-preserving map sending generating connectives to
generating connectives while a flexible morphism can be seen as a map sending generating
connectives to derived connectives. A strict morphism can be seen as a flexible morphism
which happens to send generating connectives to generating connectives (where a gen-
erating connective c ∈ S n is seen as the formula c(x1, . . . , xn) ∈ Fm(S ′)[x1, . . . , xn]), see
Definition 2.5.1.

A morphism f : S → S ′, either strict or flexible, induces a map f : Fm(S ) →
Fm(S ′) which is inductively defined as usual.

Example 2.3. The usual double negation translation from the standard signature of clas-
sical propositional logic to the standard signature of intuitionistic logic is a flexible mor-
phism which is not strict as it sends, for example, the binary connective ∧ (or (x1 ∧ x2)) to



6 Peter Arndt

the derived connective (¬¬(x1) ∧ ¬¬(x2)). One can make the double negation translation
into a strict morphism, if one chooses to present intuitionistic logic with extra connectives
and axioms: To resolve, for example, the above obstacle to a strict translation, one could
add a binary connective ∧class to the presentation of intuitionistic logic and add the ax-
iom (x1 ∧

class x2) a` (¬¬(x1) ∧ ¬¬(x2)). Then a translation from classical logic could be
defined by sending ∧ to ∧class.

Definition 2.4. The category Sigstrict is the category whose objects are signatures and
whose morphisms are strict morphisms. The category Sig is the category whose objects
are signatures and whose morphisms are flexible morphisms.

We note that the category Sigstrict is equivalent to the category SetN of sequences of
sets and morphisms, in particular it is complete and cocomplete.

Central to our main results in Section 4.3 is the following adjunction established by
Mariano and Mendes in [42].

Definition 2.5 ([42, Prop. 1.5, Mariano/Mendes]). 1. The functor i : Sigstrict
→ Sig

is defined on objects by the identity and on morphisms by associating to f =

( fn)n∈N : S → S ′ the flexible morphism i( f ) with i( f )n : S n → Fm(S ′)[x1, . . . , xn],
c 7→ ( fn(c))(x1, . . . , xn).

2. The functor Q : Sig→ Sigstrict is defined on objects by S 7→ Q(S ) where Q(S )n :=
Fm(S )[x1, . . . , xn] and by sending a flexible morphism f : S → S ′, given by
( fn : S n → Fm(S ′)[x1, . . . , xn]), to the sequence of induced maps
Fm(S )[x1, . . . , xn]→ Fm(S ′)[x1, . . . , xn].

Theorem 2.6 ([42, Thm. 1.6, Mariano/Mendes]). The functor i is left adjoint to Q.

Proof. The natural isomorphisms

HomSig(i(S ), S ′) � {( fn : S n → Fm(S ′)[x1, . . . , xn])n∈N} � HomSigstrict (S ,Q(S ′))

follow straight from the definitions of the morphisms of Sig, resp. Sigstrict, and the func-
tors i and Q. �

The unit S → i(Q(S )) of the adjunction is given by the inclusions
S n → Fm(S )[x1, . . . , xn], c 7→ c(x1, . . . , xn). The counit Q(i(S )) → S is the flexible
morphism given by the identity maps Fm(S )[x1, . . . , xn]→ Fm(S )[x1, . . . , xn].

In fact, by [42, Thm. 1.12, Mariano/Mendes] the category Sig is the Kleisli category
of the above adjunction. Thus it is a category of free algebras and has much worse cate-
gorical properties than Sigstrict. It is not complete nor cocomplete. This is to be expected,
as (co)limits of free algebras, formed within their (co)complete ambient category of all
algebras, are not usually free again.

Example 2.7. The category Sig has no terminal object. Indeed, a terminal signature would
have to have a generating connective of arity ≥ 2, since if there were only generating
connectives of arities 0 and 1 the sets of n-ary formulas Fm(S )[x1, . . . , xn] would be
empty and there could be no morphism from a signature with n-ary connectives. But
if c is an n-ary connective, then Fm(S )[x1, . . . , x2n−1] contains the two different formulas
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c(c(x1, . . . , xn), xn+1, . . . , x2n−1) and c(x1, . . . , xn−1, c(xn, . . . , x2n−1)) and hence admits two
different morphisms from the signature with just one generating (2n − 1)-ary connective.

Some (co)limits do exist. Among these the colimits imported via the functor i (which
is left adjoint, hence colimit preserving) from the cocomplete category Sigstrict are well
behaved, but others are degenerate and do not express what we would like to achieve with
them in logic.

Example 2.8. Consider the signature S generated by a single unary connective �. We
have the two flexible morphisms f , g : S → S defined by f (�) := ��x1, g(�) := ���x1,
respectively. Any flexible morphism h : S → S ′ which satisfies h ◦ f = h ◦ g (i.e. which
“coequalizes” f and g) can only map � to the variable x1 ∈ Fm(S ′)[x1]: If � is mapped to
any other formula ϕ(x1) then the formulas ��x1 and ���x1 will have the images ϕ(ϕ(x1))
and ϕ(ϕ(ϕ(x1))), and these images will be different because the target is an absolutely
free algebra. The coequalizer can then easily be seen to be empty signature ∅ with no
generating connectives: By the usual definition of formulas, the set of formulas is the
smallest set containing all variables and closed under application of connectives, so there
we have x1 ∈ Fm(∅)[x1] and the uniqueness property of a colimit is satisfied since this
signature is initial. However, this is not what one would like in practice. The coequalizer
should remember that there was a connective � and that “�� = ���”, not just forget it
completely.

Remark 2.9. One could adopt a yet more flexible notion of morphism by considering the
set Fm(S ′)〈x1, . . . , xn〉 of formulas which contain no other variables than x1, . . . xn (but are
allowed to contain less than these), i.e. Fm(S ′)〈x1, . . . , xn〉 :=

∐n
i=0 Fm(S )[x1, . . . , xi], and

then defining the set of morphisms as Hom(S , S ′) := {( fn : S n → Fm(S ′)〈x1, . . . , xn〉)n∈N}.
Such morphisms would no longer preserve the arity of formulas, and for example one
could “delete” n-ary connectives by mapping them to the single variable x1 (substitution
into which would correspond to the identity operation). Much of what will be said in this
article would carry over to this setting, as well as to many other variants, but the notions
of morphism we chose to consider seem to be the ones of biggest interest in practice.

Definition 2.10. A substitution is a map σ : Var→ Fm(S ).

Again a substitution induces an inductively defined map σ : Fm(S )→ Fm(S ).

2.2. Logics
Definition 2.11. 1. Let S be a signature. A consequence relation over S is a relation
` ⊆ P(Fm(S )) × Fm(S ) between subsets of Fm(S ) and elements of Fm(S ). As usual we
write it in infix notation Γ ` ϕ.

2. A logic is a pair L = (S , `), where S is a signature and ` a consequence relation
on Fm(S ).

Given a logic L, we will sometimes denote its underlying signature by S L and its
consequence relation by `L.

Definition 2.12. A consequence relation is Tarskian if the associated operation
Cn: P(Fm(S ))→P(Fm(S )), Γ 7→ {ϕ | Γ ` ϕ} satisfies
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1. (increasingness) Γ ⊆ Cn(Γ) for all Γ ⊆ Fm(S )
2. (idempotence) Cn(Cn(Γ)) ⊆ Cn(Γ) for all Γ ⊆ Fm(S )
3. (monotonicity) Γ ⊆ Γ′ ⇒ Cn(Γ) ⊆ Cn(Γ′) for all Γ,Γ′ ⊆ Fm(S )

These conditions say exactly that Cn is a closure operator on P(Fm(S )).

Two common further additional conditions that one likes to impose on consequence
relations are:

(finitarity) If Γ ` ϕ then there exists a finite subset Γ′ ⊆ Γ such that Γ′ ` ϕ
(substitution invariance) If Γ ` ϕ, then for any substitution σ we have σ(Γ) ` σ(ϕ)

Substitution invariance is also called structurality.

Finally, the role of the following notion for the study of categories of logics has been
brought to light by Mariano and Mendes in [41], [42].

Definition 2.13. A logic (S , `) is congruential if for every two sequences of formu-
las ϕ1, . . . ϕn and ψ1, . . . , ψn with ϕi a` ψi and every pair of formulas β(xi1 , . . . , xin ),
γ(xi1 , . . . , xin ) with β a` γ we have β(ϕ1, . . . ϕn) a` γ(ψ1, . . . , ψn).

Congruentiality is a notion taking its place in the Leibniz hierarchy of degrees of
algebraizability.

By the results of Łoś and Suszko in [38], the consequence relations that are finitary,
substitution invariant and Tarskian are exactly the provability relations coming from a
Hilbert style system, where consequence is given by finite derivations using axioms, rules
and substitutions. We therefore call a logic (S , `) a Hilbert system, if the consequence
relation has these properties. On the semantical side there is Wójcicki’s result from [52],
saying that a finitary and substitution invariant Tarskian logic is sound and complete for
an appropriate finitary matrix semantics (see also [53, Thm. 3.1.6]).

The consequence relations over a fixed signature S can be ordered by setwise inclu-
sion: Cn1 ≤ Cn2 :⇔ Cn1(Γ) ⊆ Cn2(Γ) ∀Γ ⊆ Fm(S ). Obviously consequence relations
(without further conditions) form a complete lattice with respect to the above order. By
[53, Thm. 1.5.4] also the subset of Tarskian consequence relations on Fm(S ) forms a com-
plete lattice with respect to this order, by [53, Theorems 1.5.5-1.5.6] the same is true for
the subsets of finitary, resp. structural Tarskian consequence relations and finally by [53,
Thm. 1.5.7] the same is true for Hilbert systems.

About congruential Hilbert systems there is the following result by Mariano and
Mendes:

Proposition 2.14 ([42, Prop. 2.18, Mariano/Mendes]). The category of congruential
Hilbert systems is a reflective subcategory of the category of all Hilbert systems.

By considering colimits of diagrams of congruential logics whose underlying signa-
ture morphisms are the identity, one can conclude that congruential Hilbert systems form
a complete lattice of consequence relations as well. It is also easy to see that intersections
of congruential consequence relations are congruential again

In particular for a signature S we have on Fm(S ) a maximal and a minimal conse-
quence relation of each of the types just listed.
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The completeness of the considered lattices of consequence relations gives us the
possibility of defining direct and inverse image logics, as done for Hilbert systems in [2,
Def 2.9]:

Definition 2.15. Given a logic (S , `) and a signature morphism f : S → S ′ we can view
` as a subset of P(Fm(S )) × Fm(S ), take the set-theoretic image f (`) ⊆ P(FmS ′ ) ×
FmS ′ and define the direct image f∗(`) as the infimum of all consequence relations of the
given type (e.g. Tarskian, resp. finitary and/or structural Tarskian consequence relations)
containing f (`).

Likewise, given a logic (S ′, `′) and a signature morphism f : S → S ′, the inverse
image f ∗(`′) can be defined as the infimum of all consequence relations of the given type
(i.e. Tarskian, resp. finitary and/or substitution invariant Tarskian consequence relations)
on Fm(S ) containing f −1(`′), the set-theoretic pre-image of `′.

Definition 2.16. A translation (resp. strict translation) L = (S , `) → (S ′, `′) = L′ of
logics is a signature morphism (resp. strict signature morphism) f : S → S ′ such that
Γ ` ϕ⇒ f (Γ) `′ f (ϕ).

Remark 2.17. As noted in [2, Fact 5 (p.12)], given two logics L = (S , `), L′ = (S ′, `′), a
signature morphism f : S → S ′ is a translation iff ` ≤ f ∗(`′) iff f∗(`) ≤ `′.

Definition 2.18. We denote by LOG the category of logics whose objects are logics
and whose morphisms are translations. We denote by Log(Tarsk) (resp. Log( f in,Tarsk), resp.
Log(subst,Tarsk), resp. Log(subst,Tarsk,con) etc.) the full subcategory of Tarskian (resp. of fini-
tary Tarskian, resp. substitution invariant Tarskian, resp. substitution invariant congru-
ential Tarskian, etc.) logics. Finally we denote by H ilb the full subcategory of Hilbert
systems and byH ilb(con) the full subcategory of congruential Hilbert systems.

Convention 2.19. For the remainder of the article we denote by Log any of the follow-
ing full subcategories of LOG: LOG, Log(Tarsk), Log(con), Log(Tarsk,con), Log( f in,Tarsk),
Log(subst,Tarsk),Log(subst,Tarsk,con),H ilb,H ilb(con). By the terms “logic” and “consequence
relation” we will mean a logic, resp. a consequence relation, taken from this chosen cat-
egory Log. If we need to distinguish consequence relations from LOG and consequence
relations defining objects of Log, we will call the latter “admissible consequence rela-
tions”. In parts of Chapter 4 we will need to assume additional properties of our logics
and will then say so.

We invite the reader to read the article with a specific category of logics, such as
Log(Tarsk) orH ilb in mind.

Remark 2.20. For much of what follows we could be rather flexible about what properties
exactly we demand from our consequence relations. Much of the article can be read by
fixing a set of properties that one wishes our consequence relations to have and that satisfy
the following assumptions:

1. The lattice of consequence relations satisfying the properties is complete
2. The direct image maps satisfy g∗( f∗(`)) = (g ◦ f )∗(`)
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These assumptions are exactly what is needed for Proposition 2.24 below to hold,
i.e. that one can construct (co)limits in the corresponding category of logics by construct-
ing them in Sig (resp. Sigstrict) and then endow the resulting signature with an appropriate
consequence relation. Much of Chapter 4, however, needs the property of idempotence.

Remark 2.21. The completeness of the lattice of consequence relations of a chosen kind
also makes it possible to define a consequence relation by giving generating rules. For
example, given a logic (S , `) and ϕ, ψ ∈ Fm(S ), the Tarskian consequence relation gen-
erated by ` and the rules {ϕ} ` ψ, {ψ} ` ϕ is defined to be the infimum in the lattice of
Tarskian consequence relations of all those consequence relations containing ` and which
satisfy {ϕ} ` ψ and {ψ} ` ϕ. We will freely make use of such constructions and if we
talk of the consequence relation generated by some given rules, we will always mean the
consequence relation in our chosen category Log.

Definition 2.22. Let U : Log → Sig, (S , `) 7→ S denote the obvious faithful forgetful
functor forgetting the consequence relation. We will denote its restriction to the subcate-
gories of strict morphisms Logstrict → Sigstrict by U as well.

Lemma 2.23. The functor U has a left adjoint Min : Sig → Log, S 7→ (S , `min) which
endows a signature S with the minimal consequence relation on Fm(S ), as well as a right
adjoint Max : Sig → Log, S 7→ (S , `max) placing the maximal consequence relation on
Fm(S ). These adjunctions restrict to the subcategories of strict morphisms.

Proof. The direct/inverse image characterization of translations of Remark 2.17 implies
that, for a morphism of signatures f : S → S ′, the pair ( f∗, f ∗) is a pair of adjoint functors
between the preorders of consequence relations, seen as categories. Here f∗ is the left
adjoint, hence it preserves colimits, i.e. suprema of consequence relations. In particular it
preserves the supremum of the empty family, i.e. the minimal consequence relation, i.e.
f∗(`S

min) = `S ′
min. Now we have natural bijections

HomLog(Min(S ), L) = { f ∈ HomSig(S , S L) | f∗(`min) ≤ `L} = HomSig(S , S L)

where the left equality is th direct image characterization of translations of Remark 2.17
and the right equality can be seen from the fact that f∗(`S

min) =`
S L
min and thus the condition

in the middle set is empty.
This shows that Min is left adjoint to U. The right adjointness of Max works by

dualizing the proof, the restriction statement is clear. �

Note that we have U ◦Min = U ◦Max = idSig.

Proposition 2.24. The category Log has (co)limits of a given diagram shape, if and only
if the (co)limits of this shape exist in Sig.

Proof. Since U : Log→ Sig has a left and a right adjoint, it preserves colimits and limits.
Thus if (co)limits of shape D exist in Log, then, given a diagram of shape D in Sig, we
can lift it to Log e.g. via the functor Min, take the colimit in Log and apply U. This will
yield the (co)limit of the diagram we started with.

Conversely, if colimits of shape D exist in Sig, then given a diagram F : D →

Log, we can take the colimit of the underlying diagram U ◦ F in Sig and then endow
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the resulting signature with the smallest consequence relation such that all the incoming
signature morphisms from the original diagram become translations (this exists because
of the completeness of the lattice of consequence relations). This construction of colimits
is done in all details in [2, Prop. 2.11].

Likewise, limits in Log can be constructed by taking them in Sig and endowing the
resulting signature with the maximal consequence relation such that all outgoing signature
morphisms into the diagram become translations.

An inspection of the proofs in [2] (which are written for Hilbert systems) shows that
the assumptions of Remark 2.20 are all that is needed. �

On the one hand this shows that the category of Logstrict of logics and strict mor-
phisms is complete and cocomplete, since the underlying category Sigstrict

' SetN of
signatures is complete and cocomplete. On the other hand the category Sig of signatures
and flexible translations is not (co)complete as seen in the last section and hence the same
is true for Log.

Clearly we would like a category with the more flexible morphisms, in which we
can perform constructions such as (co)limits and which has good categorical properties
such local presentability. Proposition 2.24 seems to rule this out. It is one of the main
points of this article to argue that in fact we do not just have a category Log, but instead a
category endowed with an extra structure: A distinguished class of morphisms which we
want to see as “equivalences”. This extra structure tells us that Log is most naturally seen
not as a category but as a so-called (∞, 1)-category. There is a theory of (∞, 1)-categories,
largely parallel to usual category theory, whose basic ideas we will sketch in the following
section. It will then turn out in Section 4 that, seen as an (∞, 1)-category, Log does not
have the defects that it has as a 1-category.

3. Abstract homotopy theory
In this section we review how the basic datum of a category with a distinguished class of
morphisms gives rise to structures and notions of a homotopy theoretical flavor.

A relative category is a pair (C,W) where C is a category and W ⊆ MorC is a class
of morphisms containing the identity morphisms. We will call the morphisms in W the
weak equivalences and will try to find constructions and notions that are invariant under
weak equivalences.

3.1. Simplicial sets and nerves
The archetypical example of a category with a distinguished class of weak equivalences is
the category Top of topological spaces and continuous maps, where a weak equivalence
X → Y is a map inducing isomorphisms πn(X) → πn(Y) between all homotopy groups
πn, n ≥ 1 (with respect to all possible base points) and between the sets of connected
components π0(X), π0(Y). One important feature of abstract homotopy theory is that one
can often replace a relative category by another one which is better behaved but contains
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the same information regarding “weak equivalence types”. For the category of topological
spaces the most common choice is the relative category of simplicial sets:

Definition 3.1. A simplicial set is a functor ∆op → Set, where ∆ denotes the category of
finite linearly ordered sets and order preserving maps. A morphism of simplicial sets is a
natural transformation. We denote the category of simplicial sets by sSet.

The category ∆ (or a skeleton thereof) can be described by generators and relations:
We can take as objects the standard linearly ordered sets [n] := {0 ≤ . . . ≤ n} and observe
that any order preserving map arises as a composition of the basic maps [n] → [n − 1]
which identify two neighbouring numbers and the maps [n] → [n + 1] which leave a gap
between two neighbouring numbers. To give a functor from ∆ (or ∆op) to some category,
it is then enough to say what it does on objects and on these basic maps and to ensure
that the choice of values on the maps satisfies some relations. Thus a simplicial set can
alternatively be described as a diagram of sets of the following shape

X0 // X1oo
oo //

// X2oo
oo
oo

////// X3oo oooo

oo ////
////
· · ·

oooo
oooo
oo

in which the arrows satisfy certain relations (see e.g. [22, p. 4]).
One may think about a simplicial set as follows: The set Xn is the set of n-simplices

of some abstract simplicial complex and the maps Xn → Xn−1 identify the faces of these
n-simplices with certain (n − 1)-simplices from Xn−1. Thus two n-simplices can share a
common face and the whole diagram can be seen as giving combinatorial data for pasting
together the several collections of simplices (let us not care about the index increasing
maps).

We record the following standard result from category theory (see e.g. [33, 2.7.1]):

Lemma 3.2. Let C be a small category, D a cocomplete category and F : C → D a
functor. Then there is an adjunction F : SetCop

� D : HomD(F(·),−).

Here the left adjoint F is given by left Kan extension of F along the Yoneda embed-
ding, i.e. by expressing a presheaf as a colimit of representables, mapping the representa-
bles toD as prescribed by F and then taking the colimit there.

There is a cosimplicial object in Top, i.e. a functor ∆ → Top, which associates to
the object [n] the standard n-simplex ∆n := {(x0, . . . , xn) ∈ Rn+1 | Σxi = 1, xi ≥ 0 ∀ i},
which send increasing maps to inclusions of faces of the standard simplex and decreas-
ing maps to continuous maps collapsing a simplex to one of its faces, see [22, Exam-
ple 1.1]. By Lemma 3.2 this induces an adjunction | · | : sSet � Top : Sing. Here the
value |X| of the left adjoint at a simplicial set X, called the geometric realization of X,
is given by taking a standard n-simplex in Top for each element of the set Xn and glue-
ing these simplices together as suggested by the face maps. The right adjoint is defined
on objects by Sing(X)n := HomTop(∆n, X) and on maps by precomposition of face in-
clusions/retractions. Geometric realization can be seen as a formalization of the intuition
about simplicial sets offered in the previous paragraph.

One says that a map of simplicial sets is a weak equivalence if its geometric realiza-
tion is a weak equivalence of topological spaces. A first indication (but not the complete
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story) that for the purpose of studying spaces up to weak equivalence one can replace Top
by sSet is the fact that the unit and counit of the above adjunction are weak equivalences
at each object, i.e. one has weak equivalences |Sing(X)| → X and Y → Sing(|Y |) so that
going back and forth between the two categories results in weakly equivalent objects. A
more complete statement is that Top and sSet form equivalent (∞, 1)-categories, see be-
low. We therefore sometimes refer to simplicial sets as “spaces”, for example when we
will talk about mapping “spaces” below.

Similarly we can define the nerve functor N : Cat → sSet by applying Lemma 3.2:
There is a cosimplicial object in the category Cat of (small) categories simply given by
considering the linearly ordered sets of ∆ as categories in the usual way, i.e. taking the
numbers 0, . . . , n as objects and declaring that there is a unique morphism from i to j if
i ≤ j. Mapping out of this cosimplicial object into a fixed category C produces a simplicial
set N(C) := HomCat(∆,C) as above, and the nerve functor is the right adjoint of 3.2 in this
special case.

More concretely the nerve of a category C is the simplicial set with N(C)0 = ObC,
N(C)1 = MorC, N(C)n = {chains of n composable morphisms of C} and whose structure
maps are given by composing arrows, resp. inserting identity morphisms into a chain.

3.2. Localization of categories and homotopy (co)limits
One thing we can do with a relative category (C,W) is to force the morphisms from W
to become isomorphisms: That means we can construct a category C[W−1] together with
a functor L : C → C[W−1] mapping morphisms from W to isomorphisms and with the
property that any other functor C → D mapping morphisms from W to isomorphisms
factorizes through L uniquely up to unique natural isomorphism.

3.2.1. Localizing categories. Here is a concrete construction of C[W−1]: As objects we
take the objects of C. To define the morphisms from A to B, first say that a zig-zag from
A to B is a sequence of morphisms of C with arrows pointing in either direction

A← X1 → X2 ← . . .← Xn → B

and in which the arrows pointing from right to left are from W. Two zig-zags can be re-
lated if one arises from the other by (a) composing two consecutive arrows which point
into the same directions (b) deleting identity arrows or (c) deleting two arrows which are
equal in C and point into opposite directions in the zig-zag. Now consider the equiva-
lence relation ∼ generated by the relations (a),(b) and (c) and define HomC[W−1](A, B) :=
{zig-zags from A to B}/ ∼. Composition in C[W−1] is induced by concatenation of zig-
zags. We have an obvious functor L : C → C[W−1] mapping the morphisms of C to equiv-
alence classes of zig-zags of length one. The arrows pointing from right to left can be seen
as newly added inverses to the arrows of W and with this in mind it is not hard to prove
the desired universal property of the functor L. Note that since the zig-zags can range over
all the objects of C, the class HomC[W−1](A, B) is not a set in general (or lives in a higher
Grothendieck universe), but in many cases in practice it turns out to be a set again. One
also writes Ho(C,W) := C[W−1] and calls this category the homotopy category of C with
respect to W. If the class W is clear, one often suppresses it from the notation and simply
writes Ho(C).
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3.2.2. Homotopy (co)limits. Suppose that (C,W) is a relative category and C has col-
imits of some diagram shape D. The diagram category CD is itself a relative category
with weak equivalences given by objectwise weak equivalences of C, hence we also have
a homotopy category Ho(CD). By the universal property of the localization, if the col-
imit functor preserves weak equivalences we can find a functor (represented by the dotted
arrow below) making the following diagram commute:

CD colim //

��

C

��
Ho(CD) // Ho(C)

However, the colimit functor has no reason to preserve weak equivalences. A standard ex-
ample in the category of topological spaces is to consider the pushouts S 1= colim([0, 1]←
{0, 1} → [0, 1]) (the circle, obtained by glueing two unit intervals along their end points)
and ∗ = colim(∗ ← {0, 1} → ∗) (where ∗ denotes the 1-point space): The unit interval
[0, 1] is contractible, so the obvious transformation from the first to the second diagram is
an equivalence. Yet the respective colimits of the two diagrams are not equivalent (since
S 1 has nontrivial fundamental group).

The next best thing that we can do then is to form the right Kan extension of CD →

C → Ho(C) along CD → Ho(CD) — this is the universal approximation of the colimit
construction by a construction that preserves weak equivalences. It results in a diagram

CD colim //

��

C

��
Ho(CD)

hocolim //

t

Ho(C)

which is not commutative but instead filled in with a universal natural transformation. We
emphasize that the homotopy colimit is usually not the colimit in the homotopy category;
indeed in general Ho(CD) is not equivalent to Ho(C)D, so it does not even have the right
domain category. The notion of homotopy limit is dual, with a left Kan extension instead
of a right one.

In the category of simplicial sets all homotopy (co)limits in the sense just defined
exist, and there have been developed many techniques for computing them. We will use
this fact in the next section.

In [16] the reader can find an exposition of the basic notions and statements around
relative categories in which the weak equivalences satisfy a very mild closure condition.
A more powerful setting continuing this line of thought about homotopy (co)limits is the
theory of derivators, see for example [26] and the references therein.

We note that these approaches to homotopy (co)limits allow us to stay in the frame-
work of usual category theory. However, they have their limitations and a richer setting
with a well developed theory is that of (∞, 1)-categories, see the next sections.
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3.3. Simplicial categories, simplicial localizations and homotopy (co)limits
Lots of experience indicates that the category C[W−1] is in general too crude an object. If
one wants to treat objects of C up to equivalence, the passage from C to C[W−1] forgets
too much; morphisms from C get identified uncontrollably and equivalence preserving
constructions in C can not be characterized or performed just in C[W−1] alone. This has
already been visible in our above definition of homotopy (co)limits: For this we needed
both the original relative category (C,W) and its localization Ho(C).

Also note that the above definition of homotopy (co)limit only makes sense if the
(co)limits in question exist in the category C, otherwise we have nothing along which we
could take Kan extensions. Many categories of logics, however, lack (co)limits.

One can now pass to a refined variant of localization, called the simplicial local-
ization, which results in a category enriched in simplicial sets, i.e. instead of sets of
morphisms we get simplicial sets of morphisms, also called the mapping spaces of the
simplicial category. Such a category is also called simplicial category (this should not
be confused with simplicial objects in the category of categories). The basic intuition
about a simplicial category is that the 0-simplices of the mapping spaces are morphisms,
the 1-simplices are homotopies between morphisms, the higherdimensional simplices are
homotopies between homotopies and so on.

We now give one possible construction of a simplicial localization: The hammock
localization introduced in [17].

3.3.1. The Hammock localization. Given a relative category (C,W) we define its ham-
mock localization LH(C,W) to be the following category enriched in simplicial sets:
Again we take as objects those of C. For two objects A, B we now have to give a sim-
plicial set map(A, B), also called the mapping space of A and B. We define the n-th set
of this simplicial set to be the “set” of reduced hammocks of width n, i.e. commutative
diagrams of the shape

X01 //

��

X02

��

X03oo

��

// · · · // X0k

��
A

>>}}}}}}}}
//

  A
AA

AA
AA

A X11 //

...

X12

...

X13oo

...
. . .

// · · · // X1k

...

B

``@@@@@@@@
oo

~~~~
~~

~~
~~

Xn1 // Xn2 Xn3oo // · · · // Xnk

in which the vertical arrows go downwards and are from W, in each column the horizontal
arrows all point into the same direction, the horizontal arrows going from right to left are
from W, no column consists only of identity arrows and the maps in adjacent columns go
into different directions. The structure maps for the simplicial sets are given by composing
downward pointing arrows, resp. duplicating a row and inserting identity arrows.

The composition maps map(A, B) × map(B,C) → map(A,C) are given by concate-
nation of zig-zags, followed by reducing the resulting hammocks (i.e. composing adjacent
columns pointing into the same direction and deleting identity columns). For more on the
hammock localization see [16].
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3.3.2. Homotopy category of a simplicial category. From a simplicial category C one
can obtain an ordinary category Ho(C) by passing to the set of connected components of
the Hom-simplicial sets, i.e. by keeping the same objects and defining HomHo(C)(A, B) :=
π0(mapC(A, B)). The resulting category is called the homotopy category of the simplicial
category. If the simplicial category is the hammock localization LH(C,W) of a category
with weak equivalences, the homotopy category is exactly the localization from above:
Ho(LH(C,W)) ' C[W−1]. Indeed, the objects are the same, fullness is clear and the main
point for faithfulness is that a zig-zag with two consecutive arrows from W pointing in
opposite directions is in the same connected component of map(A, B) as the zig-zag with
these arrows cancelled:

A

X Y
f //

f
��

foo X

B

X X X

88qqqqqq

&&NNNNNN

ffNNNNNN

xxqqqqqq

The details can be found in [17, Prop. 3.1].

3.3.3. Homotopy (co)limits revisited. A simplicial category C also has an underlying
usual category U(C) given by just remembering the 0-simplices of the mapping spaces,
i.e. HomU(C)(A, B) := mapC(A, B)0. There is a natural class W of weak equivalences on
U(C) given by those morphisms which become ismorphisms in Ho(C) (alternatively one
could take as weak equivalences morphisms f ∈ map(A, B)0 such that for all objects X
the induced map map(X, A)→ map(X, B) is a weak equivalence of simplicial sets; the two
definitions coincide in good cases).

For those types of diagrams which have (co)limits in U(C), we thus have the notion
of homotopy (co)limit introduced above by Kan extensions. However, in a simplicial cate-
gory one can also speak of homotopy (co)limits without supposing that the corresponding
(co)limits are present in in the underlying category U(C), by defining them through the
mapping spaces. The idea is that in ordinary category theory one can define the limit of a
diagram D as a representing object for the functor X 7→ limd∈DHomC(X, d), i.e. by asking
for a natural isomorphism of Set-valued functors limd∈DHomC(−, d) ' HomC(−, limd∈Dd).
Now in a simplicial category one can instead ask for a natural weak equivalence of sSet-
valued functors holimd∈DmapC(−, d) � mapC(−, holimd∈Dd), where the homotopy limit
on the left hand side is taken in simplicial sets where we already know what it means by
the definition through Kan extensions. For more details see [40, A.3.3.13].

A different formulation which easily relates to classical category theory is to ask
for a final object in the simplicial category of “homotopy coherent” cones over the given
diagram, but we will not go into this further and instead refer the reader to the exposition
in [48].

3.3.4. Simplicial categories from 2-categories. Besides the hammock localization of a
relative category there is a further source of simplicial categories relevant for us:

A 2-category is a category enriched in the category Cat of categories, i.e. for any two
objects A, B there is a category Hom(A, B), together with composition functors satisfying
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the usual axioms. In such a category there is a natural class of weak equivalences given by
those morphisms f : A → B for which there exist a g : B→ A and isomorphisms f ◦ g '
idB ∈ Hom(B, B), g ◦ f ' idA ∈ Hom(A, A). One way to get a simplicial category from
this is to form the hammock localization with respect to the class of weak equivalences.

Another way is, for each pair of objects A, B, to take the maximal subgroupoid of
the category Hom(A, B), i.e. the subcategory of all objects and isomorphisms between
them, and apply the nerve-functor to each of them (we could also apply the nerve functor
to the whole category Hom(A, B), but this would not capture the same class of weak
equivalences).

These two constructions, though both very natural, do in general yield non-equiva-
lent simplicial categories in the sense of Definition 3.3 below. The reason for this is
that the hammock localization cannot distinguish between different automorphisms of
the Hom-categories, while the nerve construction clearly captures them.

3.4. Equivalences of simplicial categories and (∞, 1)-categories
Simplicial categories are objects of usual enriched category theory, as exposed in [34],
where one considers categories which have, instead of sets of morphisms Hom(A, B),
objects of morphisms Hom(A, B) which live in some monoidal categoryM (here: the cat-
egory of simplicial sets with the monoidal structure given by the product). AnM-enriched
functor F : C → D is a mapping of objects Ob(C)→ Ob(D) and, for each pair A, B of ob-
jects a morphism Hom

C
(A, B)→ Hom

D
(FA, FB) inM, compatible with composition and

identities. Example: Clearly a functor F : (C,W) → (D,W ′) of relative categories such
that F(W) ⊆ W ′ induces a simplicial functor LH(F) : LH(C,W) → LH(D,W ′) between
the hammock localizations as one sees easily from the definition of hammock localization.

In enriched category theory anM-enriched functor is an equivalence if it is essen-
tially surjective and fully faithful in the enriched sense, i.e. Hom

C
(A, B) → Hom

D
(A, B)

is required to be an isomorphism in M for all A, B. However, the role played by the
simplicial enrichment in the example of the hammock localization of a relative category
suggests that one is not interested in the Hom-simplicial-sets themselves, but only in the
homotopy types of spaces they represent. Hence one defines:

Definition 3.3. A simplical functor F : C → D of simplicial categories is an equivalence
if it is

1. essentially surjective, i.e. every object inD is equivalent, i.e. isomorphic in Ho(D),
to an object in the image of F

2. fully faithful, i.e. the maps mapC(A, B) → mapD(A, B) are weak equivalences (in-
stead of isomorphisms) of simplicial sets

Note that in particular an equivalence F : C → D of simplicial categories induces
an equivalence Ho(F) : Ho(C) → Ho(D) of usual categories, but the condition of be-
ing an equivalence is stronger than that: For having an equivalence of homotopy cat-
egories it would be enough to demand that F induces isomorphisms π0mapC(A, B) →
π0mapD(FA, FB) between the sets of connected components π0mapC(A, B), resp.
π0mapD(FA, FB), of the mapping spaces, while for an equivalence of simplicial cate-
gories one asks for isomorphisms induced on π0 and on all homotopy groups.
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Definition 3.4. An (∞, 1)-category is a simplicial category. A morphism of (∞, 1)-catego-
ries is a simplicially enriched functor.

This definition allows to keep things simple and suffices for the purposes of this arti-
cle. We insist however that with this definition the category of simplicial categories has to
be seen as a relative category itself (with the class of equivalences just defined) – different
simplicial categories may define equivalent (∞, 1)-categories and it is only the simpli-
cial categories up to equivalence that we are interested in. Roughly, we could also have
defined an (∞, 1)-category as an equivalence class of simplicial categories, with respect
to the equivalence relation generated by the above notion of equivalence of simplicial
categories. For more discussion on this see Section 3.5.1.

The name can be explained as follows: One thinks of the 0-simplices in the mapping
spaces of a simplicial category as the morphisms (or “1-morphisms”), of the 1-simplices
as homotopies between morphisms (or “2-morphisms”), of 2-simplices as homotopies
between homotopies (or “3-morphisms”) and so on, so that one has n-morphisms for every
n ∈ N. This explains the “∞” in the term “(∞, 1)-category”. Now homotopies between
functions can always be inverted (if there is a homotopy from a function f to a function
g, then there also is a homotopy from g to f and the composition of the two homotopies
is homotopic to the identity), so that all n-morphisms for n ≥ 2 are invertible — only the
morphisms up to level 1 are actual directed morphisms, while the higher morphisms are
(witnesses of) equivalences. This explains the “1” in the term “(∞, 1)-category”. More
generally and (n, k)-category is a category which has higher morphisms up to level n, all
of which are invertible from level k + 1 onwards. An (∞, 1)-category is also sometimes
called “a homotopy theory”.

3.5. Models and computation of homotopy (co)limits
There can be very different looking but equivalent simplicial categories. One sees such
simplicial categories as presentations of (∞, 1)-categories, just like one can define a group
by a presentation via generators and relations. A(n isomorphism class of a) group can be
defined by very different looking presentations and it can in practice be very difficult to
determine whether the groups given by two presentations are isomorphic. In our context
one uses the term model, rather than “presentation”.

Likewise one can see a relative category as a model (or presentation) of an (∞, 1)-
category, since it gives rise to a simplicial category via the hammock localization. This
is the way in which (∞, 1)-categories arise most commonly from usual mathematics. We
have already seen an example of two different presentations of the same (∞, 1)-category:
The categories of simplical sets and of topological spaces, with their respective classes
of weak equivalences, are presentations of the same (∞, 1)-category, commonly called
“the (∞, 1)-category of spaces” (we gave the functors inducing this equivalence, but only
hinted at the essential surjectivity part).

Now while the datum of a relative category allows to formulate the notions of homo-
topy (co)limits (as well as that of derived functors) it does not help in constructing them
in concrete cases or to determine whether they exist. To this end one frequently employs
models which are not just categories with a class of weak equivalences, but which are
endowed with an additional auxiliary structure.
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Probably the best kind of model one can ask for is a model category: A model cat-
egory is a tuple (C,W, Fib,Cof ) consisting of a category C with finite limits and colimits
and three classes of morphisms, W (weak equivalences), Fib (“fibrations”) and Cof (“cofi-
brations”), which are related by several axioms (often one asks for additional structure,
such as “factorization functors”). This extra structure allows concrete constructions of ho-
motopy limits and colimits and also the construction of adjunctions of (∞, 1)-categories
by the means of usual category theory.

A gentle introduction to model categories is [19], a more complete one is the book
[29]. One downside of model categories is that it is hard to establish the existence of a
model structure on a category. The category of logics and flexible morphisms of Chap-
ter 2.2 for example has no chance of bearing the structure of a model category, simply
because it lacks (co)limits.

A less demanding kind of model is given by the notion of cofibration category, see
[46]. This is, roughly, half a model category structure, having only a class of cofibrations
and weak equivalences, and only requiring the existence of special colimits. In a cofi-
bration category homotopy colimits can be constructed explicitly and by the results of
Szumiło in [49] every (∞, 1)-category with all homotopy colimits has a presentation by a
cofibration category. The category of logics and flexible morphisms of Chapter 2.2 carries
such a structure.

There are several other kinds of models, such as Baues cofibration categories and
semi-model categories, which meet different purposes and one has to see in each particular
situation whether such a kind of model exists and is useful.

3.5.1. The homotopy theory of homotopy theories. Above we endowed the category
of simplicial categories and simplicial functors with a class of weak equivalences. Thus
the category of simplicial categories becomes itself a relative category. We also have a
notion of weak equivalence of relative categories: This a functor F : (C,W) → (D,W ′)
satisfying F(W) ⊆ W ′ and inducing an equivalence LH(C,W)→ LH(D,W ′) of simplicial
categories on hammock localizations.

The resulting two relative categories, that of simplicial categories and that of relative
categories, are again equivalent as relative categories. In fact on both, the category of
simplicial categories and the category of relative categories, there are model structures
and the equivalence can be given in a highly structured way (see [5], [4]).

There are several other ways of encoding (∞, 1)-categories, where the emphasis is
not on extra structure allowing constructions internal to an (∞, 1)-category, but rather on
relating (∞, 1)-categories to each other, constructing new (∞, 1)-categories from old ones
and formulating and recognizing properties of (∞, 1)-categories. For a survey of some
such settings see [7]. The setting with the best developed theory is that of quasicategories,
featuring, for example, (∞, 1)-categorical notions of and theorems about fibrations, acces-
sible and locally presentable categories, toposes, sketches and algebraic theories. A gentle
introduction is [25], a good further introduction is the first chapter of [32] and the main
references are the books [40] and [39].
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4. (∞,1)-categories of logics
In this section we consider the categories of logics from section 2.2 as (∞,1)-categories.
We will do this in the two ways given in Sections 3.3.1 and 3.3.4. For both we need to fix
a notion of weak equivalences of logics.

4.1. Weak equivalences
We place ourselves in a category Log of logics as in section 2.2

Definition 4.1. 1. If L is a logic and ϕ,ψ ∈ Fm(L) are formulas satisfying {ϕ} `L ψ and
{ψ} `L ϕ, we write ϕ a`L ψ and call the formulas logically equivalent.

2. A morphism of logics f : L = (S L, `L) → (S L′ , `L′ ) = L′ is called a homotopy
equivalence if there exists a morphism g : L′ → L (a “homotopy inverse”) such
that for all ϕ ∈ Fm(L) we have ϕ a`L (g ◦ f )(ϕ) and for all ψ ∈ Fm(L′) we have
ψ a`L′ ( f ◦ g)(ψ).

3. A morphism of logics f : L→ L′ is called a weak equivalence, if Γ `L ϕ⇔ f (Γ) `L′

f (ϕ) (i.e. it is a “conservative translation”) and if for every formula ϕ in the target
there exists a formula in the image of f with the same arity as ϕ which is logically
equivalent to ϕ (it has “dense image”).

Proposition 4.2. 1. In any category of logics with idempotent consequence relations,
homotopy equivalences are weak equivalences.

2. In any category of substitution invariant logics over Sig (i.e. with flexible mor-
phisms), weak equivalences are homotopy equivalences.

Proof. 1. Let f : L→ L′ be a homotopy equivalence. Choose a homotopy inverse g. Any
formula ψ ∈ Fm(L′) is logically equivalent to ( f ◦ g)(ψ), which is in the image, hence f
has dense image. If Γ ` φ for Γ ∪ {ϕ} ⊆ Fm(L), then, since f is a translation, we have
Γ ` ϕ ⇒ f (Γ) ` f (ϕ). Conversely, since g is a translation we have f (Γ) ` f (ϕ) ⇒
g( f (Γ)) ` g( f (ϕ)). For every γ ∈ Γ we have γ ` g( f (γ)) and also g( f (ϕ)) ` ϕ. Thus we
have Γ ` g( f (Γ)) ` g( f (ϕ)) ` ϕ. Hence, by idempotence, Γ ` ϕ.

2. Let f : L = (S L, `L) → (S L′ , `L′ ) = L′ be a weak equivalence. To construct a ho-
motopy inverse g : L′ → L, choose for every n-ary generating connective c(x1, . . . , xn) of
L′ a formula ϕ ∈ Fm(L) with c(x1, . . . , xn) a`L′ f (ϕ) (which exists since f has dense im-
age). This defines a morphism of signatures g : S L′ → S L, which by construction satisfies
f (g(c(x1, . . . , xn))) a`L′ c(x1, . . . , xn) for all generating connectives. By substitution in-
variance it follows that f (g(ψ)) a`L′ ψ for all formulas ψ ∈ Fm(L′). In particular this holds
for formulas of the form ψ = f (ϕ) for any ϕ ∈ Fm(L), i.e. we have f (g( f (ϕ))) a`L′ f (ϕ).
By conservativity of f we conclude g( f (ϕ)) a`L ϕ. �

Corollary 4.3. In a category Log of of idempotent, substitution invariant logics the
classes of weak equivalences and homotopy equivalences coincide.

Remark 4.4. For Tarskian logics the homotopy equivalences have been characterized in
[10, Prop. 4.3] as those (flexible) morphisms f : L → L′ for which there exists a mor-
phism g : L′ → L, such that f , g induce mutual inverse morphisms between the lattices of
theories of L, L′.
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Remark 4.5. The comparison of notions of weak equivalences and homotopy equiva-
lences (those which have a morphism in the opposite direction that becomes an inverse in
the homotopy category) is a standard theme in abstract homotopy theory. The coincidence
of the two classes can be phrased as saying that every object is “fibrant” and “cofibrant”.
Indeed, the category H ilb bears the structure of a so-called cofibration category and it is
true that every object ofH ilb is fibrant and cofibrant in the sense of cofibration categories
(see [46]).

Remark 4.6. Note that the two classes of weak equivalences and of homotopy equiv-
alences no longer coincide, even for idempotent and substitution invariant logics, if we
consider them on the category Logstrict of logics and strict morphisms. The reason is that
to define the homotopy inverse in the proof of Proposition 4.2.2 we needed to map primi-
tive connectives to derived connectives. Indeed, consider the two presentations of classical
propositional logic CPL1 := 〈∧,¬ | rules . . .〉 and CPL2 := 〈∧,¬,∨,→| rules . . .〉 of the
introduction. Clearly we have a conservative inclusion CPL1 → CPL2 which has more-
over dense image, since every formula of classical propositional logic is equivalent to one
built from just the connectives ∧ and ¬. So this inclusion is a weak equivalence. A ho-
motopy inverse, or indeed any translation from CPL2 to CPL1, in the category Logstrict

would have to map the connective ∨ to ∧, since the latter is the only primitive connective
of CPL1 of arity 2, but this is impossible since there are rules satisfied by ∨ but not by ∧.
We will come back to the relation of Logstrict and Log in section 4.3.1.

4.2. The hammock localization ofH ilb
With definition 4.1 we have made the category H ilb of Hilbert systems into a relative
category, and hence gained an (∞, 1)-category via hammock localization, which we will
denote byH ilbhamm. We actually have more than just a relative category:

Theorem 4.7 ([1]). In the category H ilb of Hilbert systems denote by W the class of
weak equivalences of Definition 4.1 and by Cof the class of translations whose underlying
signature morphism maps generating connectives injectively to generating connectives.
Then the triple (H ilb,W,Cof ) satisfies the axioms of a cofibration category in the sense of
[46].

The proof of this theorem is out of the scope of this article. We just give a hint
of the kind of things one has to do: One of the axioms requires that every morphism
factors as a cofibration followed by a weak equivalence. The proof of this for the category
H ilb proceeds in close analogy to that for the category of topological spaces, namely by
constructing “mapping cylinders”:

Sketch of a proof of the factorization axiom: To factorize a translation f : L =

(S L, `L) → (S L′ , `L′ ) = L′, define an intermediate logic L̃ with the signature S L̃ :=
S L

∐
S L′ , so that the formulas of L̃ are mixed from the connectives of L and L′. In particu-

lar we have the linguistic fragments Fm(L) ⊆ Fm(L̃) ⊇ Fm(L′). The consequence relation
on Fm(L̃) is generated by the rules of `L on Fm(L), the rules of `L′ on Fm(L′) and by the
rules ϕ a`L̃ ϕ

′ for every pair of formulas ϕ, ϕ′ ∈ Fm(L) which arise from each other by
replacing occurrences of connectives from L by their image under f or vice versa. This
makes the linguistic fragment Fm(L) ⊆ Fm(L̃) equivalent to its image under f in Fm(L′).



22 Peter Arndt

Now we have an obvious cofibration L → L̃ which is just the inclusion Fm(L) ⊆
Fm(L̃) and a translation L̃→ L′ given by mapping the connectives from Fm(L′) ⊆ Fm(L̃)
to themselves and those of Fm(L) ⊆ Fm(L̃) to their image under f . The latter map is a
homotopy equivalence, with a homotopy inverse given by the inclusion Fm(L′) ⊆ Fm(L̃).

Corollary 4.8. The (∞, 1)-category H ilbhamm has all homotopy colimits of small dia-
grams.

Proof. An (∞, 1)-category for which there exists a presentation by a cofibration category,
has all homotopy colimits, see [46], [49]. �

A proof of Theorem 4.7 will appear in [1], together with applications to the combi-
nation of logics via homotopy colimits: The extra structure of cofibrations gives an easy
construction of homotopy colimits by means of those 1-categorical colimits which do
exist inH ilb. Also the concrete choice of cofibrations allows to transfer the usual preser-
vation results for properties of logics under fibring (like existence of implicit connectives,
position in the Leibniz hierarchy etc.) to the combination of logics through homotopy
colimits.

4.3. The 2-categorical localization of Log
Our categories of logics from Section 2.2 are naturally enriched in preorders: We can
define a preorder on HomLog(L, L′) by

f ≤ g :⇔ ∀ϕ ∈ Fm(L) : f (ϕ) ` g(ϕ)

Since preorders can be regarded as categories, this makes every category enriched in pre-
orders into a 2-category.

Recall that we defined the equivalences of a 2-category to be those 1-morphisms
f : L → L′ for which there exists a 1-morphism g : L′ → L and 2-isomorphisms f ◦ g '
idL′ , g ◦ f ' idL. In our context the existence of these 2-isomorphisms simply means that
f (g(ψ)) a`L′ ψ and g( f (ϕ)) a`L ϕ. Thus the notion of homotopy equivalence from Defini-
tion 4.1 is exactly the notion of equivalence coming from the structure of 2-category.

We can now perform the construction of a simplicial category from Section 3.3.4
with the 2-category just defined: Pass to the maximal subgroupoids of the hom-categories
and then take their nerves. The maximal subgroupoids are simply the categories having the
set of translations as objects and having a unique isomorphism between two translations f
and g whenever ∀ϕ ∈ Fm(L) : f (ϕ) a` g(ϕ) holds. In this case we also say that f and g are
homotopic. We will apply this to the categories Log and Logstrict and call the resulting
simplicial categories Log2−cat and Logstrict

2−cat.

Proposition 4.9. The simplicial categories Log2−cat and Logstrict
2−cat are equivalent, in the

sense of Section 3.4, to their respective homotopy categories.

Proof. Since the hom-categories are preorders, the maximal subgroupoids are equivalent
to discrete categories: Any two objects are either uniquely isomorphic or live in distinct
connected components. Since the nerve functor sends equivalences of categories to weak
equivalences of simplicial sets, we can replace the hom-categories by actual discrete cate-
gories, namely the set of connected components of the groupoids. By definition, the nerve
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functor sends discrete categories to discrete simplicial sets, therefore Log2−cat is equiv-
alent to a simplicial category with discrete mapping spaces. Its homotopy category is
constructed by taking π0 (the set of connected components) of each mapping space. Since
the mapping spaces are already weakly equivalent to discrete spaces, they are equivalent
to their sets of conected components, i.e. the functor Log2−cat → Ho(Log2−cat) is fully
faithful in the sense of simplicial categories and hence an equivalence.
The same reasoning goes through for Logstrict

2−cat. �

As we emphasized, homotopy (co)limits are almost never (co)limits in the homotopy
category, but here this is the case.

Corollary 4.10. Homotopy (co)limits in Log2−cat (resp. Logstrict
2−cat) are (co)limits in

Ho(Log2−cat) (resp. Ho(Logstrict
2−cat)).

Proof. Homotopy limits of discrete spaces, i.e. sets, are discrete again and are their limits
in the category of sets: The inclusion of the sub-(∞, 1)-category of discrete spaces into the
(∞, 1)-category of all spaces is right adjoint to the functor π0 which takes a space to its
set of connected components — therefore it preserves homotopy limits, see [40, 5.5.6.5].

Given a diagram D in Log2−cat, its homotopy limit was defined through the weak
equivalence of mapping spaces holimD mapHilb2−cat

(−, d) ' mapLog2−cat
(−, holimD d) where

the left hand homotopy limit was taken in spaces. Now we have the chain of equivalences

limD HomHo(Log2−cat)(−, d) ' holimD HomHo(Log2−cat)(−, d)
' holimD π0mapLog2−cat

(−, d)

' holimD mapLog2−cat
(−, d)

' mapLog2−cat
(−, holimD d)

' π0mapLog2−cat
(−, holimD d)

= HomHo(Log2−cat)(−, holimD d)

Since this is a weak equivalence of discrete spaces, it is a bijection of sets and hence
identifies holimD d as the limit of the diagram in Ho(Log2−cat).

The proof for homotopy colimits is completely analogous (note that homotopy col-
imits in Log2−cat turn to homotopy limits of mapping spaces when mapping out of them,
so the same remarks about homotopy limits of discrete spaces apply). �

In the following two statements we notice that homotopy equivalences in Log and
Logstrict are characterized by the fact that they induce equivalences of mapping spaces.

Lemma 4.11. A homotopy equivalence z : X → Y in Log (resp. Logstrict) induces an
equivalence of mapping spaces z∗ : map(A, X)→ map(A,Y)

Proof. The homotopy equivalence z has a homotopy inverse z′ : Y → X with z ◦ z′ a` id
and z′ ◦ z a` id; this means literally that z′∗ becomes an inverse after applying π0. Since the
mapping spaces of Log2−cat (resp. Logstrict) are homotopy discrete, this already means
that the map z∗ is a weak equivalence. �
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Proposition 4.12. Let f : L → L′ be a morphism of logics such that for all logics H the
induced map f∗ := ( f ◦ −) : map(H, L) → map(H, L′) is a weak equivalence of mapping
spaces. Then f is a homotopy equivalence of logics.

Proof. From the hypothesis in particular we get a weak equivalence f∗ : map(L′, L) →
map(L′, L′), hence the identity morphism idL′ is in the connected component of some
morphism in the image, i.e. there is a morphism g : L′ → L such that f ◦ g : L′ → L→ L′

satisfies ( f ◦ g) a` idL′ , i.e. we get a left inverse up to homotopy g. We will show that we
also have (g ◦ f ) a` idL and hence f is a homotopy equivalence.

For every logic H there is the diagram

map(H, L′)
g∗ //

∼

( f◦g)∗ ''NNNNNNNNNNN
map(H, L)

∼ f∗
��

map(H, L′)

Since two of the three arrows are weak equivalences, so is the third, hence g : L′ → L
satisfies the hypothesis of the proposition and by what we already proved we get a left
inverse h : L→ L′ to g with g ◦ h a` idL.

Now we know f = f ◦ idL a` f ◦ g ◦ h a` idL′ ◦ h = h and hence f is a left and right
homotopy inverse. �

For a category Log of idempotent, substitution invariant logics we know that weak
equivalences and homotopy equivalences coincide, and that hence weak equivalences can
be detected on mapping spaces. In homotopy theoretical terms this can be seen as another
incarnation of the fact that all objects of such a category Log are fibrant and cofibrant.

Remark 4.13. On the category Logstrict the 2-categorical notion of equivalence is that of
homotopy equivalence. We also have the notion of weak equivalence and there are strictly
more weak equivalences than homotopy equivalences. Weak equivalences do in general
not induce equivalences of mapping spaces as we can once again see from the example
of the two presentations of classical propositional logic CPL1 with underlying signa-
ture {∧,¬} and CPL2 with underlying signature {∧,¬,∨,→}: mapstrict(CPL2,CPL1) →
map(CPL2,CPL1) is not surjective on connected components, since there is no strict
translation equivalent to the flexible translations that are equivalences CPL2 → CPL1.
However, every logic L is weakly equivalent in Logstrict to a logic Q(L) such that weak
equivalences into Q(L) induce equivalences of mapping spaces, see Lemma 4.19 below.

4.3.1. Logstrict
2−cat versus Log2−cat.

Convention 4.14. From now on we will suppose that the logics of Log have the property
of idempotence.

We will relate the simplicial categories Logstrict
2−cat and Log2−cat via the adjunction of

Proposition 2.6. First we need to extend these functors from signatures to the correspond-
ing categories of logics.

Let L = (S L, `L) be a logic. Recall from Definition 2.5 that the signature Q(S L) is
defined by Q(S L)n := {cϕ | ϕ ∈ Fm(S L)[x1, . . . , xn]} � Fm(S L)[x1, . . . , xn]. We have an
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inclusion of signatures s : S L → Q(S L), g 7→ g(x1, . . . xn) given by considering the old n-
ary generating connectives g of S L as formulas g(x1, . . . , xn) in Fm(S L)[x1, . . . , xn]. This
signature morphism induces an inclusion of sets of formulas s : Fm(S L)→ Fm(Q(S L)).

Definition 4.15. Let L = (S L, `L) be a logic. We define Q(L) to be the logic over the
signature Q(S L) with the consequence relation generated by s∗(`L) (i.e. the rules of L
imported via s) and the rules {ψ a` ϕ} for every pair of formulas which arise from each
other by replacing connectives of the form cϕ with the corresponding formulas ϕ or vice
versa.

Remark 4.16. If the logics in our category Log are substitution invariant and congruen-
tial, then it is enough to take the consequence relation generated by the rules s∗(`L) and
{cϕ(x1, . . . , xn) a` ϕ(x1, . . . , xn)}. The rules for more complex formulas from Definition
4.15 then become derivable by substitution invariance and congruentiality.

Lemma 4.17. In Q(L) every formula ϕ(x1, . . . , xn) is equivalent to a formula c(x1, . . . , xn)
where c is a generating connective.

Proof. By definition of the consequence relation on Q(L), every formula of Q(L) is log-
ically equivalent to a formula ϕ of s(Fm(L)) ⊆ Fm(Q(S L)), obtained by replacing all
occurrences of the new connectives cψ with ψ. But this formula ϕ ∈ Fm(L) is itself logi-
cally equivalent to the generating connective cϕ of Q(L). �

Lemma 4.18. There are flexible homotopy equivalences r : Q(L)� L : s.

Proof. The inclusion s : L → Q(L) is a homotopy equivalence with homotopy inverse
r : Q(L) → L given by sending the connectives of S L to themselves and the connective
cϕ to ϕ. Thus r takes a formula and replaces every ocurrence of a connective cϕ by the
corresponding formula ϕ. Clearly s respects the consequence relation. To see the same for
r, note that, for Γ ∪ {ϕ} ⊆ Fm(Q(L)) satisfying Γ ` γ, we have r(Γ) a` Γ ` ϕ a` r(ϕ),
hence by idempotence r(Γ) ` r(ϕ). The composition r ◦ s is the identity and (s ◦ r)(ϕ) is
logically equivalent to ϕ by definition of the consequence relation on Q(L). �

Lemma 4.19. Let H, L be logics. The inclusion mapstrict(H,Q(L))→ map(H,Q(L)) is an
equivalence of simplicial sets.

Proof. By Lemma 4.17 every n-ary formula ϕ of Q(L) is equivalent to the formula
cϕ(x1, . . . , xn). Hence a (flexible) morphism f : H → Q(L) is homotopic to the morphism
f̃ : H → Q(L) defined on generating connectives by c 7→ c f (c)(x1, . . . , xn), which is a strict
morphism. Therefore the map in question becomes a bijection after applying π0. This is
enough since the mapping spaces are homotopy discrete. �

Our aim in this subsection is to show Theorem 4.26, saying that logics and flexible
morphisms form a reflective sub-(∞, 1)-category of logics and strict morphisms. A crucial
step is the following theorem of Mariano and Mendes:

Theorem 4.20 ([42, Thm 2.12, Mariano/Mendes]). The adjunction of signatures of The-
orem 2.6 lifts to an adjunction i : Logstrict � Log : Q of logics.
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Since this adjunction respects homotopies between logics, it lifts further to an ad-
junction of (∞, 1)-categories:

Proposition 4.21. The functors i : Logstrict
2−cat � Log2−cat : Q form an adjunction of

(∞, 1)-categories.

Proof. It is clear that the maps of sets HomSigstrict (S , S ′) → HomSig(iS , iS ′) and
HomSig(S , S ′) → HomSigstrict (Q(S ),Q(S ′)) obtained from the functors i and Q of Defi-
nition 2.5 map translations to translations.

From Theorem 2.6 we have an adjunction on the level of signatures and from this
the natural isomorphism HomSig(i(S ), S ′)→ HomSigstrict (S ,Q(S ′)) which sends a flexible
morphism ( fn : S n → Fm(S ′)[x1, . . . , xn])n∈N to itself (but becoming a strict morphism to
Q(S ′)), in other words it is given by postcomposition with the map S ′ → Q(S ′).

By Theorem 4.20 this lifts to an adjunction i : Logstrict � Log : Q of logics, i.e.
the isomorphism restricts to an isomorphism HomLog(i(L), L′) → HomLogstrict (L,Q(L′))
between the sets of translations: Indeed, by Lemma 4.18 the morphism of logics L →
Q(L) is a homotopy equivalence in Log, hence by idempotence and Lemma 4.2 a weak
equivalence and in particular conservative, and so a morphism of signatures iS → S ′ is a
translation if and only if iS → S ′ → Q(S ′) is.

Since homotopic translations get mapped to homotopic translations, this extends to
a morphism map(iL, L′)→ mapstrict(L,Q(L′)) of mapping spaces which can be seen to be
an equivalence from the diagram

map(iL, L′)
s∗ // mapstrict(L,Q(L′))

∼

��
map(L, L′) ∼

s∗
// map(L,Q(L′))

Here the right vertical arrow is the equivalence of Lemma 4.19 and the lower horizontal
arrow is an equivalence since the equivalence s : L → Q(L) of Lemma 4.18 induces an
equivalence on mapping spaces by Lemma 4.11. Therefore the upper horizontal arrow
must be an equivalence, too. �

Lemma 4.22. The map of simplicial sets map(Q(H),Q(L)) → map(H,Q(L)),
f 7→ f ◦ (H → Q(H)) is an equivalence.

Proof. Again it is enough to show that applying π0 induces a bijection. Injectivity: A
morphism Q(H) → Q(L) is, up to equivalence, determined by its restriction to H ⊆

Q(H), since every formula of Q(H) is equivalent to one of H. Surjectivity: Any morphism
f : H → Q(L) can be extended to Q(H) by sending the additional generating connectives
cϕ (ϕ ∈ Fm(H)) to f (ϕ). �

We denote by Q(Log) the image of the functor Q in Logstrict and we will for the rest of
the subsection suppress the subscript “2 − cat”.

Lemma 4.23. The functor Q ◦ i |Q(Log) : Q(Log) → Q(Log) is an equivalence of (∞, 1)-
categories.
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Proof. Essential surjectivity: We have to show that any object in the target category
Q(Log) is equivalent to one in the image, i.e. one of the form Q(Q(L)). This is the case
because the unit map Q(L) → Q(Q(L)) is a weak equivalence of logics in Logstrict by
Lemma 4.18, idempotence and Lemma 4.2.

Fully faithfulness: We have to show that the morphism of simplicial sets
mapstrict(Q(H),Q(L)) → mapstrict(QQ(H),QQ(L)) is an equivalence. We know from
Lemma 4.19 that this is equivalent to showing that we have an equivalence of flexible
mapping spaces map(Q(H),Q(L)) → map(QQ(H),QQ(L)). We have a commutative dia-
gram

map(Q(H),Q(L)) //

∼
))SSSSSSSSSSSSSSS map(QQ(H),QQ(L))

∼

��
map(Q(H),QQ(L))

where the vertical arrow is the equivalence of Lemma 4.22 and the diagonal arrow is
induced by the homotopy equivalence s of Lemma 4.18 and hence an equivalence by
4.11. Since two of the three arrows are equivalences, so is the third. �

Proposition 4.24. The inclusion functor i |Q(Log) : Q(Log) → Log is an equivalence of
simplicial categories.

Proof. Essential surjectivity: This is the fact (Lemma 4.18) that L → Q(L) is an equiva-
lence of logics. Fully faithfulness: This is Lemma 4.19. �

Lemma 4.25. The category Q(Log) is a reflective (∞, 1)-subcategory of Logstrict.

Proof. We know from Proposition 4.21 combined with Proposition 4.24 that the inclusion
of Q(Log) into Logstrict has a left adjoint, and from Lemma 4.23 that their composition
is an idempotent functor. This is what defines a reflective subcategory. �

Theorem 4.26. Log is (equivalent to) a reflective sub-(∞, 1)-category of Logstrict via the
reflection functor Q.

Proof. This is Lemma 4.25 combined with Proposition 4.24. �

4.3.2. Homotopy limits in Log2−cat. We will now show how homotopical thinking can
lead one to the construction of homotopy limits in Log2−cat. By Corollary 4.10, homo-
topy limits are limits in Ho(Log2−cat) and the existence of these (for congruential Hilbert
systems) has been established by Mariano and Mendes in [42, Thm 2.33].

Here we will give direct constructions of several kinds of homotopy limits to show
some of the homotopy theoretical flavour. For example in our construction of homotopy
equalizers there occur logics resembling the path spaces of the corresponding construc-
tions in topology. This shows how signatures can be tailored to fullfill the needs of par-
ticular constructions while keeping them as small as possible. A more general approach
would be to use always the construction Q(−) of Definition 2.5.

We start with the easiest case.
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Homotopy terminal objects. We have seen in Example 2.7 that the category Sig
has no terminal object, hence by Proposition 2.24 neither does Log2−cat. In the homotopi-
cal world things look better:

Proposition 4.27. The category Log2−cat has homotopy terminal objects.

Proof. By Corollary 4.10 it is enough to show that there is a terminal object in
Ho(Log2−cat). For this take the signature S which has one generating connective of each
arity (or any other signature which produces formulas of any arity) and endow it with the
maximal consequence relation. Clearly for any logic L there is a translation L→ (S , `max)
given on signatures by mapping each n-ary generating connective to the n-ary generating
connective of S . Since in (S , `max) any two formulas are logically equivalent, all mor-
phisms into (S , `max) are equal in the homotopy category. �

The reader who wishes to test this statement for another category of logics satisfying
the assumptions of Remark 2.20, should make sure that for the maximal consequence
relation actually all formulas are equivalent. This is certainly true for those of Convention
2.19.

Homotopy equalizers. Given two parallel arrows f , g : L ⇒ M in Log2−cat, their
homotopy equalizer should be a morphism e : E → L such that ( f ◦ e)(ϕ) a`M (g ◦ e)(ϕ)
(i.e. instead of asking for equality, we ask for pointwise logical equivalence) and such that
each h : H → L with ( f ◦h)(ϕ) a`M (g◦h)(ϕ) factorizes uniquely up to homotopy through e
(this is usually not equivalent to the homotopy limit condition expressed through mapping
spaces, but here it is since the mapping spaces are discrete).

Thus we would like to simply take as equalizer the set of formulas
{ϕ ∈ Fm(L) | f (ϕ) a`M g(ϕ)} and endow it with the consequence relation of L restricted
to this subset. But this set of formulas is in general not a free algebra over some signature.
On the other hand if one tries to take as generating connectives of the homotopy equal-
izer just those c which satisfy f (c(x1, . . . , xn)) a`M g(c(x1, . . . , xn)) then one might miss
formulas ϕ with f (ϕ) a`M g(ϕ). However, since homotopy equalizers are invariant under
equivalences, we can substitute L by an equivalent logic for which the second solution
works.

Definition 4.28. Let L = (S L, `L) be a logic, f , g : L⇒ M be two morphisms in Log2−cat.
1. The signature S ( f ,g) is defined by

S ( f ,g)
n := (S L)n

∐
{cϕ | ϕ ∈ Fm(L), f (ϕ) a`M g(ϕ)}

i.e. by taking as generating connectives those of S L plus one extra n-ary connective cϕ for
every ϕ ∈ Fm(L)[x1, . . . , xn] whose images under f and g are logically equivalent.
2. The logic L( f ,g) is the logic over the signature S ( f ,g), defined by endowing Fm(S ( f ,g))
with the consequence relation generated by `L (for the formulas of the linguistic fragment
generated by S L) and by the rules {ψ a` ϕ} for every pair of formulas which arise from
each other by replacing connectives of the form cϕ with the corresponding formulas ϕ or
vice versa.

Thus the logic L( f ,g) contains a copy of L as well as lots of new generating connec-
tives which are equivalent to formulas of L which become logically equivalent under f ,
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resp. g. As before, for substitution invariant, congruential logics it is enough to demand
as generating rules the rules {cϕ a` ϕ | ϕ ∈ Fm(S L)}.

Lemma 4.29. The inclusion i : L → L( f ,g) is a homotopy equivalence with homotopy
inverse r : L( f ,g) → L given by sending the connectives of S L to themselves and the con-
nective cϕ to ϕ.

Proof. This is precisely parallel to Lemma 4.18 where the inclusion L→ Q(L) was shown
to be a homotopy equivalence. Both morphisms respect the consequence relation by defi-
nition of the consequence relation on L( f ,g). The composition r ◦ i is the identity and i ◦ r
is the identity on Fm(L) ⊆ Fm(L( f ,g)) and maps the formula cϕ(x1, . . . , xn) to ϕ, which is
logically equivalent. �

Definition 4.30. Define the signature S E as the subsignature of S ( f ,g) given by the connec-
tives {cϕ | ϕ ∈ Fm(L), f (ϕ) a`M g(ϕ)}. Then the logic E( f ,g) is the logic over the signature
S E endowed with the strongest consequence relation such that the inclusion S E → S ( f ,g)

becomes a translation. We denote the inclusion by e : E( f ,g) → L( f ,g).

Proposition 4.31. The diagram

E( f ,g) r◦e // L
f //
g
// M

is a homotopy equalizer diagram in Log2−cat.

Proof. We will directly show the criterion for mapping spaces, i.e. for any logic H the
map of (homotopy discrete) simplicial sets

map(H, E( f ,g))
(r◦e)∗ // hoequ

(
map(H, L)

f∗ //
g∗
// map(H,M)

)
is a weak equivalence.

Since by Lemma 4.11 a homotopy equivalence z : X → Y inLog induces an equiva-
lence of mapping spaces, by Lemma 4.29 we have a weak equivalence
map(H, L) � map(H, L( f ,g)). Also by Proposition 4.9 we have equivalences
map(H, L( f ,g)) → π0map(H, L( f ,g)), and hence the following equivalences of diagrams of
the shape •⇒ •:

map(H, L)
f∗ //
g∗

//

'

��

map(H,M)

'

��
map(H, L( f ,g))

f∗ //
g∗
//

'

��

map(H,M)

'

��
π0 map(H, L( f ,g))

f∗ //
g∗
// π0 map(H,M)

Since homotopy equalizers do not change up to equivalence upon replacing a diagram by
an equivalent one, and the homotopy equalizer of a diagram of sets is just the equalizer,



30 Peter Arndt

we have the following equivalences:

hoequ
(

map(H, L)
f∗ //
g∗
// map(H,M)

)
' equ

(
π0map(H, L( f ,g))

f∗ //
g∗
// π0map(H,M)

)
' {h ∈ π0map(H, L( f ,g)) | f ◦ h = f ◦ h}

' {h ∈ π0map(H, L( f ,g)) | f ◦ h a` g ◦ h}

where (−) denotes the equivalence class of a morphism in the quotient π0 map(−,−).
The map map(H, E( f ,g))→ {h ∈ π0 map(H, L( f ,g)) | f ◦ h a` g ◦ h}, since it goes into

a set, factors through π0map(H, E( f ,g)) and we have to show that π0 map(H, E( f ,g))→ {h ∈
π0 map(H, L( f ,g)) | f ◦ h a` g ◦ h} is a bijection.
Surjectivity: Every h ∈ HomLog(H, L( f ,g)) such that f ◦ h a` g ◦ h is homotopic to a
morphism going into the linguistic fragment of E: For each connective c ∈ S H we have
( f ◦ h)(c(x1, . . . , xn)) a` (g ◦ h)(c(x1, . . . , xn)) and thus h is homotopic to h′ : H → L( f ,g)

defined by c 7→ ch(c) ∈ S E( f ,g) ⊆ S L( f ,g) .
Injectivity: If h, h′ : H → E( f ,g) go after composition with e to the same morphism (H →
E( f ,g) → L( f ,g)) ∈ π0 map(H, L( f ,g)), then (e ◦ h)(ϕ) a`L( f ,g) (e ◦ h′)(ϕ) for all ϕ ∈ Fm(H).
The fact that `E( f ,g) is the restriction of `L( f ,g) to Fm(S E( f ,g) ) means that e is conservative, so
h(ϕ) a`E( f ,g) h′(ϕ) for all ϕ ∈ Fm(H), hence h = h′ ∈ π0 map(H, E( f ,g)). �

We still note that the homotopy equalizer can be characterized by map(H, E( f ,g)) '
π0 map(H, E( f ,g)) � {h ∈ π0 map(H, L( f ,g)) | f ◦ h a` g ◦ h} ' {h ∈ π0 map(H, L) | f ◦ h a`
g ◦ h}, where the latter bijection comes from the fact that every translation H → L( f ,g) is
equivalent to one going into L, seen as a sublogic of L( f ,g).

In the construction of homotopy equalizers we could have used Q(L) instead of
L( f ,g) with almost the same proofs, but we thought it to be instructive to show how one
can construct a logic tailored to the problem at hand. If we demand more properties from
the logics of the category Log, these specialized logics can become much smaller than
the universal solution via Q(L).

One can construct homotopy pullbacks in an entirely similar way to the construction
of homotopy equalizers given here. We leave this to reader, but the existence of homotopy
pullbacks follows from Theorem 4.39 below which asserts the homotopy cocompleteness
of Log2−cat.

Homotopy products. Given a family of logics (Li = (S i, `i) | i ∈ I) a first tentative
construction of the product logic might be as follows: Take as signature S :=

∏
S i, so that

the generating connectives are tuples of generating connectives from the S i. This signature
has projection maps pri : S → S i, defined on generating connectives by (ci)i∈I 7→ ci. Then
define a logic

∏
i Li by endowing Fm(S ) with the strongest consequence relation such

that all these projection maps are translations — this is the consequence relation given by
(Γi) ` (ϕi)⇔ ∀i ∈ I Γi `Li ϕi.

We would now have to show that 〈pri | i ∈ I〉 : π0 map(H,
∏

i Li)→
∏

i π0 map(H, Li)
is a bijection, but surjectivity in general fails, as seen by the following example:
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Example 4.32. Take all the Li to be the same logic L = (S , `) with signature S generated
by a single unary connective � and the rule �x ` x. Then Fm(L) = {�ixk | i, k ∈ N}, where
�i := �� . . .� (i times). This logic has the feature that no two formulas are equivalent, un-
less one can be obtained from the other by a substitution of variables with other variables.
The product

∏
n∈N π0 map(L, L) contains the family ( fn) with fn : L → L given by map-

ping � 7→ �n. Now if 〈pri | i ∈ I〉 : π0 map(H,
∏

i Li)→
∏

i π0 map(H, Li) were surjective,
there would have to be (up to equivalence) a formula in

∏
n∈N L of the form (�nx)n∈N.

This can not be the case since our tentatively defined product signature is generated by
the single connective (�)n∈N. Even if we allow a unary “identity connective” which does
not change a formula when it is applied, our product signature would be generated by
{(4n)n∈N | 4n ∈ {id,�}}, i.e. by tuples which in each place have either the identity con-
nective or �. Formulas of this signature would, as usual, be finite combinations of the
generating connectives and any such connective would have a highest n such that a �n

occurs in some place of the tuple.

The reason behind this failure is that products of free algebras are not in general
free again, as already remarked in Chapter 2. The solution to the problem, much as in the
case of homotopy equalizers, is to substitute the logics Li whose homotopy product we
want to form, by the equivalent logics Q(Li) which have the feature that every formula
ϕ(x1, . . . , xn) is equivalent to a formula c(x1, . . . , xn) where c is a generating connective.

Definition 4.33. Let Li = (S Li , `Li ), i ∈ I be a family of logics. We define
∏

S Li to
be the signature with (

∏
S Li )n := {(ci)i∈I | ci ∈ (S Li )n} i.e. the signature whose n-ary

generating connectives are tuples of n-ary generating connectives of the S Li . There are
obvious projection maps pri :

∏
S Li → S Li . We define the consequence relation `∏ Li

over
∏

S Li to be the biggest consequence relation such that all projection morphisms
become translations. Finally we define the product logic to be

∏
Li = (

∏
S Li , `

∏
Li )

Remark 4.34. The logic
∏

Li is the product of the logics Li in the category Logstrict, by
the construction recipe given in Proposition 2.24.

Temporary convention 4.35. In the next two statements we establish the existence of
homotopy products in special categories Log. We make the distinction between the fol-
lowing two cases:

A. Log is a category of logics where infima of consequence relations are given by
intersection. This means: If `i are consequence relations over Fm(S ) which are ad-
missible for Log (i.e. (S , `i) are objects of Log), then their intersection

(⋂
i `i

)
∈

P(P(Fm(S )) × Fm(S )) is also a consequence relation admissible for Log.
B. Log is the full subcategory of one of the categories from A, given by logics which

additionally are finitary.

Thus categories Log of type A include for example Log(Tarsk) and Log(subst,Tarsk)

and categoriesLog of type B includeLog( f in,Tarsk) andH ilb. We insert this digression for
special categories, because this admits a nice concrete construction of homotopy products
(only finite ones in case B).
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The impatient reader can skip to Proposition 4.38 which guarantees the existence
of homotopy products for general categories Log, using results from abstract homotopy
theory which will be sketched in Section 4.3.3.

Lemma 4.36. Suppose that either the objects of Log are finitary logics (case B) and the
family Li of Definition 4.33 is finite, or that finitariness is not required for the objects of
Log (case A). Then the consequence relation `∏ Li is given by Γ `∏ Li ϕ :⇔ ∀i pri(Γ) `Li

pri(ϕ)

Proof. In the case (B) of a category of finitary logics Log, the consequence relation was
defined as the infimum in the complete lattice of finitary (and possibly substitution in-
variant, Tarskian, etc.) consequence relations of the inverse images pr−1

i (`Li ). The inverse
image relations are given by Γ pr−1

i (`Li )ϕ⇔ pri(Γ) ` pri(ϕ).
By the proof of [2, Fact 4] this finitary infimum [in f (`i)] of a family of consequence

relations `i is given by Γ [in f (`i)]ϕ⇔ ∃Γ′ ⊆ f inite Γ such that ∀i : Γ′ `i ϕ.
Since all the `i are finitary, there exist Γi ⊆ f inite Γ such that Γi `i ϕ. If the family is

finite, then the union of these Γi is still finite, so that the existence of the Γ′ ⊆ f inite Γ is
always ensured. This gives the claimed description of the product consequence relation.

In the case (A) where finitariness is not demanded from the objects of Log, the
infimum of a family of consequence relations is given by Γ [in f (`i)]ϕ⇔ ∀i : Γ′ `i ϕ. �

Proposition 4.37. The category Log2−cat has finite homotopy products, if the objects
are demanded to be finitary (case B) and all homotopy products if the objects are not
demanded to be finitary (case A).

Proof. Let Li = (S Li , `Li ), i ∈ I be a family of logics, which we suppose to be finite in
the first case. We claim that the strict product

∏
Q(Li) of the replaced logics Q(Li) is a

homotopy product of this family. For this we need to show that for any H the map

π0map(H,
∏

Q(Li))→
∏

i π0map(H, Li), f 7→ (pri ◦ f )i∈I

is a bijection.
Surjectivity: From Lemma 4.18 we know that π0map(H, Li) � π0map(H,Q(Li)), so

we can replace the target by π0map(H,Q(Li)). Given a family ( fi)i∈I ∈
∏

i π0map(H,Q(Li))
we know from Lemma 4.19 that the fi have representatives fi given by strict morphisms.
Now we can define a preimage f of the family ( fi): If fi sends a generating connective c
of H to a generating connective ci of Q(Li), then define f by f (c) := (ci)i∈I ∈

∏
S Li . This

is clearly a translation and a preimage of the family ( fi).
Injectivity: Suppose we have f , f ′ such that pri ◦ f = pri ◦ f ′. The latter condition

means that (pri◦ f )(ϕ) a` (pri◦ f ′)(ϕ) ∀ϕ. By Lemma 4.36 this implies f (ϕ) a` f ′(ϕ) ∀ϕ,
i.e. f = f ′. �

End of temporary convention. Now we return to our convention of denoting by Log
any category of idempotent logics named in 2.19, or any category of idempotent logics
satisfying the assumptions of 2.20 and admitting a homotopy terminal object (see the
remark after Proposition 4.27).
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Proposition 4.38. The category Log2−cat has all homotopy products.

Proof. This follows from the fact that Log2−cat is a reflective (∞, 1)-subcategory
of Logstrict

2−cat and that Logstrict
2−cat has all homotopy products – the latter will be established

in the next section by means of a model structure on Logstrict. Indeed, our adjoint func-
tors i and Q induce an adjunction on the homotopy categories and by Corollary 4.10 it
is enough to establish the existence of products in the homotopy category Ho(Log2−cat).
Now it is an exercise in usual category theory that a reflective subcategory of a category
with products has products itself. These products are given by forming the product in the
ambient category and then applying the reflection functor. Thus the homotopy product of
a family Li is given by Q(

∏
i Li). �

Theorem 4.39. The simplicial category Log2−cat has all homotopy limits.

Proof. We have constructed homotopy products (including a homotopy terminal object)
and homotopy equalizers. By the dual of [40, Prop. 4.4.3.2] one can build homotopy limits
from homotopy equalizers and homotopy products, analogously to the non-homotopical
statement in classical category theory. That the limits of the cited proposition really corre-
spond to homotopy limits as explained in section 3 is the content of [40, Prop. 4.2.4.1]. �

4.3.3. Homotopy colimits in Log2−cat. It would be possible to construct homotopy col-
imits by hand as we did for homotopy limits. Instead we sketch a proof of the existence
of homotopy colimits by different means, to give a feeling for how homotopy theoretical
machinery can be brought into play for solving such questions. For this we use Theorem
4.26, saying that Log2−cat is a reflective (∞, 1)-subcategory of Logstrict

2−cat, and show that
Logstrict

2−cat has all homotopy colimits. First we invoke the following theorem:

Theorem 4.40 ([35, Thm. 3.3, S. Lack]). Let C be a finitely complete and finitely cocom-
plete category enriched in the category Cat of categories. Then there is a model structure
on C, such that the weak equivalences are precisely the 2-categorical equivalences in the
sense of Section 3.3.4. This model structure has the feature that every object is fibrant and
cofibrant and is compatible with the enrichment.

We can apply this to the category Logstrict enriched in the maximal subgroupoids of
the usual Hom-preorders. This is not entirely trivial, as the (co)completeness condition of
the theorem is to be understood in the enriched sense: Apart from the completeness and
cocompleteness of Logstrict, which we know from Proposition 2.24 (or [2, Prop. 2.11])
one has to show that Logstrict is tensored and cotensored, in the sense of [34], over the
category Cat of categories. This can be done by techniques similar to those we used in
the construction of homotopy limits in Logstrict

2−cat.
From the theorem we then get a Cat-enriched model category in the sense of [35,

Section 2.2]. Recall that the (∞, 1)-category corresponding to a model category is given
by taking the subcategory of fibrant and cofibrant objects and applying the hammock lo-
calization. Here, since all objects are fibrant and cofibrant this is simply the hammock
localization of the whole category Logstrict with respect to the homotopy equivalences.
As the (∞, 1)-category corresponding to a model category has all homotopy limits and
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colimits, we have established the homotopy (co)completeness of this hammock localiza-
tion.

However, we need to know that the 2-categorical localization Logstrict
2−cat is cocom-

plete, so we still have to relate this to the hammock localization. The notion of Cat-
enriched model category is such that we get, when we apply the nerve functor to the
hom-groupoids (and here it is important that they are groupoids), a simplicial model cate-
gory in the sense of Quillen, see [29, Def. 4.2.18]. Now by [18, Prop. 4.8] for a simplicial
model category the simplicial subcategory of fibrant and cofibrant objects – which here
is exactly Logstrict

2−cat – is equivalent to the hammock localization considered before. Hence
we conclude that the (∞, 1)-category Logstrict

2−cat has all homotopy limits and colimits.
Finally now we can now use Theorem 4.26, saying that Log2−cat is a reflective

(∞, 1)-subcategory of Logstrict
2−cat: The homotopy colimit of a diagram in Log2−cat can be

constructed by seeing it, via the functor Q, as a diagram inLogstrict
2−cat, forming its homotopy

colimit there, and then applying the reflection functor, which as a left adjoint preserves
colimits.

A detailed elaboration of these arguments, and further exploration of the Lack model
structure on Logstrict

2−cat will be given in a future work.

5. Vista
5.1. Further studies of categories of logics
In the previous chapter we gave two natural constructions of (∞, 1)-categories of logics,
and showed how to explore some of their properties with the examples of Hilbert systems.
Many natural questions about Log2−cat and Loghamm, and their strict versions, remain to
be pursued. Most of these questions should not be hard to tackle, as we find ourselves in a
rather easy region of the realm of abstract homotopy theory. The most immediate question
is the following:

Question 5.1. Are the simplicial categories Log2−cat and Loghamm equivalent?

One approach to proving an equivalence is to simply write down an enriched func-
tor between the two simplicial categories and prove it to be an equivalence. This would
involve an analysis of the mapping spaces of the hammock localization, which would
be interesting in its own right, as it might reveal criteria for determining whether two
translations are homotopic. Other approaches could proceed by constructing appropriate
models of the two (∞, 1)-categories, which are more easily comparable than the sim-
plicial categories. For example one could try to find model categories presenting both
(∞, 1)-categories and produce a Quillen equivalence between them. This allows to stay in
the realm of usual categories. Candidates for such models appear below.

On the categoryLogstrict we have the two different notions of homotopy equivalence
and weak equivalence and we can form the hammock localizations with respect to both
of these notions of equivalence. From Lemma 4.18 and Lemma 4.19 we know that every
logic is weakly equivalent to one such that every translation into it is homotopic to a strict
translation. So it is natural to ask:
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Question 5.2. Are LH(Logstrict,W ∩ Logstrict) and LH(Log,W) = Loghamm equivalent
(∞, 1)-categories (where W denotes the class of weak equivalences)?

Again one can either directly try to construct an equivalence of simplicial categories
or approach the question via models. The second approach is related to the next question.

Recall from Section 4.3.3 that there is a model structure on Logstrict whose equiv-
alences are the homotopy equivalences. One may ask if this model structure admits a
Bousfield localization: A Bousfield localization of a model category is a new model struc-
ture on the same underlying category which has additional weak equivalences and fewer
fibrations, see [40, A.3.7]. The (∞, 1)-category presented by the Bousfield localization
is a reflective (∞, 1)-subcategory of the (∞, 1)-category presented by the original model
structure.

Question 5.3. Is there a Bousfield localization of the Lack model structure on the cate-
gory H ilbstrict whose weak equivalences are the weak equivalences of logics from Defi-
nition 4.1.3 ?

The construction of Bousfield localizations is for example available for so-called
combinatorial model categories by a general theorem of J. Smith, see [3]. These are model
categories which are “cofibrantly generated” (see [40, Def. A.2.6.1(2-3)]) and whose un-
derlying category is locally presentable. The latter is the case for H ilbstrict by [2, Thm.
2.16].

Here is a further candidate category for a model for the (∞, 1)-category Loghamm.
In several places in the literature there have appeared proposals to consider logics not just
on absolutely free algebras, but to instead consider consequence relations on arbitrary
algebras – note that the definition of consequence relation, Definition 2.11, does not have
to be altered for this to make sense. These gadgets have been called abstract logics in
[9]. An advantage of allowing non-free algebras is that one has a better behaved, e.g.
complete and cocomplete, category, which is, for example, the reason that they appeared
in the context of fibring of institutions in [11]. A disadvantage is that one introduces
objects which one would not commonly perceive as logics.

Question 5.4. Is there a model structure on abstract logics presenting the (∞, 1)-category
Loghamm?

The (co)completeness makes it possible in the first place to hope for such a model
structure. The weak equivalences would have to be chosen such that every general logic
would be weakly equivalent to a logic in the traditional sense and this would make the
disadvantage of unusual objects disappear (up to equivalence). One approach: Every al-
gebra is a quotient of an absolutely free algebra and for an algebra with consequence
relation (A, `) one can choose such an absolutely free algebra F � A and endow it with
the biggest consequence relation such that the quotient map becomes a translation (then
terms which become equal in A are logically equivalent in F). A different candidate for
the underlying category of a model category presenting Loghamm would be the category
of operads proposed in [2, Section 5].
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We know from [2, Thm. 2.16] that the 1-category H ilbstrict of Hilbert systems and
strict translations is locally finitely presentable. A locally finitely presentable category
is a complete category with a small subcategory of finitely presentable objects (i.e. the
functors corepresented by them commute with filtered colimits), such that every object
is a filtered colimit of these. By [2, Prop. 2.15] finitely presentable objects in the case of
H ilbstrict are the logics with finitely many generating connectives whose consequence re-
lation is generated by finitely many rules. There is a corresponding notion of presentability
for (∞, 1)-categories, see [40, Def. 5.5.0.1].

Conjecture 5.5. The (∞, 1)-categoryH ilbhamm is presentable.

From [1] and [2] one can deduce that every logic is a filtered homotopy colimit of the
finitely presentable objects in the sense defined above. It would remain to show that these
finitely presentable objects are also finitely presentable in the sense of (∞, 1)-categories,
i.e. that the mapping space functors corepresented by them commute with filtered ho-
motopy colimits, see [40, Def. 5.3.4.5]. We note that the corresponding conjecture about
H ilb(con)

2−cat true by work of Mariano and Mendes: In [42, Thm 2.33] they show that the
homotopy category of this category is locally finitely presentable.

All these questions are still centered around our guiding examples of Tarski style
abstract logic. Similar investigations to those carried out in the previous sections and
proposed in the above questions make sense and would be interesting in other settings of
Abstract Logic.

There is, for example, the categoryAlg of algebraizable logics in the sense of Blok-
Pigozzi [8]. Morphisms of algebraizable logics are translations preserving the so-called
algebraizing pairs that come with algebraizable logics, so this is a non-full subcategory of
H ilb. Jánossy, Kurucz and Eiben in [31, Def. 3.1.3] define an equivalence relation on the
set HomAlg(A, B) of morphisms of algebraizable logics in terms of algebraizing pairs. As
for H ilb2−cat, this equivalence relation gives rise to a simplicial category Alg2−cat with
homotopy discrete mapping spaces. By Corollary 4.10, homotopy (co)limits in this sim-
plicial category are precisely (co)limits in the homotopy category. The authors investigate
this homotopy category, defined (without mention of a simplicial category) in [31, Def.
3.3]. They show that it is equivalent to a certain category of quasivarieties and that this
category has non-empty colimits (the restriction to non-empty diagrams may be neces-
sary; by [2, Remark 3.10] one has to be careful with initial objects). Thus we know that
we have homotopy colimits of non-empty diagrams in Alg2−cat. Of course there is also a
hammock localization Alghamm and one may ask about the relationship between the two.
In [2, Thm 3.12] it is shown that the categoryAlg is finitely accessible, and one may ask
if the same is true in the (∞, 1)-categorical sense [40, Def. 5.4.2.1] forAlg2−cat.

In a similar vein one can explore the categories corresponding to the various levels
of the Leibniz hierarchy, see [14] for some of these. The results of [20] on preservation of
the position in the Leibniz hierarchy under the formation of strict colimits should prove
useful here. A pioneering work in this direction is Mariano and Mendes’ study of the
category of congruential Hilbert systems [42].
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A close variant of the logics treated in Chapters 2 and 4, for which the proofs should
go through with almost no modifications is obtained by admitting typed signatures. This
allows for example a natural treatment of first order logic by allowing a type of propo-
sitions, as we had before, and types of terms, as well as operations like “=” going from
pairs of terms to propositions. Note however that first order logics can also be encoded
into propositional logics as done in the appendix of [8].

A variant that still studies Tarski style logics, but with a possibly coarser notion of
equivalence, is the program of Mariano and Pinto of representation theory for logics [43].
Indeed, [43, Thm. 3.5] shows that their notion of left Morita equivalence is coarser than
the notion of weak equivalence studied here and one can expect an interesting relationship
between the two coresponding homotopical categories.

Many other notions of logic, translation and equivalence have been proposed, like
those for metafibring [13], those of institutions [15] and π-institutions [21], model-theore-
tic abstract logics [37], logical spaces [23], type theories [30], and many more, and they
all give rise to homotopical categories to be explored and compared.

5.2. Invariants of logics
Given the fact that logics live naturally in homotopy theoretical universes, we can ask
which other ideas of homotopy theory might apply. Classical homotopy theory studies
homotopy invariants of topological spaces. One use of invariants is to discover if two
topological spaces are not weakly equivalent. One often also tries to compute invariants
because of specific information that they contain about a space or a map, not just to merely
distinguish them.

Many of these invariants are given by mapping into, or out of, some test object. Let
us review the example of singular homology: In Section 3.1 we gave a cosimplicial object
∆• in the category Top of topological spaces and defined the simplicial set Sing(X) by
Sing(X)n := HomTop(∆n, X). Applying the “free abelian group” functor to each of the sets
Sing(X)n one gets an abelian group object in simplicial sets. The homotopy groups of this
new simplicial set are the singular homology groups Hn(X;Z). Alternatively one can build
a chain complex from a simplicial abelian group by forming alternating sums of the face
maps and take the homology of this chain complex.

Simplicial sets. The process of the formation of the simplicial set Sing(X) works
for any cosimplicial object in a category, but nothing guarantees that this construction
has the good properties of singular homology, like the long exact sequences which make
computations feasible. But we do indeed have a natural similar construction for logics.

Definition 5.6. 1. The category of general logics, GenLog, is the category whose ob-
jects are pairs (X, `), where X is a set and ` a consequence relation on it, and whose
morphisms are consequence preserving maps of sets.
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2. The notions of homotopy equivalence and weak equivalence of general logics are
defined to be morphisms of general logics satisfying the conditions of Definition
4.1. Note that Proposition 4.2 holds here as well.

3. The homotopy category of general logics Ho(GenLog) is defined to be the homo-
topy category of the 2-categorical localization (with respect to the obvious preorder
enrichment, parallel to the one from the beginning of Section 4.3), of GenLog.

4. Denote by U : LogTarsk → GenLog the forgetful functor from Tarskian logics to
general logics given by (S , `) 7→ (Fm(S ), `)

Note that the functor U induces a functor between the homotopy categories which
we will also denote by U : Ho(LogTarsk) → Ho(GenLog). We introduced the category
GenLog, because it contains a natural cosimplicial object:

Definition 5.7. Let Dn (n ∈ N0) be the general logic whose underlying set is the n-
element set {ϕ0, . . . , ϕn} and whose consequence relation is the idempotent, increasing
consequence relation generated by the rules ϕi ` ϕi+1.

Since the consequence relations are required to be idempotent and increasing, the
general logics Dn clearly form a cosimplicial object, i.e. the obvious maps of ordered sets
which leave out or duplicate a proposition become morphisms of general logics:

Definition 5.8. The cosimplicial object D• : ∆→ GenLog is defined on objects by [n] 7→
Dn and by sending a morphism f : [n] → [k] of ordered sets to the map Dn → Dk, ϕi 7→

ϕ f (i).

Mapping out of a cosimplicial object produces a simplicial set. We use this to define
a tentative invariant of logics:

Definition 5.9. The simplicial set of inferences In f•(L) of a Tarskian logic L is defined
to be the simplicial set HomGenLog(D•,U(L)). This defines a functor In f•(L) : LogTarsk →

sSet.

This simplicial set encodes the implication relations between the formulas of L.
Indeed, we have

In f•(L)0 � Fm(S L),
In f•(L)1 � {(ϕ0, ϕ1) ∈ Fm(S L) × Fm(S L) | ϕ0 ` ϕ1},
In f•(L)2 � {(ϕ0, ϕ1, ϕ2) ∈ Fm(S L)3 | ϕ0 ` ϕ1 ` ϕ2}

and so on. One might now have the idea of applying homotopy theoretic invariants like
homotopy and homology groups to this simplicial set, but this would contain very limited
information about the logic: A simplicial set X• remembers the direction of the edges; the
two structure maps X1 ⇒ X0 can be seen as source and target maps (and indeed this is
what they are if X is the nerve of a category) and they are not interchangeable.

The topological invariants of simplicial sets, however, do not distinguish the direc-
tion of the edges, for example the nerve of a category and the nerve of its opposite are
weakly equivalent simplicial sets. Thus applying topological invariants to In f•(L) would
amount to only remembering whether formulas are connected by some inference, without
distinguishing into which direction it goes. Of course it could still be possible to distin-
guish non-equivalent logics by these data but a lot of information would be lost.
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Instead one should see the simplicial set In f•(L) as an object of directed homotopy
theory. That is, one should see it not as an object of the standard model category of simpli-
cial sets, where simplicial sets are taken to model topological spaces and in which paths
have no preferred direction, but rather as an object of the model category of quasicate-
gories where the objects are representing (∞, 1)-categories.

In general, directed homotopy theory is a field where one studies spaces (for exam-
ple modelled by simplicial sets) with directed paths, which cannot be gone backwards.
For such a directed space, instead of the fundamental groupoid, one has a fundamental
category, instead of homology groups one has preordered homology groups. These seem
to be more promising invariants of logics2. A good introductory survey of these ideas is
[24].

Dendroidal sets. The simplicial set In f•(L) encodes implication relations between
single formulas. For finitary logics with a conjunction this should give fairly complete
information. In general, however, the consequence relation is between sets of formulas
and single formulas and such inferences with many hypotheses are not captured by the
invariant In f•(L). For finitary logics we can produce a dendroidal set capturing such in-
ferences. We will consider the definition of dendroidal sets via broad posets, as in [50]
and [51].

Definition 5.10. A commutative broad poset is an idempotent, increasing general logic
with the following properties:

1. If Γ ` ϕ, then Γ is finite.
2. If γ ∈ Γ, ϕ ∈ Φ, Γ ` ϕ and Φ ` γ, then ϕ = γ

A commutative broad poset is finite, if the relation ` ⊆P(A) × A is a finite set. Note that
by increasingness this implies that A is finite.

Definition 5.11. Let (X, `) be a commutative broad poset.
An element x ∈ X is called a root, if there do not exist any y, x1, . . . , xn ∈ A, y , x such
that {x, x1 . . . , xn} ` y.
An element x ∈ X is called a leaf, if there is no Γ , {x} such that Γ ` x.

Definition 5.12. A commutative broad poset (X, `) is a dendroidally ordered set, if
1. it is finite
2. it has a root
3. If x ∈ X is not a leaf, then there exists a unique Γ ⊆ X such that Γ ` x and with

the following property: There exists no Γ′ = {γ1, . . . , γn} ⊆ X such that there is a
partition Γ =

∐
i Γi with Γi ` γi ∀i

The full subcategory of general logics whose objects are the dendroidally ordered sets is
called Ω.

Definition 5.13. A dendroidal set is a functor Ωop → Set.

2Cubical sets are more common than simplicial sets in directed algebraic topology, but it is also easy to write
down a cocubical object in GenLog to produce a cubical variant of In f•(L)
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Remark 5.14. Our definition of Ω is a reformulation of [50, Def. 4.1.1] and [51, Def.
3.2] (where no logics are mentioned). The definition of Ω in the literature on dendroidal
sets is not usually given in terms of broad posets, but rather in terms of trees and operads,
see e.g. [44]. The equivalence between these two definitions is the content of [50, Thm.
4.1.15].

We admit that our definition of Ω is somewhat opaque, but the only thing that matters
for now, is that it is a subcategory of the category of general logics.

Definition 5.15. The dendroidal set of inferences In fΩ(L) of a Tarskian logic L is defined
to be the dendroidal set HomGenLog(Ω,U(L)). This defines a functor
In fΩ(L) : LogTarsk → SetΩop

.

Like the category of simplicial sets, the category of dendroidal sets bears several
model structures. There is the Cisinski-Moerdijk model structure [12], with the fewest
weak equivalences, which, roughly, sees dendroidal sets as encoding families of n-ary
operations, closed under composition (operads). This will be the viewpoint that retains
the most information about the logic. Further there are the covariant model structure of
Heuts [28] which sees dendroidal sets as E∞-spaces and the stable model structure of
Bašić/Nikolaus [6] which sees dendroidal sets as connective spectra.

All of these model structures can be used to associate invariants to logics. In par-
ticular the last one can be used to define the algebraic K-theory of a logic, see [45]. It
remains to be seen how computable these invariants are, whether e.g. there are long exact
sequences induced by cofibrations of logics, and what exactly they capture about a logic.
They are likely to get much more interesting, if one enriches the categories of logics via
proof theory as in Section 5.3.

Galois style invariants. A further type of invariant of a logic L can be constructed
by considering the category L ↓ Log of logics receiving a translation from L and associ-
ating to it the group of automorphisms of the forgetful functor to Log or other categories
as that of indexed frames, see Section 5.4. The homotopical viewpoint suggests, however,
that one should take autoequivalences instead of automorphisms. This can be seen as a
version of Galois theory for logics.

In a similar spirit are the Morita style invariants of Mariano and Pinto [43] who,
roughly, associate to a logic the categories of algebraizable logics over/under the logic.

5.3. Refined categories of logics from proof theory
The natural enrichment of the categories of logics in preorders lead us to the 2-categorical
localizations of Section 4.3. As much as this was an improvement of the corresponding
usual categories, the homotopy discrete mapping spaces are not very interesting objects.
However, they can be seen as the shadows of richer structures. We just give some sketches
and ideas here.

The analogy between proof theory and homotopy theory is as follows: A logic is a
space, formulas are points, proofs are paths between the points, transformations of proofs
are homotopies between the paths.
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The somewhat degenerate situation of homotopy discrete mapping spaces in logic
can be seen from this angle. We said that two translations f , g should be declared equiva-
lent if for all ϕ of the domain, we have f (ϕ) a` g(ϕ). This only asks for provability of f (ϕ)
from g(ϕ), it does not distinguish different proofs. This is like asking, on the topological
side, whether two points f (ϕ) and g(ϕ) are in the same path component, while ignoring
the different paths. Distinguishing different proofs is a way to get to more interesting
enrichments of the categories of logics.

Recall that categories (actually multicategories) of proofs were introduced by Lam-
bek [36]. Given a Hilbert system, presented by a set of deduction rules, one can define a
category whose objects are the formulas and whose morphisms are proofs. Let us say for
the moment that a proof from a hypothesis ϕ to a conclusion ψ is a sequence of formulas
such that the final formula is ψ and any intermediate formula is either ϕ or follows from
the preceding ones through one of the deduction rules.

We wish to use this for an enrichment of the category of Hilbert systems. We could
start by saying that HomH ilb(L, L′) is the category whose objects are translations from L
to L′ and where a morphism f → g is given by a collection of proofs { f (ϕ) → g(ϕ) |
ϕ ∈ Fm(L)}, i.e. we could ask pointwise for morphisms in the proof category of L′. Cat-
egorical thinking would, however, demand some kind of coherence between the different
morphisms. If we think of a morphism from f to g as something like a natural transfor-
mation between functors, then we would ask for the commutativity of a certain diagram:
A proof ϕ → ψ in the proof category of L would be mapped to two proofs f (ϕ) → f (ψ)
and g(ϕ)→ g(ψ) and we could ask that the naturality diagram commutes:

f (ϕ) //

��

g(ϕ)

��
f (ψ) // g(ψ)

This means asking for an equality of proofs, which again seems quite restrictive. On
a middle ground we could ask that the two proofs are comparable in some sense, or
transformable into each other.

This leaves us with lots of interesting options to choose from, all resulting in dif-
ferent categories. There are directed and symmetric versions of relations between proofs.
Choosing the symmetric versions results in a (2, 1)-category of logics, while choosing the
directed versions results in a (2, 2)-category of logics. Here are some examples:

1. Length of the proofs:
• symmetric: equal length
• directed: one is longer than the other

2. Normal forms:
• symmetric: both proofs have the same normal form of some kind
• directed: One is closer to normal form than the other (e.g. elimination rules

occur before introduction rules)
3. Degree of generalizability (Lambek): Suppose we have a proof p : A → B and

the formulas A and B arise by substitution of terms t1, . . . , tn into other formulas
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ϕ, ψ, i.e. A = ϕ(t1, . . . , tn), B = ψ(t1, . . . , tn). Then one can ask whether the proof
carries over to the more general situation, i.e. whether there is a proof p̂(x1, . . . , xn) :
ϕ(x1, . . . , xn)→ ψ(x1, . . . , xn) such that p = p̂(t1, . . . , tn).
• symmetric: p and q have the same degree of generalizability, i.e. for every

“generalization” of A and B the proof p carries over if and only if q carries
over

• directed: For every generalization to which p carries over, q also carries over
4. Required strength of the logic: One proof p : A→ B might use e.g. Modus Ponens,

ϕ∧ ψ ` ϕ and ¬¬φ ` φ while another proof q : A→ B only uses Modus Ponens. Or
one proof might be constructive the other not.
• symmetric: Both proofs use the same logical strength
• directed: One uses less than the other.

The list could easily go on, but the point is made, that there are many interesting
relations between proofs that one might want to study and they all lead to different cate-
gories with more interesting enrichments than before.

Going further, one could try to get a 3-category of logics, i.e. an enrichment in 2-
categories. For this consider the example of normal forms: Often a proof can be brought
into some normal form by a sequence of elementary steps. These sequences of steps can
be seen as 2-morphisms in the proof category. Again one has to ask when two sequences
of steps can be considered equivalent and get a 2-category of translations by pointwise
application.

In usual logic nothing seems to be naturally coming after that. In Martin-Löf type
theory on the other hand, one has identity types and can iterate up to arbitrary levels,
which is exactly what inspired the homotopy theoretical semantics used in homotopy
type theory. This should lead to the richest, least truncated, higher categories of logics.

We still remark that one can adapt the invariants of logics from the previous section
to the setting of these less truncated categories of logics involving some proof theory
and that here they might get more of a homotopical flavour than their more truncated
companions. We also remark that other natural enrichments can be found, for example an
enrichment in multicategories, via the provability relation between sets of formulas and
single formulas.

5.4. Comparing paradigms of logic
Another question that gets an interesting twist, once we have turned our categories of log-
ics into higher categories, is that of how the categories corresponding to different formal-
izations of abstract logic, like institution theory and Tarski style consequence relations,
relate to each other. With the extra flexibility of (∞, 1)-categories it seems easier to get
adjunctions or equivalences between different such settings.

In another direction there is the work [27] where the authors note that for several
formalizations of the notion of logic the resulting category has a forgetful functor to the
category of indexed frames. A typical way to assess a category with such a forgetful func-
tor is to consider the automorphisms of this functor. In good situations one can reconstruct
the category from the base category and the knowledge of these automorphisms, but in any
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case one can associate in this way a group to a category. In a world of (∞, 1)-categories
one should instead consider autoequivalences.

6. Conclusion
Our aim was to show that a homotopy theoretical point of view is very natural and appro-
priate in logic. One is lead to natural constructions and questions and this should be the
main reason to adopt such a point of view. A good side effect is, as exemplified by the
(co)completeness results of Chapter 4, that things look better than they might otherwise
through the lens of usual category theory.

We believe that the rich homotopy theoretical landscape of logics, of which we
have unveiled a bit, gives ample confirmation of how fundamental and fruitful Jean-Yves’
questions from the beginning of this article really are.
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[6] M. Bašić and T. Nikolaus. Dendroidal sets as models for connective spectra. preprint, arXiv
http://arxiv.org/abs/1203.6891.

[7] Julia E. Bergner. A survey of (∞, 1)-categories. In Towards higher categories, volume 152 of
IMA Vol. Math. Appl., pages 69–83. Springer, New York, 2010.

[8] W. Blok and D. Pigozzi. Algebraizable logics. Mem. Amer. Math. Soc., 77(396):vi+78, 1989.

[9] S. Bloom, D. Brown, and R. Suszko. Some theorems on abstract logics. Algebra i Logika,
9:274–280, 1970.
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