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A L M O S T  F R E E  G R O U P S  A N D  T H E  M. H A L L  P R O P E R T Y  

O. V.  B o g o p o l ' s k i i *  UDC 512.543.76+512.54.05 

In the present article, we continue our study of groups with the M. Hall property started in [1] (see also 

[2-6] and [7, Chap. 1, Sec. 3]). According to [3], a group G has the M. Hall property (G is is an M. Hall 

group) if each of its finitely generated subgroups is a free factor in a subgroup of finite index in G. 

Let a be the class of fundamental  groups of finite graphs of finite groups. It was proved in [3] that  every 

finitely presented M. Hall group is isomorphic to some group in ~. In [1], a criterion for a group in ~ to be 

M. Hall was given and an algorithm verifying this criterion was described. 

In connection with the study of groups without the M. Hall property in ;~, the following question was 

raised: Given an arbi trary group G in ~ and a subgroup H of G defined by a finite set of generators, how 

can one determine whether H is a free factor in a subgroup of finite index in G? This question is settled in 

, the present article (Theorem 3.1; see also Corollary 3.1). 

Theorem 2.2 and its topological analog - -  Theorem 2.1 - -  are interesting in their own right. In the 

proof of Theorem 2.2, we give an algorithm which, for an arbitrary finitely generated subgroup H of 

the fundamental  group tel(G, F, v0) of a finite graph of finite groups, produces its representation as the 

fundamental  group of some finite graph of finite groups. 

In the present article, we use the same technique of covering spaces as in [1]. The basic definitions from 

[1] are given in Sec. 1. Theorems 2.1 and 2.2 are proved in Sec. 2, and Theorem 3.1 - -  in Sec. 3. 

1. B A S I C  D E F I N I T I O N S  A N D  N O T A T I O N  

Let r be a nonempty  connected graph with the vertex set P ° = {vii i E I},  the edge set p1 = {e j l j  E J},  

the functions "origin of an edge" a : F 1 --* P °, "end of an edge" w : P 1 --, p0, and "inverse of an edge" 

-: p1 __+ pl .  If /3(e/)  = vi, where/3 E {a, c0}, then we will also write/3(j)  = i. For an arbi trary pa th  f in P, 

as well as in the complexes appearing below, we denote by a ( f )  the origin of f ,  by w ( f )  the end of f ,  and 

by [f] the homotopy class of f .  

Recall that  a graph of groups (G, F) consists of a graph P, a set of vertex groups {V~] i e I},  a set of 

edge groups {Ejl j E J} ,  and embeddings aj:  Ej -+ V~(j) and wj: Ej --+ V~(j), for each j E J .  In addition, 

if ejl = ej=, then it is necessary that  Ejl = Ej2 , eej~ = wj2 , and wjl = O~j=. In what follows, we assume 

that  the graph F has no loops, since otherwise we can consider the barycentric subdivision of the graph of 

groups. The definitions of the group F(G, F) and the fundamental group Try(G, F, v~), where vi E p0, can 

be found in [1] and IS]. 
In [1, Sec. 4], an arbi trary group H was associated, in a canonical way, with a 2-complex K ( H ) ,  

containing a single vertex v such that  rr ,(K(H),  v) ~- H. For i E I ,  the complex K(V~) is called a body; its 
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vertex is denoted by vl and its loops are labeled by the symbols ~, where a E If/. Fo~ j ~ Y, the vertex of the 

complex K(Ej) is denoted by uj. The topological space K(Ej) x [-1, 1] can be transformed into a complex, 

which we will call a ~ube. Two inverse edges of a tube mapped onto the geometrlcal edge {uj} × [-1, 1] are 

labeled by ~-~ and e3.. The subcomplex K(Ej) x {0} is called a face. 
Next, all bodies and tubes are glued (using the structure of the graph F) into a 3-complex K(G, F) such 

that 7rl(g(G, F),vi) = ~h(G, F, vi). The isomorphism is induced by the labeling. The complex K(G, P) 
can be represented as the union of neighborhoods O(V~), i E I, (see [1, Sec. 5]). Each neighborhood O(~)  

consists of a body K(V~) and handles of the form K(Ej) x S, where S = [-1, 0] for a ( j )  = i and S = !0, 1] 

for = i. 

As in [1], subgroups of the group r~(G,F, v~) are studied with the help of coverings of the compiex 

K(G, P). We will need the following properties of coverings. 

(1) For an arbitrary covering p: (X,~) ~ (Y,y) of connected complexes X and Y, the mapping 

p*: 7rl(X, z) ---* 7rl(r, y ) i s  an embedding. When z runs over the set p-Z(y), the group p*(zci(X,z)) runs 

over some class of conjugate subgroups of the group ~h(Y, y). 

(2) For an arbitrary connected complex Y, a vertex y of Y, and a subgroup H <_ 7h(Y,y), there exists 

a covering p: (X, z) ~ (Y, y) such that p*(zcl(X, z))= H. 
Let p: X --~ K(G, ~) be an arbitrary covering of the complex K(G, F). Any connected component of the 

inverse image of a body, a tube, a handle, a face, or a neighborhood in K(G,F) has the same name in X. 

The complex X consists of covering neighborhoods O,(V~), whose structure was described in Proposition 

5.1 of  [1]. 

Let L be an arbitrary handle in X which covers the handle M = K(E,) × [ - ! ,0]  in K(G,P) .  if 

a covering PlL: L ---* K(Et) × [-1, 0] corresponds to a class £ of conjugate subgroups of the group E~ 

~h(g(Et) × [-1, 0], (ut, 0)), then we label the handle L by (e +, £). If L covers the handle M = K(E,) × [0, t], 

and the corresponding class is g, then we label L by (e~-, £). 

An identity handle (neighborhood, face) is a handle (neighborhood, face) whose fundament~  group is 

trivial. 

The definitions of an irreducible tube path, a telescopic (nonascending) tube path, and a tube t~ee in 

X were given in [1, Sec. 7] 

Def in i t ion  1.1. A tube tree T is said to be telescopic (nonascendin9) with respect to a body a in T if 

every irreducible tube path in T starting in a is telescopic (nonascending). 

2. DEFINING A GROUP: FROM A SYSTEM OF GENERATORS TO A GRAPH 

OF GROUPS 

L E M M A  2.1. Suppose that G = ~h(G,F, v0) is the fundamental group of a finite graph of finite 

groups, H is a finitely generated subgroup of G with generators h i , . . . ,  h.,,. Then the occurrence problem 

for G in H is decidable. 

P roof .  It is known (see, for example, [1, Theorem 8.1]) that G has a free subgroup F of index d and 

rank n if and only if 

]Ejl ~ + 1 and LSMo ]V~]] d. 
e viEP ° viEP ' 1 

In particular, there exists a free subgroup F of index d = LSM 0 iV~l. As in [1, Sec. 8], we con- 
viEF 

struct a d-sheeted covering p :  (KF,%)  ---* (Z(G,  r) ,  ,0) such that  p*x!(KF,%) = F. For each 



g e G ~- zcl(K(G, F), vo), we denote by ~" some closed path in K(G, F) originating at v0 and representing 

the element g; ~ denotes the lifting of g in KF originating at v0. By the properties of coverings, arbitrary 

elements gl and 92 in G belong to the same right coset of the subgroup F if and only if w(gz) = w(g2). 

Since H is finitely generated and KF is finite, we can find a system of representatives of right cosets in H 

with respect to H f3 F and a system of generators for H n F. Thus, the occurrence problem for elements of 

G in H can be reduced to the occurrence problem for elements of the free group F in the finitely generated 

subgroup H N F. The latter problem can be solved by Nielsen's method (see [8, Chap. 1, Sec. 2]). 

Def in i t i on  2.1 (see [1, Sec. 9]). Suppose that (G, F) is a graph of groups, H _< G = 7rl(G, F, vo), 
o 

and p: (KH,~O) ---* (K(G,F),vo) is a covering such that p*Trl(KH,VO) = H. We define the support KH of 

the covering p to be the minimal subcomplex of KH with the following properties: 
o 

(1) Oo C K~,  
o 

(2) KH is connected, 
o 

(3) KH is the union of covering neighborhoods Os (Vi), 
o 

(4) 7cI(KH, vo) = 7rl(KH, f~o). 
o 

The complex KH c a n  be represented a s  KH = KH tO ( U Xk), where each Xk is a connected union of 
k = l  

o o 

covering neighborhoods, the intersection KH N Xk is a face in KH, and Xk, rq Xk= = O for X~, # Xk=. Let 
o 

a~ be the body of that neighborhood in Xk which contains the face KH A Xk. Then X~ is a telescopic 
o 

(nonascending) tube tree with respect to ak (see Definition 1.1), and the embedding KH AXk -+ X~ induces 
o 0 

the isomorphism rrl(K/-, N Xk, xk) ---+ ~rl(Xk, xk) for some basic vertex a:k C KH A Xk. 

T H E O R E M  2.1. There exists an algorithm which, given a finite system { h i , . . . ,  hn} of generators 

for an arbitrary subgroup H of the group G = 7rl(G, F, Vo), where (G, P) is a finite graph of finite groups, 

allows us to construct the support of a covering p: ( K s ,  ~o) ~ (K(G, F), v0) such that p*Trl(KH, ~o) = H. 

Proof .  The covering complex KH can be represented as the union of an ascending chain of subcomplexes 

KH(O) C KH(1) C . . . ,  where KH(O) is the covering neighborhood Ot(Vo) containing the point %, and 

KH(i + 1) is the union of KH(i) and all the covering neighborhoods that intersect KH(i) in KH. According 

to Definitions 2.2 and 2.3 given below, KH(i) are locally covering H-complexes. In order to construct KH(i) 
from Kn( i  - 1), we need not know the whole complex KH (which may well be infinite). It is sufficient to 

o 

use the operations of H-adjoining and H-gluing described below. We then construct the support KH by 

deleting "superfluous" neighborhoods from an appropriate complex K H(m). 

Def in i t i on  2.2. A complex C is said to be locally covering for K(G, P) if the following conditions are 

satisfied: 

(1) C is a connected union of some subcomplexes which are homeonlorphic to covering neighborhoods of 

the form O,(VI). We assume the homeomorphisnxs to be fixed and make no distinction between the covering 

neighborhoods and their images in C. The covering mappings p~#: O,(V~) --+ O(~)  are also assumed to be 

fixed. 

(2) For any distinct neighborhoods O,,(V/,) and O,~(V/=) with nonempty intersection in C, every con- 

nected component of the set O,~ (V/~)N O,= (Vi=) is simultaneously the face 0L of some handle L C O,, (V/~) 

and the face aM of some handle M C O~(V~2). 

For a locally covering complex C, we can define a mapping p: C --+ K(G, F) by gluing the covering 

mappings P~,i- The mapping p is generally not a covering. 



A face of the complex C is the face of any handle in C (see Sec. 1). If a face ties only in one handle, we 

call the face and the handle outer. If a face lies in two handles, we call the face and the handles inner. 

Def in i t i on  2.3. A locally covering complex C is said to be an H-complex if the following conditions 

are met: 

(1) C has a vertex % such that p(%) = v0; 

(2) %) < H; 
(3) for any covering neighborhood O~(V~) C_ C, any vertex w E O~(V/), and any path f in C going from 

~Y0 to w, the covering ps,i: (O~ (V~), w) -o (O(V~), p(w)) corresponds to the subgroup 

{[v][ v is a loop in O(Vi) originating at p(w), and ~a(f)vp(f) -1] E H}. 

R e m a r k  2.1. In the last definition, from (2) it follows that it is enough to require ~hat condition (3) 

hold for some vertex w E O,(Vi) and some path f in C going from % to w. 

For any connected subcomplex R of the complex K(G, P) and for any path f with origin % in R, we 

denote by 7-ll(R ) the following subgroup of ~Q(R, co(f)): 

{[v]l v is a loop in R originating at c0(f) and [fvf  ~1] E H}.  

Now we define the operations of H-adjoining and H-gluing which will be used to construct new H-complexes 

from H-complexes. 

H-adjoining. Fo~ an arbi trary/ /-complex C with a nonempty set of outer faces, let f be an arbitrary 

path in C going from % to some vertex w on the outer face 8L~ C O,~(V~) C_ C and let p,~& : O~(V~) 

O(V~) be a standard covering; put L~ = p,~& (L~). In view of Definition 2.3 and the structure of covering 

neighborhoods, Diagram 1 (coverings and embeddings) corresponds to Diagram 2 (group embeddings). 

T 
t* 

OL i -p.,,&loL t OLt npU)(OL ) 

t 
i i 

Diagram 1 Diagram 2 

Suppose that  O(V~) is a neighborhood in K(G, r),  adjacent to the neighborhood O(V~), and L2 is a handle 

of O(V~2) such that  c9L2 = ¢9L1. By Lemma 2.1, we can enumerate all elements of the finite groups shown 

in Diagranl 3 and, therefore, construct the corresponding coverings (Diagram 4). 

. w 0(%) % u ) ( o ( v , , ) )  

1 l ' T 
7-l,(I)(0L2 ) . 7Q(OL2,p(w)) OL~ - ~ 8L2 

Diagram 3 Diagram 4 

Since OL1 = OL2 and 7"tpU)(OL1 ) = 7"(p(I)(OL2), the covering faces ?)L~ and 0L~ are homeomorphic, tf  

we adjoin the neighborhood O,~ (V~) to C with the help of this homeomorphism, the resulting complex will 

also be an H-complex. We say that it is obtained by H-adjoining to C through the face aL~: 



The result of H-adjoining does not depend on the choice of the path f .  Indeed, if we change the path 

f in C, with the end vertex w fixed, the groups ~p ( l ) (O(~ l ) ) ,  7-/p(l)(0L1), 7tp(f)(O(V/~)), and 9/p(f)(OL2) 

do not change, as follows from condition (2) in Definition 2.3. If we change the vertex w E OL' 1, the groups 

in Diagram 3 will be replaced by groups which are naturally isomorphic to them, and so Diagram 4 will 

not be affected. 

H-gluing. For an arbitrary H-complex C, let ~L~ and 0L~ be two distinct outer faces and suppose 

that  the handles L~ and L~ containing them are mapped by p to some handles L1 and L2 which form a 

tube in K(G,  F). Let us choose arbitrary paths f l  and f2 in C going from % to some vertices wl C 0L~ 

and w2 E OLP2 • Suppose that  the subgroups 7-gv(l~)(OL1) and 7-gv(I~)(OL~. ) are conjugate in the group 

7r~(OL, w), where OL = OL1 = OL2 and w = p(wl) = p(w2). In view of the cover properties, there exists 

a homeomorphism ~ : OL~ ---* OL~ such that p[o~i = ~ o Ploz~" Using it, we glue OL' 1 and OL~ in C into 

a single subcomplex OL'. Let g be some path in OL' going from ~(Wl) to w2. If ~(f~gf~Z)] e H, the 

homeomorphism ~ is assumed admissible, and we say that ~ is an H-gluing in C. 

Note that  by condition (2) in Definition 2.3, the adnfissibility of ~ does not depend on the choice of the 

paths f l ,  fs, and g. Denote by C(~) the conlplex obtained from C as a result of gluing by an admissible 

homeomorphism ~. 

L E M M A  2.2. There exists at most one admissible homeomorphism ~: OL~ ~ Off 2 such that P[OL~ = 

o PloL'. 
P r o o f .  Let ~ and ¢ be two homeonlorphisms satisfying the hypothesis of the lenuna and let g and 

h be some paths in OL~ going from ~(wl) to w2 and from ¢(wl)  to w2, respectively. Since ~ and ¢ are 

admissible, we have r l  = [p(f~gf~l)] E H and "2 = [p(f~h£)] C H. If a loop v is homotopic to the closed 

path p(g-1)p(h) in the subcomplex OL2 = p(OL~), then we have the following: 

(a) r = r~-lrs = [ p ( £ ) .  v .p ( f2 ) - l ]  6 H; 

(b) the covering PIoL':: OLd2 ~ 3L2 is the restriction of the covering mapping of neighborhoods containing 

OL' 2 and cOL2. 
In view of Definition 2.3 and the cover properties, the loop v in c-9L2 can be lifted to sonle loop v' 

in OL' 2 originating at w2. From the equality ~v]oz,~(v')] = Iv] and the definition of v, it follows that  

[ploL,(v'h-~)] = [P[OL,(g-~)]. Since the paths v'h -~ and g-~ have comnlon origin and P]OL" is a covering, 

they have common end, i.e., ¢(Wl) = ~(wl).  Since tile vertex wl in the definition of H-gluing can be chosen 

arbitrarily, the homeonmrphisms ~ and ¢ coincide at the vertices of the complex OLd. Since, in addition, 

and ¢ make the diagram 
¢ 

OL 

commutative and PlOL'~ and P]oL~ are coverings, it follows that ~ = ¢. 
o 

We proceed by constructing the support KH of I9. First, we effectively construct an initial segment 

KH(O) C KH(1) C . . .  C KH(m) of the chain of H-complexes defined at the begiuning of the proof; here 

m is the minimal nunlber with the following property: 

(A) the irreducible closed paths "hi, . . .  ,hn representing the generators of H in K(G,  F) can be lifted 

to closed paths beginning at % in the complex KH(m). In particular, we then have 7Cl(KH(m), %) ~- 

7rl(gH,~0) --~ H. 



o 

Next, we obtain KH by deleting "superfluous" neighborhoods from KH(m). The complexes KH(~) will 

be constructed in such a way that the operation of H-gluing will not be applicable to them. 

Construction of Ell(O). Let P,,o: (O~(V0),go) --* (O(Vo),Vo) be the covering corresponding to ~he 

subgroup {[v]lv is a loop in O(Vo) beginning at v0, and [v] E H} _< vl(O(Vo),Vo). By Lemma 2.1, we can 

compute this subgroup effectively and, hence, construct the covering (see [t, Sec. 5]). Put KH(0) = O~(Vo). 
Suppose that  KH(i) is already constructed for some i > 0, and that the operation of H-gluing cannot 

be applied to KH(i). We number all outer handles of the complex KH(i) by 1 , . . . .  mi [if there are no outer 
0 

handles, we put Kn  = K~(i) = K~]. Then we apply to KH(i) the operation of H-adjoining for the first 

handle, making all possible H-gluings in the resulting complex. If some of the handles numbered 1 , . . .  rr~ 

are still outer, we choose one with the smallest number j (j > 1) and perform H-adjoining for this handle, 

then making all possible H-gluings. 

The process continues until all outer handles with numbers 1,...,m.~ are exhausted. The resulting 

complex is denoted by KH(i + 1). The operation of H-gluing is not applicable to KH(i-r 1), and its outer 

handles (if there are any) are distinct from those in KH(i). If condition (A) is satisfied, the construction 

finishes at step m. It can be proved that m < [( max [h/I + 1)/2], where h/ is the number of edges in 
- -  i = l , . . . , n  

the path hi. 

Let X be an arbitrary connected subcomplex in KH(m) that is a union of covering neighbozhoods. We 

call a neighborhood O~(V~) in X superfluous if it satisfies the following conditions: 

(1) O~(V~) does not contain '5o; 

(2) the complex O, (V~)N Z\O~ (~)  coincides with some face OL of the neighborhood O~ (V~); moreover, 

the embedding 0L ,-, O~ (Vi) induces an isomorphism of the fundamental groups 7va(OL, w) ~ 7~a(O~(~), w) 
for some vertex w C 0L. 

We delete all superfluous neighborhoods from Kg(m) and from the resulting complex. The process 

continues until all superfluous neighborhoods are exhausted. Eventually, we obtain the required complex 
0 

KH. 

T H E O R E M  2.2. There exists an algorithm which, given an arbitrary finite graph of finite groups 

(G,F) (with vertex groups G~, v e F °, and edge groups G~, e C P a) and a finite set of ele- 

ments ha,.. . ,  h,, E r~(G,P,vo), allows us to construct a finite graph of finite groups (D, &) such tha~ 

(hl , . . . ,h ,~)  ~ 7r~(D,A,0o) for some vertex ~o E A°. Moreover, we can point out some mappings 

f : A ° --~ F ° and ~o : A 1 -~ {gleg~.] e C F l, gl ~ Ga(e), g2 ~ G~ie)}, together with embeddings 

~o,, : D,, ---+ GI(,), v C A °, which induce an embedding ¢ : ~r~(D, ZX,~0) --, rfa(G,P,o) whose image co- 

incides with {ha, . . . ,  h,~). 
o 

Proof .  Letting H = (hi , . . . ,  hn), we apply Theorem 2.1 to construct the support KH of an embedding 

p: (KIt, Vo) ---+ (K(G, P), Vo) such that p*~rl(KH, Vo) = H. The graph of groups (D, &) is obtained from 
o 

KH as follows: 
o 

(1) with each body in K~,  we associate its vertex and fundamental group; 
o 

(2) with each tube in KH, we associate its edge and fundamental group; 

(3) we define the incidence of vertices and edges, as well as the embeddings of edge groups in vertex 

groups, in a natural way. 

Now we give a precise definition of the graph of groups (D, £x), the mappings f and ~, and the embed- 

dings ~o,, v E A °. 
o 

Definition of ~he graph of groups (D, A). In each body r C KH, w e  choose a vertex w.,., selecting ~o if ]t 



o 

lies in the body. In each tube L C KH, we choose some lifting of the positively oriented edge {uj}  × [-1, 1] 

[from (uj, -1 )  to (uj, 1), where ej E F~_] in the tube p(L) C K(G,  F), denoting this lifting by eL+ and the 

inverse edge by eL-. In what follows, we always assume that ~r E { + , - }  and e -- {+,-}\{or}.  We denote 

the origin, the midpoint, and the end of an edge e ~  by eL*(--1), eL*(O), and eL~(1), respectively. For 

each vertex eLf(t) ,  where t ---- E l ,  and for a body r containing eL*(t), we choose a path in r going from 

w. to eLf(t) .  Denote this path by g(w.,eL~(t)) .  Suppose that the origin of the edge eL. lies in a body rl  

and the end lies in a body r2. We denote by e(.~,L~,.2) the path that is equal to the product of the paths 

g(w.~, eL. (--1)), eL*, and g(w**, eL* (1)) -1. This definition implies that each of the paths e(~,L.,~) and 

e(~:,L%r~) is the inverse of the other. Put 
o 

A0 = {wr]r  is a body in the covering KH}, 
0 

A1 = {e(r~,L*,.2)[ L is a tube, r l  and r2 are bodies in KH such that the edge e2~ originates in ÷1 and 

terminates in r2}, 

e ( .~ ,L . .~ )  = e ( . . , L % ~ ) ,  ~(e( . , ,L~, .~))  = ~ , ,  ~ ( e ( ~ , L * , ~ ) )  = ~ .~ .  
o 

R e m a r k  2.2. We will denote by e(.~,L%.~) both the path in KH and the edge in the graph A. 

Now we define the vertex and edge groups of the graph of groups (D, A). With a vertex w~ 6 A° we 

associate the group D~. = ~rl(r, w~), and with an edge e(r~,L%r~), the group De(~x,L~,~2) = zq(L, eL*(0)). I t  

is obvious that  mutually inverse edges are associated with the same group. In order to define the embeddings 

a : De(~x,~.,~2) --~ D ~  and oJ : D~(~,~.~,~2) --* D.~ 2 of the edge groups in the vertex groups, we shall need 

the following fact. 

R e m a r k  2.3. Since the body r = K~(G~) is a retract of the neighborhood O~(G~), there is a natural 

isomorphism Or: ~r l ( r, w.  ) ~ ~r l ( O g ( Gv ), w. ). 

For brevity, we denote by g(w~,  eL.(O)) the path that is the product of the path g(w~,  eL~(-1)) and 

the subpath of eL~ going from eL-(--1) to eL*(0). Then, for an arbitrary d C D.¢~xy,~,~, we put 

= 

The elenlent w (d) is defined in an analogous way. 

Definition of the mapping f :  A ° --~ F °. For w.~ e A°, we put f (w~) = p(w~). 

Definition of the mapping ~o : A 1 --~ {g~eg2] e E F 1, gl E Ga(e), g2 E G~(~)}. For e(~,L~,~2) E 

A 1, we put ~p(e(r~,L.,r~) ) : gleg2, where gl, g2, and e are such that the loops homotopic to the-closed 

paths p(g(w~.~, eL~ (--1))) and p(g(wT~, eL~" (--1)) -1) in the bodies p(rl) and p(r2) are labeled by g'l and g2, 

respectively, and the edge p(eL~) is labeled by ~'. 
o 

Such a definition of ~ does not appear accidental if we look at the image of the path e(~,L.,~) in KH 

tinder the action of p (see Renlark 2.2). 

Definition of the embeddings ~w~ : Dw~ ---* Gl(w.), where wr C A°. For g E Dw~ = ~rl(r, wr), we put 
= p*(g) .  

Definition of the embedding ¢:  ~rl(D, A, ~0) ---* ~-~(G, F, v0). We put ¢ = 7"p'6" (see Diagram 5, with 

the mappings 7* and 6* defined below). 

o p~ 
z l (KH,  ~o) ~ ~I(K(G, r) ,  v0) 

~q(D,A,~o) - -  ~ • ~q(G,F, vo) 

Diagram 5 



For an arbitrary complex K, we denote by II(K) the partial groupoid consisting of the homo~opy classes 
o 

of paths in K. The isomorphism 7* is induced by the nlapping 7: ~j D~ (3 A1 __. H(KH) which is given 
v E A O  

on the elements e(r~,L%r~ ) 6 A 1 and d 6 D ~ ,  where w~ E A °, by the following rules: 

~(e(.~,~.,.~)) = [ g ( ~ ,  e~o (-1))eLo (g(~.~, *~o (1)))-~], 

7(d) = d (see the definition of the group D ~ ) .  

The groupoid II(K(G, F)) has the following generators: the classes of edges labeled ~'j, where ej E Px, 

and the classes of loops labeled ~, where a runs over the elements of all vertex groups G~. 

The isomorphism (5" is induced by the mapping 6: II(K(G,F)) ~ F(G,r) which is defined on the 

generators as follows: the class of an edge labeled ~j is associated with the element ej, and the class of a 

loop labeled ~, with the element a. 

We omit a detailed proof of the fact that the graph of groups (D, A) and the mappings f ,  ~o, ~, (v E &o), 

and ¢, defined above, satisfy the conditions of the theorem. 

3. S U B G R O U P S  AS F R E E  F A C T O R S  

Our main objective in this section is to state and prove Theorem 3.1. 

For any nontrivial subgroup H <_ xl(G,F, v0), we denote by CH an H-complex with the foUowing 

properties: 
o 

(1) KI-I C_C_ CI-I C KH; 
o 

(2) all outer handles in CH (if there are any) are identity handles, and all inner handles lying in C:qkKz~" 
0 

are nonidentity handles. Such a conlplex CH exists and is unique since KH\KIq is a disconnected union of 

telescopic nonascending tube trees. 

We say that two arbitrary outer faces (handles) of an arbitrary locally covering complex correspond to 
each other if the handles containing them are labeled by (e +, E) and (e~-, E) for some t and £. Such faces 

are homeomorphic and they can be glued. 

Every complex obtained from CH by gluing some corresponding outer identity faces is called a glued 
complez (or, for brevity, gluing) and is denoted by CH. It should be stressed that, although these can 

be several gluings, all of them are denoted by the same symbol. If, in addition, CH ~ CH, then C/¢ 

is not an H-complex. Let PH : (CH, %) --" (K(G, F), v0) be the nrapping induced by the projeci, ion 

PH: (KH, %) ~ (K(G, r),  v0). 

L E M M A  3.1. Let (G,F) be a finite graph of finite groups, let 1 # H, and let M < 7u(G,r, vo)° 
Suppose that, for some gluing C~, there exists an embedding 5 H ~ KM that is natural in the following 

sense: 

(1) the image of the vertex 90 in CH is the vertex % in KM; 
(2) images of neighborhoods in CH are neighborhoods in KM; 
(3) the following diagram commutes: 

K(a,r) 



Then the group H is a free factor in M. 
0 

If all inner handles of the complex KH are not identity handles, then the converse is also true. 

P roof .  Suppose that  for some gluing CH, there exists a natural embedding OH ¢-* KM. We denote its 

image also by CH. Since all outer handles of the gluing CH are identity ones, the subgroup r~(CH, 50) is a 

free factor in the group 7rl(KM, 50).  The gluing mapping induces the canonical isomorphism 7q(CH, 50) 

rl(CH, 50) * Ft, where t is the number of pairs of identity outer handles being glued. Consequently, the 

subgroup H -~ ~r~(CH, 50) is a free factor in the subgroup M ~- 7r~(KM, vo). 
Now we prove the converse statement, assuming that the following condition is met: 

0 

all inner handles of the complex KH are nonidentity ones. (1) 

Let L be a subgroup of the group M such that 

M = (H,L) = H * L. (2) 

By assumption, every vertex subgroup P of the group 7rl(K(G, P), v0) ~ 7rl(G, F, v0) is finite. Therefore, 

P N H ~ £ 1 i m p f i e s  P N H = P A M .  
0 0 

In the proof of Theorem 2.1, the complex KH was constructed from an H-complex KH(O) via the 

operations of H-adjoining and H-gluing. In a similar manner, the complex KM is constructed from an M- 

complex KM(O) via M-adjoining and M-gluing. The remaining part of the proof will rely on Propositions 

3.1 and 3.2, in which it is assumed that the conditions of the lemma, as well as conditions (1) and (2), are 

satisfied. 

P r o p o s i t i o n  3.1. Ks(0)  = KM(O). 
Proof .  As P we choose the vertex group {[v][ v is a loop in O(Vo) originating at v0}. The complex 

KM(O) is the covering of the neighborhood O(Vo) that corresponds to the subgroup PNM, and the complex 

KH(O) is the covering of the same neighborhood corresponding to the subgroup P A H. Now we prove that 

the group P A H ~ 7rl(KH(0), 50) is nontrivial. Consider the following two cases. 
0 0 

(a) Let KH(O) : KH. By the conditions of the lemma, the group H ~- 7rl(KH, 30) is nontrivial and, 

therefore, 7rl(gH(O), ~0)is nontrivial. 
o 

(b) Let KH be strictly larger than KH(O ). Then KH(O ) contains at least one inner handle of the complex 
0 

KH. Since such handles are nonidentity ones by assumption, the group 7rl(KH(0), 30) is nontrivial in this 

case as we]]. 

Thus, P N H - -  7 r l ( K H ( 0 ) ,  50) ~£ 1. But then P A M = P n H, and so KM(O) : KH(O). 

P r o p o s i t i o n  3.2. Suppose that S is an H-complex which is simultaneously an M-complex and let $1 

be the H-complex obtained from S by H-adjoining (H-gluing) which involves only nonidentity handles. 

Then this operation is also an M-adjoining (M-gluing). In particular, $1 is an M-complex. 

P roof .  Let OL be the nonidentity outer face of the complex S with respect to which the H-adjoining 

is carried out, f an arbitrary path in S from % to some vertex w E OL. Then the subgroup 

{[v][ v is a loop in p(OL) originating at w(p(f)), and [p(f)vp(f) -1] E H) (3) 

is isomorphic to 7h(OL, w) and is therefore nontriviaI. In view of the above, this subgroup coincides with 

the subgroup 

{[v]l v is a loop in p(OL) originating at w(p(f)), and [p(f)vp(f) -1] C M}. (4) 



Since an /-/-adjoining of some neighborhood O to S with respect to the face 0L uses the subgroup (3), 

which is equal to the subgroup (4), it is also an M-adjoining. Similarly, an/-/-gluing of some nonidentity 

outer faces in S is an M-gluing. The proposition is proved. 
o 

By Propositions 3.1 and 3.2, the support KH is an M-complex. Since KM is the largest M-complex, it 
0 

is obtained from KH via some M-adjoinings and M-gluings. We will prove that  only identity outer faces 
0 

of the complex KH can participate in the possible M-gluings. Then some gluing Cn will be embedded in 

KM. 
o 

Suppose, to the contrary, that an M-gluing involves two nonidentity outer faces of the complex KH. 

Then in H there are two subgroups P1 and P2 that are not conjugate in H but are conjugate in M = H*  L, 

where L # 1. This, however, contradicts the presence of the normal form in a free product. The lemma is 

proved. 
o 

Recall that  KIq\Kn is a disconnected union of telescopic nonascending tube trees. We use induction to 

define the level of an arbitrary neighborhood Os(Vi) in KH. 
o 

Def in i t i on  3.1. Each neighborhood in KH is a neighborhood of level O. The level of a neigl~bor~ood 
o 

O,(V~) in KH\KH is ~ (4 E N) if O,(V~) has a common face with some neighborhood of level t - 1, but it 

is not a neighborhood of level less than t - 1. 

P r o p o s i t i o n  3.3. For any graph of groups (G, P) and any covering neighborhood O~(V~), the number 

of handles in O~(V~) is not greater than IV~I. deg v~, where deg v~ is the degree of the vertex v~ E l "°. 

P roof .  Consider the covering O,(V/) --~ O(V~). The number of handles in O(Vi) equals deg vi, and the 

number of handles in O , ( ~ )  with the same projection is at most 17rl(O(V~),v,)] = IV~I. Thus, the total 

number of handles in O,(V~)is at most IY~l" deg v+. 

P r o p o s i t i o n  3.4. For any finite graph of finite groups (G,F) and for an arbitrary finitely generated 

subgroup H < 7rl(G , 1 ~, v0), the nmuber of neighborhoods of each level in KH is finite. 
0 

Proof .  Since H is finitely generated, the support KH is finite; hence, the number of neighborhoods 

of level 0 is finite. It remains to observe that for each t ~ N, the number of neighborhoods of level ~ ~s 

not greater than the total number of faces of neighborhoods of level ~ 1, and the number of faces of an 

arbitrary neighborhood is finite by Proposition 3.3. 

P r o p o s i t i o n  3.5. Given a finite graph of finite groups (G, P), we can effectively find a natural number k 
o 

such that  for an arbitrary subgroup H < ~rl(G, F, v0) , the following statement holds: If KH\KH contains a 

finite irreducible tube path, going from O,, (V~,) to O,~ (V~), such that the level of the neighborhood O,~ (Vi~) 

is greater than the level of the neighborhood O,~(Vi~) by k, and I~rl(O,~(Vi~))] -- I~I(O~(V~))], then 
o 

gi-I\gi-i contains an infinite irreducible tube path such that Ir~(O)] = iTr~(O,, (~,))1 for every neighborhood 

O which it passes through. 
0 

Proof .  With every neighborhood O, (~)  in KH\KH we associate the characteristic pair (£, L), where 

£ is the class of conjugate subgroups in zl(O(T~), v.i) that corresponds to the covering O,(V~) -~ O(V~) and 

L C O,(V~) is the handle connecting O,(V~) with a neighborhood of the preceding level. Let m(v~) be the 

number of classes of conjugate subgroups in r~(O(V~), v~). By Proposition 3.3, the number of characteristic 

pairs is not greater than m = ~ (m(vi). [V~[. degv~). We will prove that we can take k ~o be m +  1. 
v~qF ° 

Let O~(V/x) be a neighborhood of level t and O~(V~) a neighborhood of leve~ ~ + m + 1 ~hat is 

connected with O,~(V~) by an irreducible tube path. Suppose that i~r~(O,~(V~:))] = I~rx(O,~(V~=))[. Then 

this tube path passes through two neighborhoods A1 and A2 with equal characteristic pairs. Denote by Pl 
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an irreducible tube path originating in A1 and terminating in A2. Since the characteristic pairs for A1 and 
o 

A2 coincide, KI-I\KH contains an irreducible tube path P2 that is homeomorphic to the path/91, originating 

in A2 and terminating in some neighborhood A3. By induction, we can similarly define a tube path Pl for 
Oo 

every I _> 3. Consider the infinite irreducible path P = U P.i. Since 17rl(O,~(~))I = Izcl(O,2(V/~)) [ and 
i = l  

the irreducible tube path connecting O,x (V~) and O,~ (Vq) is nonascending, for any neighborhood O of the 

path Pr we have 17rl(O)l = la-l(O,x(vi~))l. This is also true for any neighborhood of the path P.  

L E M M A  3.2. There exists an algorithm which, given a finite graph of finite groups (G, r )  and a finite 

set of elements h l , . . . ~  hn E 7rl(G, F, v0), determines, in a finite number of steps, whether the complex CH, 

where H -~ ( h i , . . . ,  ha), is finite. 
i 

P r o o f .  For every nonnegative integer i, we denote by K&r the subcomplex of KH that consists of all 
i 

covering neighborhoods of level not greater than i. By Proposition 3.4, the complex KH is finite. Similarly 
0 

to KH,  it can be constructed in a finite number of steps by H-adjoining and H-gluing. 

A l g o r i t h m  Ver i fy ing  t h e  F in i t enes s  of  CH 

Consider all neighborhoods of level m = 1 + k • max IV/I, where k is defined as in the proof of Propo- 
v~Ee ° 

sition 3.5. If all of thenr are identity ones, then tire complex CH obviously lies in Kz¢ and, hence, is 

finite. If, however, any neighborhood O of level m is a nonidentity one, then the complex C/-/ is infinite. 

Indeed, suppose that  7q(O) 5£ 1 for some neighborhood O of level m. Then there exist a chain of covering 

neighborhoods 01,01+k, . . .  O,~ = O of levels 1,1 + k , . . .  ! + k.  max IV/] = m and an irreducible tube 
, , v ~ E r O  

o 

path in Kzc\KH, originating in O1 and terminating in 0.,,~, which successively passes through them. Since 

]Trl(O1) [ > [Trl(Ol+k) [ >_ .-.  > [Trl(Om) ] = ]Trr(O)t 5£ 1 and the group ~rl(O1) is isonlorphic to some sub- 

group of a vertex group V/, there exist il,i2 E {1, 1 + k , . . . ,  1 + k • max 0 [V~]) such that i2 - il = .k  and 
v~Er 

[Trl(Oix)f -----]rl(Oi~)l #- 1. Applying Proposition 3.5, we conclude that the complex CH is infinite. 

L E M M A  3.3 (on  Inc lu s ion ,  [1, Sec. 8]). Let (G,F) be a finite graph of finite groups. Then the 

universal covering of any neighborhood in K(G, !') can be included in a finite complex K M for some free 

subgroup M of finite index in 7rl(G, F,v0). 

T H E O R E M  3.1. There exists an algorithm which, given a finite graph of finite groups (G, P) and a 

finite set of elements hi, . . . ,  h.,~ E 7rl(G, F, v0), determines, in a finite number of steps, whether the subgroup 

H = ( h i , . . . ,  h,~) is a free factor in some subgroup of finite index in the group 7rl(G, F, v0). Moreover, this 

algorithnr effectively enumerates systems of generators of all subgroups of finite index in 7rl(G, P, v0) in 

which H is a free factor. 
o 

P r o o f .  It suffices to consider the case H # 1. We construct the complex KH according to Theorem 
o 

2.1. First, we consider the special case in which all inner handles of the conlplex KH are nonidentity ones, 

while the outer handles can be arbitrary. 

Suppose that a subgroup L <<_ ~rl(a,r, Vo) is such that (H,L) = H • L. Then the following statements 

are true: 

(1) the conlplex KH,L, as well as all conlplexes that cover K(G, r), has no outer handles; 

(2) for some gluing CH, there exists a natural embedding C ~ / ~  K/C,L (see Lemma 3.1). 

Therefore, we can cut the complex KH,L along some inner faces in such a way that we obtain the complex 

CH and some set D of covering neighborhoods. 
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If H .  L is a subgroup of finite index in the group Try(G, P, vo) ~ 7r~(K(G, P), vo), then the cove~ing 

complex KH,Z, is finite, since K(G, F) is finite. Hence, the complex CH and the set D are a!so finite. 

The following reasoning is similar to that of [1, Sec. 10]. 

Let f~z(e~, {e)) be the number of outer handles of CH that are labeled by ,j,¢e ~ (e)), where cr e {-t-,--). 

We recall that  all outer handles of the complex CH are identity ones and, therefore, are labeled either by 

(e +, (e)) or (e~-, (e)), where j E J.  If Os(V~) ---* O(Vi) is an arbitrary covering and ej is an edge such that  

vi is one of the endpoints of ej, we denote by ds,~(e~, £) the number of handles labeled by (e~, ~) in ~he 

neighborhood O,(V/) (see Sec. 1). Let x~,i be the number of neighborhoods of the form O,(V/) in the set 

D. Then the balance condition formulated below must be satisfied, reflecting the fact tha~ lhe complex 

KH.~ (without outer handles) is obtained from CH and the neighborhoods in D b y  appropriate gluings of 

their outer faces corresponding to each other. 

T h e  ba l ance  cond i t ion .  For each edge ej ~ P~ and each nontrivial class £ of conjugate subgroups of 

the group Ej, the following hold: 

a,i: I%~:: 
,~(j)=i ~(j)=,i 

(e)) + / . ( e ; ,  <e)) - ('/) + / . ( e l ,  (e>). (6) 
s, i :  sfi: 

a ( j ) = i  w ( j ) = i  

On the other hand, if the complex CH is finite and there exists a finite set D of covering neighborhoods 

satisfying conditions (5) and (6), then the complex CH and the covering neighborhoods in D can be glued 

to yield one or more connected complexes without outer handles. We denote by R the one containing 

some gluing CH. Let the covering (R,%) ~ (K(G,F),v0) correspond to a subgroup M of the g~oup 

0rl(G,F, vo) ~ 7rl(K(G,F),vo). Then R = KM (in our notation) and, by Lemma 3.1, H is a free factor in 

M. In addition, M is a subgroup of finite index in 0rl(G, P, vo) since R is finite. 
0 

Thus, if all inner handles of the complex K~ are nonidentity ones, then the subgroup H is a free factor 

in some subgroup of finite index in the group 7rl(G, F, v0) if and only if the following conditions are satisfied: 

(a) the complex Cn is finite, 

(b) the system (5), (6), in which ej runs over the set p1 and the class e runs over the set of nontrivial 

classes of conjugate subgroups of the group Ej, is solvable in nonnegative integers z~,~. 

In view of Lemma 3.2, condition (a) can be verified effectively. Condition (b) can also be effectively 

verified by means of integral linear programming. 
o 

Now we consider the general case, in which some of the inner handles of the complex Ka~ can be identity 

handles, reducing it to the case given above. In order to reduce the length of the proof, we will not indicate 
o 

basic vertices in some of the complexes considered below. After we cut the complex KH along all identi~y 

faces, it decomposes into the union of complexes K1 , . . . ,  K~, all of whose inner handles are nonidentity ones, 
o 

and identity neighborhoods K~+~, . . . ,  K,,~. It is obvious that H ~ r~(gH,~o) -~ x~(K~).. .  * ~r~(K~) * F~, 
where Ft is a free group of some finite rank t. Therefore, if H is a free factor in some subgroup of finite 

index in the group r~(G, P, v0), then the nontrivial subgroups ~q(K~),°. . ,  r~(K~) also have this property° 

We now show that  the converse is also true. Suppose that the subgroups ~r~(K!),.. .  , ~r~(K~.) are f~ee 

factors in some subgroups M 1 , . . . , M r  of finite index in the group 7rl(G, F, v0). Then, by Lemma 3.1~ 

some gluings C,~(K~) . . . .  ,C,~(K~) are parts of finite complexes KM~,... ,KM, o By Lemma 3.3~ identity 

neighborhoods K~+I . . . .  ,K,~ can be included in some finite complexes K M , . + ~  . . . .  , KM. ~. We cut the 
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complexes KM~,...,  KM,., KM,+~,..., KM,~ (all of which have no outer handles) along all of the former 
0 

identity faces of the complex KH and reattach handles as in [1, Sec. 9]. As a result, we obtain several 

connected components, one of which, denoted by R, contains some gluing CH. Since R is a finite complex 

covering K(G, F), we have R = KM for some subgroup M of finite index in 7rl(K(G, P), vo) -~ 7rl(G, P, v0). 

By Lemma 3.1, the subgroup H is a free factor in M. 

Thus, the converse statement is proved, and the general case is reduced to the above special case. 

The systems of generators of all subgroups M of finite index in 7rl(G, F, Vo), in which H is a free factor, 

can be effectively enumerated, since this reduces to enumerating all solutions of the systems of the fornl 

(5), (6) in nonnegative integers and subsequent gluing of the corresponding complexes. 

C O R O L L A R Y  3.1. Suppose that (G, F) is a finite graph of finite groups and F is an arbitrary finitely 

generated free subgroup of the fundamental group Try(G, F, v0) of (G, F). Then F is a free factor in some 

subgroup of finite index in the group 7rl(G, F, v0). 
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