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§ 0. Introduction

A. Let T be a surface with a basepoint x. A compact subsurface S of T is called
incompressible if no component of the closure of T \ S is a 2-disk whose boundary is
contained in ∂S (see [Sc]). If S is incompressible and x ∈ S, then the canonical map
π1(S, x) → π1(T, x) is injective. So we will identify π1(S, x) with its image in π1(T, x).
Let H be a subgroup of π1(T, x). We say that H is realized by an incompressible subsurface
S in T if x ∈ S and H = π1(S, x).

Definition 0.1. Let T be a surface with a basepoint x and let π1(T, x) = G1 ∗G3 G2

be a decomposition of its fundamental group into a free product with amalgamation. We
say that this decomposition is geometric if there are incompressible subsurfaces S1, S2, S3

in T such that T = S1 ∪ S2, S1 ∩ S2 = S3, x ∈ S3, and Gi = π1(Si, x) for i = 1, 2, 3.

In [K] H. Zieschang formulated the following Problem 10.69.

Problem. Let Tg be a closed orientable surface of genus g > 2 with a basepoint x.
Is any decomposition π1(Tg, x) = G1 ∗G3 G2 geometric, provided G1 6= G3 6= G2 and the
subgroup G3 is finitely generated?

It is known that any such decomposition is geometric if G3 is a cyclic group (see [HS],
[Z] and [L]). In this case the decomposition is defined by a simple closed curve on Tg

which separates Tg. There is only a finite number of such curves up to homeomorphisms
of Tg. Therefore there is only a finite number of decompositions π1(Tg, x) = G1 ∗G3 G2

with G3
∼= Z, up to automorphisms of π1(Tg, x).

In general the answer to this question is negative. In § 1 we give some method for
constructing non-geometric decompositions. We prove there that for any g > 2 there
is infinitely many non-geometric and not automorphic equivalent decompositions of kind
π1(Tg, x) = F2 ∗F2 F2g−1 where Fn denotes a free group of rank n.

However, our main theorem 4.8 asserts that in some sense there is a positive answer.
To understand this theorem one need to read definitions in the subsection B. Now we will
formulate this theorem rather informally.

Theorem 4.8′. Let T be a closed surface. Then any decomposition of π1(T, x) into
amalgamated product (or more generally into the fundamental group of a finite graph of
groups) with finitely generated edge group(s) is almost geometric. This means that there
is a subgroup H of a finite index in π1(T, x) such that the induced decomposition of H is
geometric in the corresponding covering of T .

1Supported by the grant of President of Russian Federation for young Dr. (RFBR, grant No.: 02-01-
99252) and by the grant No. 7 of RAS in the 6-th competition of projects of young scientists.
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In § 2 and § 3 the following two auxiliary theorems are proved.

Theorem 2.6. Let T be a closed surface with a basepoint x and let π1(T, x) = G1 ∗
G3

G2

be a decomposition of its fundamental group into an amalgamated product. If G3 is realized
by an incompressible subsurface in T then this decomposition is geometric.

Theorem 3.1. Let T be a closed surface with a basepoint x and let π1(T, x) =
G ∗

H1=t−1H2t
be a decomposition of its fundamental group into an HNN-extension. If H1 is

realized by an incompressible subsurface in T , then G is also realized by an incompressible
subsurface in a 2-fold covering of T . Moreover, G is the fundamental group of a graph of
groups with cyclic edge groups and with two distinguished vertex groups H1 and H2.

In § 5 we define a new notion the edge rigidity. Informally, a group G has the edge
rigidity property if for any finite set of its finitely generated subgroups G1, . . . , Gn there
is only a finite number of variants for vertex subgroups in the set of all decompositions of
G into the fundamental group of graph of groups with the edge subgroups G1, . . . , Gn.

Theorem 5.1. The fundamental group of any closed surface different from the Klein
bottle has the edge rigidity property.

B. First we remind definitions of a graph of groups and its fundamental group accord-
ing to [Se], and then define some new notions needed to understand Theorem 4.8.

Let X be a connected graph. Denote the set of its vertexes by X0 and the set of its
edges by X1. The initial vertex of an edge e will be denoted by α(e) and the terminal one
by ω(e). The opposite edge to e will be denoted by ē. The rank of the fundamental group
of X will be denoted by rk(X). The usual topological realization of X will be denoted
by X also.

A graph of groups (G, X) is a tuple consisting of the graph X, a set of vertex groups
Gu (u ∈ X0), a set of edge groups Ge (e ∈ X1), and a set of embeddings αe : Ge → Gα(e)

and ωe : Ge → Gω(e) (e ∈ X1). It is assumed that Ge = Gē, ωe = αē.
Let v be a fixed vertex of X.
The fundamental group π1(G, X, v) is a group consisting of all sequences of the form

g1e1g2e2 . . . engn+1 where e1e2 . . . en is a closed path in X with initial vertex v, gi ∈ Gα(ei)

for 1 6 i 6 n, and gn+1 ∈ Gv. The multiplication in π1(G, X, v) is given as in a free group
(by concatenation) with additional relations in each Gu (u ∈ X0), the relations eē = 1
and αe(g) = eωe(g)ē where e ∈ X1, g ∈ Ge.

This notion generalizes the notions of an amalgamated product and an HNN-extension,
and is needed to describe subgroups of amalgamated products and HNN-extensions ac-
cording to Bass – Serre theory of groups acting on trees [Se]. The following two definitions
are needed to generalize Definition 0.1 to an arbitrary decomposition of π1(T, x) into the
fundamental group of a graph of groups.

Definition 0.2. Let T be a compact surface with a basepoint x. Let (G, X) be a
finite graph of groups. We say that (G, X) is geometrically realized in T , if the following
four conditions hold.

(1) There is a fixed immersion of X into T . For any vertex u and for any edge e of X
denote by u∗ and by e∗ their images in T .
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(2) Each vertex group Gu is identified with π1(Su, u∗) where Su is an incompressible
subsurface of T containing u∗.

(3) Each edge group Ge is identified with π1(Se, u∗) where u is the initial vertex of e
and Se is an incompressible subsurface of Su containing u∗. After the identification the
inclusion αe : Ge → Gu corresponds to the canonical inclusion π1(Se, u∗) → π1(Su, u∗).

(4) Let e be an edge of X with initial and terminal vertices u and v respectively, and
let g be an element of Ge. In accordance with (2) the element αe(g) corresponds to a
homotopy class [l] in π1(Su, u∗) and the element ωe(g) corresponds to a homotopy class
[l′] in π1(Sv, v∗). The relation αe(g) = eωe(g)e is valid in π1(G, X, u). The corresponding
equality [l] = [e∗l′e∗] must be valid in π1(T, u∗).
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Figure 0

Now suppose that the graph of groups (G, X) is geometrically realized in T . For any
vertex u ∈ X0 and any element g ∈ Gu choose a closed path g̃ in Su that originates at
u∗ and whose homotopy class is identified with g. Fix a vertex v ∈ X0. Then we can
define a homomorphism θ : π1(G, X, v) → π1(T, v∗) by the following rule: an element
g1e1g2 . . . engn+1 of the group π1(G, X, v) is mapped to the homotopy class of the path
g̃1e1∗g̃2 . . . en∗g̃n+1.

Definition 0.3. Let (G, X) be a graph of groups, v ∈ X0 and let ϕ : π1(G, X, v) →
π1(T, x) be a homomorphism. We say that ϕ is geometric if there is a geometric realization
of (G, X) for which x = v∗ and the homomorphism θ constructed above coincides with
ϕ. We say that the decomposition π1(G, X, v) is geometrically realized in T (with respect
to ϕ).

Remark 0.4. Let T be a closed surface with a basepoint x and let ϕ :
G1 ∗

G3

G2 → π1(T, x) be a geometric isomorphism. Then the decomposition π1(T, x) =

ϕ(G1) ∗
ϕ(G3)

ϕ(G2) is geometric in the sense of Definition 0.1. This follows from Theorem

2.6, because ϕ(G3) is realized by an incompressible subsurface in T .

Remark 0.5. Let H 6 π1(G, X, v). By the Bass – Serre theory there is the induced
decomposition of H: H = π1(H, Y, w). If an isomorphism ϕ : π1(G, X, v) → π1(T, x) is
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geometric and p : (T̃ , x̃) → (T, x) is a covering corresponding to the subgroup ϕ(H), then

the isomorphism p−1
∗ ◦ ϕ|H : π1(H, Y, w) → π1(T̃ , x̃) is also geometric. If {Su}, {Se} and

{e∗} are sets of subsurfaces and paths in T corresponding to a realization of the graph
of groups (G, X), then the connected components of p−1(Su), p

−1(Se) and p−1(e∗) are the

sets of subsurfaces and paths in T̃ corresponding to a realization of the graph of groups
(H, Y ).

Let (G, X, v) be a graph of groups with a fixed vertex v and let Γ be a maximal subtree
in X. For an arbitrary vertex u ∈ X0 let pu be the reduced path in Γ from v to u. The
subgroups puGup

−1
u = {pugp−1

u | g ∈ Gu} where u ∈ X0 are called the vertex subgroups,
the subgroups pα(e)αe(Ge)p

−1
α(e) where e ∈ X1 are called the edge subgroups of the group

π1(G, X, v) with respect to Γ. We will denote these subgroups by Gu and Ge if there
will not be a confusion. The conjugacy classes of the vertex and edge subgroups do not
depend on the choice of Γ. Note, if a subgroup H 6 π1(T, x) is realized in T , then any
its conjugate is realized in T also. Therefore one can speak on the realizability of vertex
and edge subgroups without mentioning the chosen maximal tree.

The following theorem is a generalization of Theorems 2.6 and 3.1, and is needed to
prove Theorem 4.8.

Theorem 4.7. Let T be a closed surface, let (G, X) be a finite graph of groups, and
let ϕ : π1(G, X, v) → π1(T, x) be an isomorphism such that the images of edge subgroups
of π1(G, X, v) are realized in T . Then there is a subgroup H of index 2rk(X) in π1(G, X, v)
such that for its induced decomposition π1(H, Y, w) and for the covering p : (T , x) → (T, x),
corresponding to H, the isomorphism p−1

∗ ◦ ϕ|H : π1(H, Y, w) → π1(T , x) is geometric.

Let ϕ : π1(G, X, v) → π1(T, x) be an isomorphism. Choose a maximal subtree Γ in
X and define the edge subgroups Ge of the group π1(G, X, v) with respect to Γ . Fix a
generating set G of π1(T, x) and fix a generating set Ge of Ge for each e ∈ X1. Let se be
the sum of lengths of elements of Ge with respect to G.

Now we are able to formulate our main theorem.

Theorem 4.8. Let T be a closed surface, let (G, X) be a finite graph of groups with
finitely generated edge groups, and let ϕ : π1(G, X, v) → π1(T, x) be an isomorphism.
Then there is a subgroup H of a finite index n in π1(G, X, v) such that for its induced

decomposition π1(H, Y, w) and for the covering p : (T̃ , x̃) → (T, x), corresponding to H,

the isomorphism p−1
∗ ◦ ϕ|H : π1(H, Y, w) → π1(T̃ , x̃) is geometric.

There is a recursive function f such that n 6 f(s) where s =
∑

e∈X1 se.

§ 1. Non-geometric decompositions of π1(Tg, x) into an amalgamated product

There is a simple method for constructing new decompositions from known one: if
there is a decomposition G = G1 ∗G3 G2 and there is an element u ∈ G1 such that
〈G3, u〉 = G3 ∗ 〈u〉, then there is the decomposition G = G1 ∗(G3∗〈u〉) (G2 ∗ 〈u〉).

Let Tg be a closed orientable surface of genus g > 2 with a basepoint x. Using this
method and Lemma 1.1, we can construct a non-trivial decomposition π1(Tg, x) = G1 ∗

G3

G2

with an arbitrary large rk(G2). But if S is a proper incompressible subsurface in Tg, then
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π1(S, x) is a free group of rank at most 2g − 1. Therefore this decomposition will be
non-geometric when rk(G2) > 2g − 1.

Lemma 1.1. Let Fn be a free group of finite rank n and let H 6= {1} be a finitely
generated subgroup of infinite index in Fn. Then in Fn there is a subgroup L of infinite
rank such that 〈H, L〉 = H ∗ L.

Proof. By M. Hall property [H] there is a subgroup H1 of finite index in Fn and
there is a subgroup M 6 H1 such that H1 = H ∗ M. Since H is a subgroup of infinite
index in Fn, we have M 6= {1}. Take x ∈ H \ {1} and y ∈ M \ {1}. Then we can set
L = 〈y−ixyi | i > 1〉.

Of special interest are decompositions π1(Tg, x) = G1 ∗G3 G2 with rk(Gi) 6 2g − 1,
i = 1, 2, 3. We will prove that among them there are non-geometric decompositions also.

For any set X let F (X) denote the free group with the basis X. For any word u ∈ F (X)
let ||u|| denote the length of u with respect to X. Set [x, y] = x−1y−1xy. For any group
G and an element g ∈ G let ĝ denote the conjugation by g: ĝ(x) = g−1xg, x ∈ G.

Theorem 1.2. Let Tg be a closed orientable surface of genus g > 2 with a basepoint
x. Consider the following presentation of its fundamental group π1(Tg, x):

〈a1, b1, . . . , ag, bg|
g∏

i=1

[ai, bi]〉.

Let u be an element of F (a1, b1) which is not a power of [a1, b1]. Then the decomposition

π1(Tg, x) = 〈a1, b1〉 ∗
〈[b1,a1],u〉=〈Qg

i=2[ai,bi],u〉
〈a2, b2, . . . , ag, bg, u〉 (1)

is geometric if and only if u = α(a1)[a1, b1]
k, where α is an automorphism of F (a1, b1)

which fixes or inverts [a1, b1], k ∈ Z.

Let G be a group. We say that two decompositions G = A1 ∗A3 A2 and G = B1 ∗B3 B2

are automorphic equivalent if there is an automorphism ϕ of G such that ϕ(Ai) = Bi, i =
1, 2, 3.

Corollary 1.3. 1) There is an algorithm which, given an element u of F (a1, b1),
decides whether the decomposition (1) is geometric.

2) For each g > 2 there is infinitely many non-geometric and pairwise not automorphic
equivalent decompositions of π1(Tg, x) of kind F2 ∗F2 F2g−1.

We will use the following two lemmas.

Lemma 1.4 [CMZ]. Let ak1bl1 . . . aksbls be a primitive element of F (a, b), where s > 1
and all of the indicated exponents are non-zero. Then, modulo trivial changes of notations
(the possible replacement of a by a−1 or b by b−1, or a by b and b by a throughout), there
is an integer n > 0 such that k1 = · · · = ks = 1 and {l1, l2, . . . , ls} ⊆ {n, n + 1}.

Lemma 1.5. Let H be a finitely generated subgroup in π1(Tg, x), g > 2 and let S1, S2

be two incompressible subsurfaces in Tg realizing H. Then there is an isotopy of Tg which
maps (S1, x) onto (S2, x) and induces the identity on π1(Tg, x).
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Proof. In [B, Lemma 4.6] it was proved the existence of an isotopy i which maps S1

onto S2. Since x ∈ int(Sk), k = 1, 2, we may assume that i(x) = x. Then i∗ is an inner
automorphism of π1(Tg, x) such that i∗(H) = H. Split the surface Tg into subsurfaces by
cutting it along ∂S1. This gives a presentation of the group π1(Tg, x) as the fundamental
group of a graph of groups. One of the vertex groups coincides with H. Analysing this
graph of groups, conclude that the normalizer of H coincides with H. Therefore there is
an element h ∈ H such that i∗ = ĥ. Since h ∈ H, there is an isotopy j′ of the surface
S1 such that j′(x) = x and j′∗ = ĥ|H . Extend j′ to an isotopy j of Tg. Then j−1i is the
desired isotopy.

Proof of Theorem 1.2. Suppose that the decomposition (1) is geometric. Let S1, S2 and
S3 be incompressible subsurfaces corresponding to this decomposition. Here S1 realizes
G1 = 〈a1, b1〉, S2 realizes the second factor, S3 realizes G3 = 〈[a1, b1], u〉. According to
Lemma 1.5 we may assume that S1 coincides with the subsurface depicted in Figure 1.
We see that in S1 there is an incompressible subsurface S realizing G = 〈[a1, b1], a1〉 with
the property ∂S1 ⊂ S.

Note that up to homeomorphisms fixing ∂S1 there is only one incompressible subsur-
face ∆ in S1 with the following properties:

1) x ∈ int(∆),
2) ∂S1 ⊂ ∆,
3) π1(∆, x) is a free group of rank 2,
4) π1(∆, x) is a proper subgroup of G1.
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Therefore there is a homeomorphism h of the subsurface S1 such that h(S3) = S.
Since x ∈ int(S) and x ∈ int(S3), we may assume that h fixes x. Let h∗ denote the
automorphism of π1(S1, x) = F (a1, b1) induced by h. Then h∗(G3) = G. It is known
that any automorphism of F (a1, b1) stabilizes or inverts the commutator [a1, b1] up to
conjugacy. Then there are v ∈ F (a1, b1) and ϕ ∈ Aut(F (a1, b1)) such that h∗ = v̂ ◦ ϕ and
ϕ stabilizes or inverts [a1, b1]. Then v−1[a1, b1]v ∈ G = 〈a1, b

−1
1 a1b1〉. Write v−1[a1, b1]v as

g−1wg where g ∈ G and w = aε1
1 . . . b−1

1 aε2
1 b1 is a reduced word in a1 and b−1

1 a1b1. Then
w = [a1, b1] and vg−1 is a power of [a1, b1]. Hence v ∈ G.

This implies that ϕ(G3) = G, that is 〈[a1, b1], a1〉 = 〈[a1, b1], ϕ(u)〉. Therefore ϕ(u) =
[a1, b1]

paε
1[a1, b1]

q for some p, q ∈ Z, ε ∈ {−1, 1}.
Let ψ be an automorphism of F (a1, b1) such that ψ(a1) = a−1

1 , ψ(b1) = b1a1. Set
ϕ1 = ϕ−1 if ε = 1, and ϕ1 = ϕ−1 ◦ ψ if ε = −1. Then u = [a1, b1]

p1ϕ1(a1)[a1, b1]
q1 where
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p1 = p, q1 = q if ϕ stabilizes [a1, b1], and p1 = −p, q1 = −q if ϕ inverts [a1, b1]. It remains

to set α = [̂a1, b1]
−p1 ◦ ϕ1, k = p1 + q1.

Conversely, suppose that u = α(a1)[a1, b1]
k, where α is an automorphism of F (a1, b1)

which fixes or inverts [a1, b1], k ∈ Z. Then the decomposition (1) is automorphic equiva-
lent to the analogous one with u = a1. Hence it is geometric.

Proof of Corollary 1.3. 1) It is clear that if u is a power of [a1, b1], then the decompo-
sition (1) is geometric. Therefore suppose that u is not a power of [a1, b1]. Suppose that
u = α(a1)[a1, b1]

k where α is an automorphism of F (a1, b1), fixing or inverting [a1, b1].
Then |k| 6 ||u||/4 + 1, otherwise the word u[a1, b1]

−k after cyclic reducing contains a
letter z ∈ {a1, b1} together with z−1. This contradicts to Lemma 1.4. So, it is sufficient
to answer the following question:

Given w ∈ F (a1, b1), is there an automorphism α of F (a1, b1) such that α(a1) = w
and α fixes or inverts [a1, b1] ?

This can be done by Whitehead’s algorithm (see [LS]).
2) By Theorem 1.2 and Lemma 1.4, the decomposition (1) is non-geometric for any

u = ai, i = 2, 3, . . . . Using the abelianization of F (a1, b1), we can deduce that these
decompositions are pairwise not automorphic equivalent.

Conjecture. Any non-trivial decomposition π1(Tg, x) = G1 ∗
G3

G2, where G3 is finitely

generated, can be obtained from a decomposition of π1(Tg, x) over Z by the method de-
scribed at the beginning of this section.

§ 2. Criterion for geometricity of decomposition
of π1(T, x) into an amalgamated product

Recall some definitions from [O]. Let S be a surface and let U be an alphabet. A
diagram on S over the alphabet U is a cellular subdivision ∆ of S whose edges e are
labeled by letters ϕ(e) ∈ U ∪ U−1 ∪ {1} so that ϕ(e−1) = (ϕ(e))−1. The label of a path
p = e1 . . . en in the 1-skeleton of ∆ is the word ϕ(p) = ϕ(e1) . . . ϕ(en). Let G be a group
and let 〈U |R〉 be a presentation of G. A 2-cell in ∆ is called R-cell if the label of
its boundary path is graphically equal, up to a cyclic permutation and inversion, to a
word R ∈ R. A 2-cell in ∆ is called O-cell if the label of its boundary path e1 . . . en is
graphically equal to ϕ(e1) . . . ϕ(en) where either ϕ(ei) ≡ 1 for all i, or there are indexes
i 6= j such that ϕ(ei) ≡ a ∈ U , ϕ(ej) ≡ a−1 and ϕ(ek) ≡ 1 for k 6= i, j. A diagram on S
over the presentation 〈 U |R〉 is a diagram on S over the alphabet U such that each of its
2-cells is an R-cell or an O-cell. The following lemma is called van Kampen’s lemma.

Lemma 2.1. Let 〈U |R〉 be a presentation of a group G. Let W be a non-empty word
in the alphabet U ∪ U−1. Then W = 1 in G iff there is a diagram on a disk over this
presentation such that the label of a boundary loop of this disk is graphically equal to W .

Lemma 2.2. Let G be the fundamental group of a finite graph of groups. If G and
all edge groups are finitely generated, then all vertex groups are also finitely generated.

The proof follows by induction by the number of edges in the graph. Therefore it
is sufficient to analyze the cases of an amalgamated product and an HNN-extension.
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Let G = G1 ∗
G3

G2, G = 〈g1, . . . , gn〉, and G3 = 〈c1, . . . , ck〉. Write each gi as gi =

ai1bi1 . . . ai,si
bi,si

where aij ∈ G1, bij ∈ G2. Then G1 is generated by the set consisting of
all ci and aij, and G2 is generated by the set consisting of all ci and bij. The case where
G is an HNN-extension can be considered in a similar way.

In the following lemma we use the notion of the fundamental group of graph of groups
with respect to a maximal subtree [Se]. This lemma can be proved using normal forms.

Lemma 2.3. Let (G, X) be a graph of groups, let Gv and Gu be two its vertex groups,
and let ∆ be a maximal subtree in X. Suppose that Gg

v 6 Gu in π1(G, X, ∆). Then
g = g1e1 . . . gnengn+1 where e1 . . . en is a path in X from v to u, gj ∈ Gα(ej) for 1 6 j 6 n,
gn+1 ∈ Gu, and Gg1e1...giei

v 6 ωei
(Gei

), G
g1e1...eigi+1
v 6 αei+1

(Gei+1
) for all i.

Lemma 2.4. Let Su and Sv be two disjoint incompressible subsurfaces in a closed
surface T . If the group π1(Sv) is conjugate to a subgroup of π1(Su), then Sv is an annulus.
Moreover, there is a component of T \ (Su ∪ Sv) which is an annulus with one boundary
component lying in Su and other one lying in Sv.

Proof. The subdivision of T induced by the subsurfaces Su and Sv gives a presentation
of π1(T, x) as the fundamental group of a graph of groups (G, X). The set X0 consists
of the subsurfaces Su, Sv and of the components of T \ (Su ∪ Sv). The set X1 consists
of the boundary components of subsurfaces from X0. It follows from Lemma 2.3 that
there are subsurfaces Sv = C1, . . . , Cn+1 = Su from X0 and circles Z1, . . . , Zn from X1

such that Zi is one of the common boundary components of Ci and Ci+1. Moreover, the
inclusion of Z1 into C1 induces the isomorphism of their fundamental groups, and Zi is
freely homotopic to Zi+1 in Ci+1. The first assertion implies that C1 is an annulus, the
second implies that Zi = Zi+1 or that Ci+1 is an annulus. If n is the minimal possible
number, then Zi 6= Zi+1. Hence C2, . . . , Cn are annulii. The union of these annulii is an
annulus also.

The following lemma can be proved in a similar way.

Lemma 2.5. Let T be a compact surface, let S be an incompressible subsurface in T ,
x ∈ S. Let 1 6= a ∈ π1(S, x), g ∈ π1(T, x) \ π1(S, x) and ag ∈ π1(S, x). Then one of the
following holds:

1) a and ag are powers of homotopy classes of loops which are freely homotopic in S
to two different boundary components of S. These components divide T into two parts –
the part containing S and the part which is an annulus.

2) a and ag are powers of homotopy classes of loops which are freely homotopic in S
to the same boundary component of S. This component divides T into two parts – the
part containing S and the part which is a Möbius band.

Theorem 2.6. Let T be a closed surface with a basepoint x and let π1(T, x) = G1 ∗
G3

G2

be a decomposition of its fundamental group into an amalgamated product. If G3 is realized
by an incompressible subsurface in T , then this decomposition is geometric.

Proof. We may assume that the decomposition π1(T, x) = G1 ∗
G3

G2 is non-trivial, that

is G3 6= G1 and G3 6= G2. Then T is not a torus. First consider the case where T is a
Klein bottle. Then π1(T, x) has the presentation 〈a, b | b−1ab = a−1〉. The decomposition
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from lemma 2.7 is geometric (see Figure 2). All other decompositions are conjugate to
it. Hence they are geometric also, because any conjugation is induced by an isotopy by
Baer’s theorem (see [ZVC]).
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Figure 2

Lemma 2.7. The group G = 〈a, b | b−1ab = a−1〉 has the unique (up to conjugacy
and permuting of factors) decomposition into a non-trivial amalgamated product: G =
〈b〉 ∗

〈b2〉
〈ba〉.

Proof. Let G = G1 ∗
G3

G2 be a decomposition of G into a non-trivial amalgamated

product. Since 〈b2〉 is the center of G, we have 〈b2〉 6 G3. Set G′ = G/〈b2〉, G′
i = Gi/〈b2〉,

i = 1, 2, 3. Then Z2 ∗ Z2
∼= G′ = G′

1 ∗
G′3

G′
2. Since Z2 ∗ Z2 does not contain a free group of

rank 2, |G′
1 : G′

3| = |G′
2 : G′

3| = 2. Then G′/G′
3
∼= Z2∗Z2. Since Z2∗Z2 is a Hopfian group,

G′
3 = {1}, hence G3 = 〈b2〉. Since |G1 : G3| = |G2 : G3| = 2 and G is a torsion free group,

G1 and G2 are infinite cyclic groups. Simple calculations show that (up to conjugacy and
permuting of factors) G1 is generated by the element bak, and G2 is generated by the
element bak+1 for some k. Conjugating by a−k/2 for even k and by ba(k+1)/2 for odd k, we
get the decomposition from Lemma 2.7.

Now consider the case where T is not a Klein bottle. Let T be a closed surface of
genus g. Then the group π1(T, x) has the presentation

〈t1, u1, . . . , tg, ug|
g∏

i=1

[ti, ui]〉

if T is orientable, and the presentation

〈v1, . . . , vg| v2
1 · · · v2

g〉
if T is not orientable. For simultaneous consideration of these cases we write these pre-
sentations as

〈a1, . . . , ak|
∏
∗〉.

LetD be a disk whose boundary is divided into orientable intervals, labeled by elements
from the set {a1, a

−1
1 , . . . , ak, a

−1
k } so that the label of the boundary of the disk is cyclically

equal to
∏
∗. The surface T can be obtained from D by gluing the edges with the same

labels. Let p : D → T be the corresponding morphism of complexes.
Now we will construct a complex K corresponding to the decomposition π1(T, x) =

G1 ∗
G3

G2. Since the index of Gi in π1(T, x) is infinite, Gi is a free group (i = 1, 2, 3). Since

G3 is realized by an incompressible subsurface in T , G3 is finitely generated. By Lemma

9



2.2 each group Gi is finitely generated. Let Si be a basis of Gi. Write each element s ∈ S3

as a word Ui,s in elements from Si ∪S−1
i (i = 1, 2). It is clear that the group π1(T, x) has

the presentation 〈S |R〉 where S = S1 ∪ S2 ∪ S3 and R = {s−1Ui,s | s ∈ S3, i = 1, 2}.
Let (Ri, xi) be a graph with the unique vertex xi and with the set of positively oriented

edges {s̃ | s ∈ Si}, i = 1, 2, 3. Let Γ be a graph consisting of the graphs R1, R2, R3 and of
two oriented edges ei (i = 1, 2) which connect vertexes x3 and xi. For each s ∈ S3 glue two
2-cells D1,s and D2,s to Γ in accordance with relations s−1Ui,s: if Ui,s = u1 . . . ur where all
uj ∈ Si ∪ S−1

i , then set ∂(Di,s) = (s̃)−1eiũ1e
−1
i . . . eiũre

−1
i . For each s ∈ Si (i = 1, 2) glue

2-cell Os to Γ by identifying the boundary of Os with the path eis̃e
−1
i eis̃

−1e−1
i . Denote

the complex we have constructed by K (Figure 3). It is clear that π1(T, x) ∼= π1(K,x3).

ss ss -¾
e1 e2

R1 R3 R2

Figure 3

Below we will construct a subdivision of T and a continious map f : (T, x) → (K,x3)
inducing an isomorphism of fundamental groups. Write each generator ai as a word
wi(g1, . . . , gn) where each gj ∈ S1 ∪ S2. If an edge from the boundary of disk D
has a label a±1

i , then we subdivide it into small edges labeled by letters from the set
{g1, g

−1
1 , . . . , gn, g

−1
n } so that the word reading along this edge is equal to w±1

i (g1, . . . , gn).
So, we obtain a disk D1 whose boundary label W (g1, . . . , gn) is equal to 1 in π1(T, x). By
van Kampen’s lemma we may assume that D1 is a diagram on a disk over the presenta-
tion 〈S |R〉. Using the projection p, we can get a diagram ∆ on T over the presentation
〈S |R〉. Subdivide each edge labeled by s ∈ Si (i = 1, 2) into three edges with labels
ei, s̃, e

−1
i . We do not subdivide edges labeled by s ∈ S3 but change their labels from s

to s̃. Denote the new diagram on T over the alphabet {s̃ | s ∈ S} ∪ {e1, e2} by T again.
Now, define a continues map f : T → K, sending the edges labeled by ei, s̃, e

−1
i to the

edges ei, s̃, e
−1
i , the edges labeled by 1 to the vertex x3, and extending this map onto

2-cells obviously. Denote the initial vertex of the path p(a1) by x. Then f induces the
epimorphism f∗ : π1(T, x) → π1(K, x3). This epimorphism is an isomorphism since the
group π1(T, x) is Hopfian.

Describe briefly a plan of the proof of the theorem. The preimage f−1(R3) consists
of a finite number of subcomplexes of T . Subdividing the complexes T and K, and re-
defining the map f in a neighborhood of f−1(R3), we may assume that each component
C of f−1(R3) is a subsurface in T . Moreover, we may assume that C is an incompressible
subsurface. Indeed, if some component of the complement of C is a disk, then we can
redefine f on this disk so that not only the boundary of this disk, but the whole disk is
mapped into R3. We may achieve also that any component of f−1(R3) is not a disk. Let
S3 be an incompressible subsurface in T realizing the subgroup G3. By obvious identifi-
cations we have f∗(π1(S3, x)) = G3 = π1(R3, x3). The difficulty is that initially f(S3) not
necessarily lie in R3. By Claim 1 below we may assume that one of the components of
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f−1(R3) realizes G3. Denote this component by S. By Claim 2 each other component of
f−1(R3) is a ring parallel to a boundary component of S. If the surface T is orientable,
then redefining f , it is possible to “adjoin” these rings to S and to achieve the coincidence
of f−1(R3) with S. If T is non-orientable, we adjoin all these rings to S except some of
them, which lie in the components of T \S homeomorphic to a Möbius band. After that it
will be proved that G1 is the fundamental group of the union of S and some components
of the complement of S; G2 is the fundamental group of the union of S and the remaining
components of the complement of S.

We will use the following transformations of the surface T and the map f .
Transformation D(l). Let l be a simple (possible closed) arc in T with ends y and

z. Suppose that f(y) = f(z) = x3 and that the loop f(l) is homotopic to a loop in R3.
Cut the surface T along int(l) and glue a disc D by identifying its boundary with the
boundary of this cut. Choose in D a simple path l′ from y to z which divides D into two
disks so that each of these disks contains exactly one edge of this cut. Subdivide D into
cells and continue f on D so that the loop f(l′) lies in R3.

Claim 1. Using a finite number of transformations of kind D(l) it is possible to get
that one of the components of f−1(R3) is an incompressible subsurface realizing G3.

Proof. Let S3 be a subsurface realizing G3. Suppose that S3 has r boundary compo-
nents. Let γ1, . . . , γr+t be a system of simple closed curves in S3 based at x such that the
following hold:

(1) γi ∩ γj = {x} for i 6= j and γk is freely homotopic in S3 to the k-th boundary
component of S3 (1 6 k 6 r),

(2) cutting S3 along γ1, . . . , γr+t, we get r rings and a disk P .
We consider these rings and the disk as embedded in S3. Using transformations of kind

D(γi), we get that all loops f(γ′i) lie in R3. Therefore, we may assume at the beginning
that all loops f(γi) lie in R3. Since the boundary of the disk P is mapped to R3, we
can perform new subdivisions of P and redefine f so that f |∂P remains unchanged and
f(P ) ⊂ R3. Similarly, one can redefine f in a regular neighborhood of each ring so that
f(S3) ⊆ R3 and the claim will be satisfied.

Denote the component from Claim 1 by S.

Claim 2. If S1 is a component of f−1(R3) different from S, then S1 is a ring.
Moreover, the ring S1 is parallel to some boundary component of S.

Proof. Redefining f in a neighborhood of S1, we may assume that there is a point
y ∈ S1 ∩ f−1(x3). Let l be a simple path in T from x to y. Let H be the subgroup
consisting of homotopy classes of loops lsl−1 where s goes over all loops in S1 based at y.
Note that f(l) is a loop in K based at x3, and f(s) is a loop in R3 based at x3. Hence the
subgroup f∗(H) is conjugate to a subgroup of π1(R3, x3) = f∗(π1(S, x)) by the element
[f(l)]. Since f∗ is an isomorphism, H is conjugate to a subgroup of π1(S, x) in π1(T, x),
and the claim follows from Lemma 2.4.

Let S1 be a componenent of f−1(R3) different from S. Redefining f , it may be assumed
that there is a point y ∈ S1 ∪ f−1(x3). Let s be an arbitrary loop in S1 based at y whose
homotopy class generates π1(S1, y). Consider three cases.

11



Case 1. The component of T \ S containing S1 is neither a ring nor a Möbius band.
By Claim 2 the closure T \ (S ∪ S1) contains the unique component C which is a ring

with one boundary component in S and the other one in S1. Let l be a simple curve in
S ∪ C ∪ S1 from x to y.

Claim 3. The loop f(l) is homotopic to a loop from R3.

Proof. Denote z = [f(l)]. Since S is a retract of S ∪ C ∪ S1, [lsl−1] ∈ G3. The
element [f(lsl−1)] ∈ π1(R3, x3) is conjugate to [f(s)] ∈ π1(R3, x3) by z. Hence the element
[lsl−1] ∈ π1(S, x) is conjugate to f−1

∗ ([f(s)]) ∈ π1(S, x) by f−1
∗ (z). It follows from Lemma

2.5 that f−1
∗ (z) ∈ π1(S, x), therefore z ∈ π1(R3, x3).

Making the transformation D(l), we may assume that f(l) ⊂ R3. If we cut the ring
C along l, we obtain a disk whose boundary is mapped by f in R3. This enable us to
redefine f on C so that f(C) ⊆ R3. After that the number of components of f−1(R3) is
reduced by one.

Case 2. The component of T \ S containing S1 is a ring.
Let C be this ring, let C1, C2 be two components of S1 \ C, and let li be a simple curve

from x to y in S ∪ Ci ∪ S1, i = 1, 2. Denote t = [l1l
−1
2 ], zi = [f(li)], ti = f−1

∗ (zi). Then
t = t1t

−1
2 . Set Ai = 〈[lisl−1

i ]〉.
The group π1(S ∪ C, x) is an HNN-extension with the base π1(S, x), the stable latter

t, and associated subgroups A1 and A2.
Arguing as in case 1, we get At1

1 6 π1(S, x). Since T is not a torus, t1 ∈ π1(S, x) or
t1 ∈ tπ1(S, x). If t1 ∈ tπ1(S, x), then t2 = t−1t1 ∈ π1(S, x). Hence z1 or z2 belongs to
π1(R3, x3). This enable us to redefine f on C1 or on C2 and to reduce the number of
components of f−1(R3).

Case 3. The component T \ S containing S1 is a Möbius band.
Let M be this Möbius band. Then T \ (S ∪ S1) contains the unique component C

which is a ring with one boundary component in S and the other one in S1. Assume that
S1 is a component of f−1(R3) which is the nearest to S among those which lie in M , that
is int(C) ∩ f−1(R3) = ∅. Let l be a simple curve in S ∪ C ∪ S1 from x to y, z = [f(l)].
We have

π1(S ∪M,x) = π1(S, x) ∗
〈a2〉

〈a〉,

where a2 = [lsl−1]. Arguing as in the proof of Claim 3 and recalling that T is not a Klein
bottle, we get f−1

∗ (z) ∈ π1(S, x) ∪ aπ1(S, x). If f−1
∗ (z) ∈ π1(S, x), then the loop f(l) is

homotopic to a loop in R3. So, we can redefine f and adjoin S1 to S as in Case 1.
Let f−1

∗ (z) ∈ aπ1(S, x). Since l intersects only one component of T \ (S ∪ S1), z ∈ G1

or z ∈ G2. Hence f∗(a) ∈ G1 or f∗(a) ∈ G2. We will call M by Möbius band of kind 1 or
kind 2 respectively. In this subcase we does not adjoin S1 to S.

After a finite number of such changes, we get that f−1(R3) will have the unique
component outside the union of Möbius bands of kinds 1 and 2. This component realizes
G3. Denote it by S3, and denote the union of Möbius bands of kind i by Mi. The
subcomplex K3 divides the complex K into two components. Let R′

i denote the component
containing Ri (i = 1, 2). Then a part of components of T \ (S3 ∪ M1 ∪ M2) lies in the
preimage of R′

1, another part lies in the preimage of R′
2. Let Si denote the union of S3,
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Mi and those components of T \ (S3∪M1∪M2) which lie in the preimage of R′
i (i = 1, 2).

Set G′
i = π1(Si, x).

Then all Si are incompressible subsurfaces, T = S1∪S2, S1∩S2 = S3, hence π1(T, x) =
G′

1 ∗
G3

G′
2. Since π1(T, x) = G1 ∗

G3

G2, G′
1 6 G1, G′

2 6 G2, it follows from the normal form

of an element in the amalgamated product that G1 = G′
1, G2 = G′

2. Theorem 2.6 is
proved.

§ 3. Criterion for geometricity of decomposition
of π1(T, x) into an HNN-extensions

The following example shows how to construct a nontrivial HNN-extensions isomorphic
to π1(Tg, x).

Example. Let N be a subsurface in Tg such that Tg \N is a ring, x ∈ N . Then
π1(Tg, x) = 〈H, t |Z1 = t−1Z2t〉 where H = π1(N, x), Z1 and Z2 are subgroups of H
corresponding to the boundary components of N , t is a stable letter corresponding to the
handle Tg \N . Introduce new generators h and new relations h = t−1ht (h ∈ H). For
any subgroup K 6 H let K denote the group {k | k ∈ K}. Then we can rewrite the
presentation of π1(Tg, x) as

〈H, H, t |Z1 = Z2, H = t−1Ht〉 = 〈H ∗
Z1=Z2

H, t |H = t−1Ht〉.

The base H ∗
Z1=Z2

H of this HNN-extension is not realized in Tg, however it is realised

in a 2-fold covering T̃g (Figure 4).
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Theorem 3.1. Let T be a closed surface with a basepoint x and let π1(T, x) =
G ∗

H1=t−1H2t
be a decomposition of its fundamental group into an HNN-extension. If H1 is

realized by an incompressible subsurface in T , then G is also realized by an incompressible
subsurface in a 2-fold covering of T . Moreover, G is the fundamental group of a graph of
groups with cyclic edge groups and with two distinguished vertex groups H1 and H2.

Proof. The theorem is clear if T is a torus. If T is a Klein bottle, then the theorem
follows from Lemma 3.2 and Nielsen’s theorem that for any closed surface each auto-
morphism of its fundamental group is induced by a homeomorphism of this surface (see
[ZVC]).

Lemma 3.2. The group A = 〈a, b | b−1ab = a−1〉 has the unique (up to automorphisms)
presentation as an HNN-extension.

13



Proof. Let A = 〈G, t |H1 = t−1H2t〉. Since every nontrivial subgroup of infinite index
in A is isomorphic to Z, G ∼= Z. Easy computations show that G = H1 and t inverts a
generator of G.

Now, suppose that T is neither a torus, nor a Klein bottle.
Let (R0, v0), (R1, v1) be two roses, whose fundamental groups are identified with G

and H1. Let Γ denote the graph consisting of these roses and two oriented edges e1 and
e2 joining the vertexes v1 and v0. Glue 2-cells to Γ so that the fundamental group of the
resulting complex K with respect to v1 is naturally identified with the group G ∗

H1=t−1H2t

(Figure 5).

s

s

66 e1e2

v0

v1

R0

R1

+−

Figure 5

The elements of G correspond to loops in {v1} ∪ {e1, ē1} ∪R0 based at v1, and the stable
letter t corresponds to the loop e1e

−1
2 .

More precisely, let ϕ : H1 → H2 be an isomorphism such that ϕ(h) = tht−1 for
h ∈ H1. Let {h1, . . . , hn} be a basis of H1, let {g1, . . . , gm} be a basis of G, and let
hi = ui(g1, . . . , gm), ϕ(hi) = wi(g1, . . . , gm). For each hi glue 2-cells to Γ along the paths

h̃ie1ũ
−1
i e−1

1 and h̃ie2w̃
−1
i e−1

2 where h̃i is the simple loop in R1 corresponding to the element
hi; ũi and w̃i are the loops in R0 corresponding to the words ui and wi. Let K denote
the resulting complex.

As in the proof of Theorem 2.6 it is possible to construct a continues map f : (T, x) →
(K, v1) which induces an isomorphism of fundamental groups. We will identify π1(T, x)
and π1(K, v1) using f∗.

First consider the case where the surface T is orientable. In this case we can get as
in § 2 that the preimage f−1(R1) is an incompressible subsurface S in T realizing the
subgroup H1. A boundary component of S will be called positive (negative) if it has a
regular neighborhood which is mapped into e1 (into e2) by f∗.

Let M1, . . . , Mr be all components of T \ int(S) ordered so that for some p 6 r each of
the components M1, . . . , Mp has at least one positive boundary component, and each of
the components Mp+1, . . . , Mr has only negative boundary components. Note that there
is Mi which has both positive and negative boundary components. Otherwise, considering
the map f : T → K, we get that the group π1(T, x) is generated by G and t−1Gt, that is
impossible. So, assume that M1 is one of these components.

Write a presentation of π1(T, x) using subdivision of T into S and M1, . . . , Mr. The
positive boundary components of S lying in Mi will be denoted by ai1, . . . , aini

, the neg-
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ative by bi1, . . . , bimi
. In each such component aij, bij choose a point, an orientation, and

consider aij and bij as loops.
In S choose a basepoint x and simple paths Pij, and Qij from x to the initial points

of aij, and bij, respectively. In each Mi choose a basepoint xi and simple paths pij, and
qij from xi to the initial points of aij and bij, respectively. Assume that no pair of these
paths has common interior point (Figure 6).

®



©

ªY

®



©

ªY

®



©

ª

s

s

* *
ai1 ai2 bi2 bi1

Pi1

pi1 pi2

Pi2 Qi2

qi2 qi1

Qi1

& %

q q q q

¸ >K

² UW

xi

x

...

S

Mi

®

}

Figure 6

For i 6 p denote

xij = PijaijP
−1
ij , yij = QijbijQ

−1
ij , x′ij = Pi1p

−1
i1 pijaijp

−1
ij pi1P

−1
i1 ,

y′ij = Pi1p
−1
i1 qijbijq

−1
ij pi1P

−1
i1 , tij = Pi1p

−1
i1 pijP

−1
ij , lij = Pi1p

−1
i1 qijQ

−1
ij .

For i > p denote

uij = QijbijQ
−1
ij , vij = Qi1q

−1
i1 qijbijq

−1
ij qi1Q

−1
i1 , dij = Qi1q

−1
i1 qijQ

−1
ij .

Embed the group π1(Mi, xi) into the group π1(T, x), using the map [l] 7→
[Pi1p

−1
i1 lpi1P

−1
i1 ] for i 6 p, and the map [l] 7→ [Qi1q

−1
i1 lqi1Q

−1
i1 ] for i > p. Denote the

image of this embedding by π1(Mi). For convenience we will denote loops and their ho-
motopy classes by the same latters. Below pairs of indexes i, k and i, j, and the pair of
indexes k, j are going over the sets

⋃
16s6p

({s} × {1, . . . , ns}),
⋃

16s6p

({s} × {1, . . . , ms}),
and

⋃
p+16s6r

({s} × {1, . . . ,ms}), respectively. Let F be the free group with the basis

{tik, lij, dkj}. Then the group π1(T, x) has the presentation

〈π1(S, x) ∗ π1(M1) ∗ · · · ∗ π1(Mr) ∗ F |

ti1 = 1, tikxikt
−1
ik = x′ik, lijyijl

−1
ij = y′ij, dk1 = 1, dkjukjd

−1
kj = vkj〉. (2)

Introduce new generators Lij, y′′ (y ∈ π1(S, x)), Dkj, v′′ (v ∈ ∪r
s=p+1π1(Ms)) and new

relations Lij = lijl
−1
11 , y′′ = l11yl−1

11 , Dkj = l11dkjl
−1
11 , v′′ = l11vl−1

11 . Let π1(S
′′) denote the

isomorphic copy of the group π1(S, x) consisting of the elements y′′ where y goes over
π1(S, x). Let π1(M

′′
i ) denote the isomorphic copy of the group π1(Mi) consisting of the
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elements v′′ where v goes over π1(Mi). In the subsequent these groups will correspond to

subsurfaces S ′′ and M ′′
i in a 2-fold covering T̃ of T . Let F denote the free group with the

basis {tik, Lij, Dkj}. Then, using Tietze transformations, we can rewrite the presentstion
(2) as

〈π1(S, x) ∗ π1(M1) ∗ · · · ∗ π1(Mp) ∗ π1(M
′′
p+1) ∗ · · · ∗ π1(M

′′
r ) ∗ π1(S

′′) ∗ F , l11 |

ti1 = 1, tikxikt
−1
ik = x′ik, L11 = 1, Lijy

′′
ijL

−1
ij = y′ij, Dk1 = 1, Dkju

′′
kjD

−1
kj = v′′kj,

l11yl−1
11 = y′′ (y ∈ π1(S, x))〉. (3)

Now, it is clear that π1(T, x) is an HNN-extension with the base G′ =
〈π1(S, x), π1(M1), . . . , π1(Mp), π1(M

′′
p+1), . . . , π1(M

′′
r ), π1(S

′′), F〉, the stable letter l11,
and the associated subgroups π1(S, x) and π1(S

′′):

π1(T, x) = 〈G′, l11 |π1(S
′′) = l11π1(S, x)l−1

11 〉. (4)

Lemma 3.3. Let l be a loop in T based at x.
1) If l intersects only positive boundary components of S, then [l] ∈ G.
2) If l intersects only negative boundary components of S, then [l] ∈ t−1Gt.
3) If l intersects (transversely) exactly two boundary components of S, first positive,

and then negative, then [l] = gt for some g ∈ G.

Proof. Consider the loop f(l) in K. In the first case f(l) is homotopic to the loop
from the subcomplex {v1} ∪ {e1, ē1} ∪ R0 whose fundamental group is identified with G.
In the second case f(l) is homotopic to a loop from the subcomplex {v1} ∪ {e2, ē2} ∪ R0

whose fundamental group is identified with t−1Gt.
In the third case f(l) is homotopic to a loop h1e1ue−1

2 h2 where h1, h2 are loops in R1

and u is a loop in R0. Hence f(l) is homotopic to the loop h1e1ue−1
1 · e1e

−1
2 h2e2e

−1
1 · e1e

−1
2 .

Since [h1e1ue−1
1 ] ∈ G, [e1e

−1
2 ] = t and tH1t

−1 = H2 6 G, we get [l] = gt where g ∈ G.

Lemma 3.4. G′ = G.

Proof. Lemma 3.3 implies that π1(Mi) 6 G for i = 1, . . . , p, π1(Mi) 6 t−1Gt for
i = p + 1, . . . , r, tik ∈ G, lij = gijt where gij ∈ G, and dkj = t−1fkjt where fkj ∈ G. Also
π1(S

′′) = l11π1(S, x)l−1
11 = g11tH1t

−1g−1
11 = g11H2g

−1
11 6 G. Hence G′ 6 G. Replace the sta-

ble letter t in the initial presentation 〈G, t |H2 = tH1t
−1〉 by the stable letter l11. We get

the new presentation 〈G, l11 | g11H2g
−1
11 = l11H1l

−1
11 〉 = 〈G, l11 |π1(S

′′) = l11π1(S, x)l−1
11 〉.

From the normal form of an element in the HNN-extension and from (4) we get G = G′.

Now we will prove that G is realized in a 2-fold covering T̃ of the surface T which can
be constructed in the following way. Cut the surface T along all curves bsj, s ∈ {i, k}.
We get a surface (probably disconnected) with boundary components ḃsj and b̈sj. Take
two copies T ′ and T ′′ of this surface and glue boundary components ḃsj and b̈sj of the

first copy to the boundary components b̈sj and ḃsj of the second copy. Let T̃ denote the

surface we have obtained and let ρ : T̃ → T be the corresponding covering (Figure 7).

We regard the surfaces T ′ and T ′′ as embedded in T̃ . Let S ′ and S ′′ be the components
of ρ−1(S) lying in T ′ and in T ′′, respectively. Those boundary components of S ′ and S ′′
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which are mapped by ρ to positive (negative) boundary components of S will be called
positive (negative).

Denote the subsurface T ′ ∪ S ′′ by M ′, and the subsurface T ′′ ∪ S ′ by M ′′. Obviously,
M ′ is one of the components, which appear by cutting T̃ along the negative boundary
components of S ′ and along the positive boundary components of S ′′. The subsurface
M ′ is colored in Figure 7. Let x′ and x′′ be the lifts of x in S ′ and in S ′′. Take x′ as a
basepoint of T̃ . It is clear that π1(M

′, x′) = G′ = G. The last assertion of Theorem 3.1
follows from a consideration of the surface M ′ or from the presentation (3) using equalities
π1(S, x) = H1 and π1(S

′′) = g11H2g
−1
11 .

s
x

− +

+ −−
−−

s
x′

s
x′′

¾T T̃

S S ′ S ′′

Figure 7

Now, suppose that the surface T is non-orientable. In this case we can not achieve the
situation where the preimage f−1(R1) is connected and coincides with an incompressible
subsurface S in T , realizing the subgroup H1. The obstacle is the subcase of Case 3
from § 2 where f−1

∗ (z) ∈ aπ1(S, x) (here and below we use notations from the analysis
of this subcase). Then f∗(a) = zh for some h ∈ H1. Moreover, in this case the inclusion
a2 ∈ π1(S, x) holds, hence f∗(a2) ∈ H1. Consider 4 variants.

1) The boundary components S ∩ C and C ∩ S1 are positive. Then z ∈ G, hence
f∗(a) ∈ G.

2) The boundary components S ∩ C and C ∩ S1 are negative. Then z ∈ t−1Gt, hence
f∗(a) ∈ t−1Gt.

3) The boundary component S ∩C is positive and the boundary component C ∩S1 is
negative. Then z = gt for some g ∈ G, that contradicts to the inclusion (zh)2 ∈ H1.

4) The boundary component S ∩ C is negative and the boundary component C ∩ S1

is positive. Then z = t−1g for some g ∈ G and this variant is also impossible.
If the first (the second) variant holds, we say that the Möbius band M , which is

considered in Case 3 from § 2, is of kind 1 (of kind 2). Arguing as in § 2, we can achieve
the situation where f−1(R1) will have the unique component outside the union of Möbius
bands of kinds 1 and 2. Denote this component by S. Now, the proof can be completed
as in the case where T is orientable.
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§ 4. Virtual geometricity of decompositions of π1(T, x)
into the fundamental group of graph of groups

In this section T is a closed surface with a basepoint x. We prove Theorems 4.7 and
4.8 using the following technical lemmas.

Lemma 4.1. Let A1 6 A2 6 π1(T, x). If S1 and S2 are incompressible subsurfaces in
T realizing A1 and A2, then there is an isotopy i of T such that the subsurface i(S1) lies
in S2 and realizes A1.

The proof of this lemma is analogous to the proof of [B, Lemma 4.6].

Lemma 4.2. Let A1 6 A2 6 π1(T, x). If A1 is realized in T , then A1 is realized in
the covering of T which corresponds to A2.

The following lemma is more general.

Lemma 4.3. Let A1, A2 6 π1(T, x). If A1 is realized in T , then A1 ∩A2 is realized in
the covering of T which corresponds to A2.

Proof. Let S be an incompressible subsurface in T , x ∈ S and π1(S, x) = A1. Let

p : (T̃ , x̃) → (T, x) be the covering corresponding to A2. Then the component of p−1(S),

containing x̃, realizes A1 ∩ A2 in T̃ .

Let S be an incompressible subsurface in T and let q be a path from x to some point
u ∈ S. We will say that the subgroup H 6 π1(T, x) is realized by the pair (q, S) if
H = {[qlq−1] | [l] ∈ π1(S, u)}.

Lemma 4.4. Let A1 6 A2 6 π1(T, x). If A1 and A2 are realized by pairs (q1, S1) and
(q2, S2), then A1 is realized by a pair (q2, S

′
2) where S ′2 ⊂ S2.

Proof. We may change the base point and assume that q2 is the trivial path based at
x. Let q′1 be a simple path from x to the terminal point of q1 such that q′1 and ∂S1 have
at most one common point. Let S ′1 be the union of S1 and a small regular neighborhood
of the curve q′1. Then π1(S

′
1, x) is conjugate to A1 by the element [q′1q

−1
1 ]. Let i be an

isotopy inducing the conjugation by this element. Then i(S ′1) is a subsurface realizing A1.
By Lemma 4.1 the subgroup A1 is realized by a subsurface S ′2 in S2.

Corollary 4.5. If a subgroup A 6 π1(T, x) is realized by a pair (q, S), then it is
realized by an incompressible subsurface in T .

Denote this subsurface by {q, S}.
Lemma 4.6. Let π1(G, X, v) = π1(T, x) and let the edge subrgroups of π1(G, X, v) are

realized in T . Let H be a subgroup of a finite index in π1(T, x) and let p : (T̃ , x̃) → (T, x) be
the covering corresponding to H. Suppose that all vertex subgroups of the induced decom-
position π1(H, Y, w) of H are realized in T̃ . Then the natural identification of π1(H, Y, w)

with π1(T̃ , x̃) is geometric.

Proof. Denote G = π1(G, X, v). There is n-fold covering of graphs ρ : (Y, w) → (X, v)
where n = |G : H|. Let Γ be a maximal subtree in X. We can choose a maximal subtree
∆ in Y so that it contains all n lifts of Γ. We may assume that all vertex and edge
subgroups of π1(G, X, v) (of π1(H, Y, w)) are defined with respect to Γ (with respect to
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∆). Let v1, . . . , vn be all lifts of v in T , let li be the reduced path in ∆ from w to vi, and
let gi be the element of G, corresponding to the homotopy class of the path ρ(li). It is
clear that L = {g1, . . . , gn} is a right transversal of H in G.

Each vertex subgroup H has the form gV g−1 ∩ H where g ∈ L and V is a vertex
subgroup of G. If E is an edge subgroup in V , then gEg−1 ∩ H is an edge subgroup in
gV g−1 ∩H. It follows from the condition of lemma that the group gV g−1 ∩H is realized
by a subsurface Sg,V in (T̃ , x̃). Let l be a loop in T , whose homotopy class is equal to

g, and let l̃ be its lift in T̃ which originates at x̃. Let SE be a subsurface in T realizing
E, and let Sg,E be its lift in T̃ , containing the terminal point of l̃. Then the subgroup

gEg−1 ∩ H is realized in T̃ by the pair (l̃, Sg,E). By Corollary 4.5 and Lemma 4.1 it is
realized by a subsurface in Sg,V .

For each vertex u ∈ Y 0 set u∗ = x̃. Let e be an edge in Y with initial vertex u1 and
with terminal vertex u2. Let E1, and E2 be the edge subgroups of H corresponding to
e and ē. Denote the reduced path in ∆ from w to ui by pi. Then t−1E1t = E2 where
t = p1ep

−1
2 . Let e∗ be a loop in (T̃ , x̃), whose homotopy class is equal to t. This gives

a realization of graph of groups (H, Y ) in T̃ which induces a geometric isomorphism of

groups π1(H, Y, w) and π1(T̃ , x̃).

Theorem 4.7. Let T be a closed surface, let (G, X) be a finite graph of groups, and
let ϕ : π1(G, X, v) → π1(T, x) be an isomorphism such that the images of edge subgroups
of π1(G, X, v) are realized in T . Then there is a subgroup H of index 2rk(X) in π1(G, X, v)
such that for its induced decomposition π1(H, Y, w) and for the covering p : (T , x) → (T, x),
corresponding to H, the isomorphism p−1

∗ ◦ ϕ|H : π1(H, Y, w) → π1(T , x) is geometric.

Proof. We will identify the groups π1(G, X, v) and π1(T, x) using ϕ, and the groups
π1(H, Y, w) and π1(T , x) using p−1

∗ ◦ ϕ|H . If T is a torus or a Klein bottle, then the proof
is direct (in the case of an HNN-extension the subgroup H is defined below). So, suppose
that T is not a torus and is not a Klein bottle.

Choose a maximal tree Γ in X and an orientation X1
+. For u ∈ X0 denote the

reduced path in Γ from v to u by pu. Let X1
+ \ Γ1 = {e1, . . . , ek}. Let ti denote the

element pα(ei)eip
−1
ω(ei)

of π1(G, X, v). Let H be the kernel of the epimorphism π1(G, X, v) →∏k
i=1〈ti | t2i = 1〉 which sends each vertex subgroup to 1 and each ti to ti. We will prove

the theorem by induction by k.
Suppose that k = 0. Then X is a tree. By Lemma 4.6 it is sufficient to prove that

each vertex group Gv is realized in T . Let E = {e1, . . . , em} be the set of all edges
in X emanating from v. For e ∈ E the graph X \ {e, ē} consists of two connected
components. Denote the component which contains v by X1,e, and the other one by
X2,e. This splitting induces the decomposition π1(G, X, v) = G1,e ∗

Ge

G2,e. By Theorem

2.6 this decomposition is geometric, that is there are incompressible subsurfaces S1,e, S2,e

and Se realizing G1,e, G2,e and Ge, moreover T = S1,e ∪ S2,e and Se = S1,e ∩ S2,e. We
will construct a chain of incompressible subsurfaces S1,v ⊇ S2,v ⊇ · · · ⊇ Sm,v such that
π1(Si,v, x) = G1,e1 ∩ · · · ∩ G1,ei

, i = 1, . . . , m. Then Sm,v will realize Gv. Set S1,v = S1,e.
Suppose that the subsurface Si,v is defined. Since Gei+1

6 G1,e1 ∩ · · · ∩ G1,ei
, we may

assume by Lemma 4.1 that Sei+1
⊆ Si,v. Set Si+1,v = Si,v ∩ S1,ei+1

.
So, for k = 0 the theorem is proved. Suppose that k = n > 1 and the theorem is
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proved for k = n − 1. Let G be the fundamental group of graph of groups (G1, X1)
which is obtained from (G, X) by deleting the edges en, ēn and the groups Gen , Gēn . Then
π1(G, X, v) = 〈G, t |H1 = t−1H2t〉 where t = tn, H1 and H2 are associated subgroups
corresponding to the embeddings αen and αēn into the vertex groups, which we denote by
V1 and V2.

Let K be the kernel of the homomorphism 〈G, t |H1 = t−1H2t〉 → 〈t | t2 = 1〉, which
sends G to 1 and t to t. The induced decomposition of K is the fundamental group of
graph of groups K, which is depicted in Figure 8 on the left. The groups H1 and H2 are
embedded into the top group G identically and into the bottom group G by the maps
h1 7→ th1t

−1 (h1 ∈ H1) and h2 7→ t−1h2t (h2 ∈ H2).

s

s

G

G

H2H1 ¶

µ

³

´

¶

µ

³

´N
H1 H2

N

... ...

Figure 8

Let N be the kernel of the epimorphism G = π1(G1, X1, v) → ∏n−1
i=1 〈ti | t2i = 1〉, which

sends each vertex group to 1 and each stable letter ti to ti. Let N be the graph of groups
corresponding to the decomposition of N with respect to π1(G1, X1, v). Then N has 2n−1

vertexes with vertex groups V1 and 2n−1 vertexes with vertex groups V2.
The graph of groups corresponding to the decomposition of H with respect to

π1(G, X, v) is depicted in Figure 8 on the right. It can be obtained from two copies
of N (the top and the bottom one) by connecting them by 2n−1 edges with edge groups
H1, and by 2n−1 edges with edge groups H2. Each H1-edge connects a V1-vertex of the
top copy with the corresponding V2-vertex of the bottom copy. Each H2-edge connects a
V2-vertex of the top copy with the corresponding V1-vertex of the bottom copy.

The covering T̃ from the proof of Theorem 3.1 corresponds to the group K. Informally,
the subsurfaces M ′,M ′′ and S ′, S ′′ in T̃ correspond to the vertex groups G,G and to the
edge groups H1, H2 of the graph of groups K. Note that T̃ = M ′∪M ′′, M ′∩M ′′ = S ′∪S ′′

and S ′ ∩ S ′′ = ∅ (see Figure 7).

Now, describe formally the realization of K in T̃ . Let l be a loop in T , whose homotopy
class is equal to t. Let l′ be the lift of this loop into M ′ with the origin x′ and the end x′′.
Let l′′ be the lift of this loop in M ′′ with the origin x′′ and the end x′. The points x′ and
x′′ correspond to the vertices of the graph K, the paths l′, l′′ and their inverses correspond
to the edges of this graph.

The subsurfaces M ′ and M ′′ with base points x′ and x′′ correspond to the vertex
groups. The subsurfaces S ′, {l′, S ′′} in M ′, and the subsurfaces {l′′, S ′}, S ′′ in M ′′ corre-
spond to the edge groups.

By Lemmas 4.1 and 4.2 the edge subgroups of G, which correspond to the edges
e1, . . . , en−1, are realized in M ′. By induction the graph of groups N is geometrically
realized in the 2n−1-fold covering M ′ of M ′, corresponding to the subgroup N of G. This
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covering is regular, H1 6 N , and H1 is realized by the subsurface S ′ in M ′. Hence, there
are exactly 2n−1 lifts of S ′ into M ′. By analogy, there are exactly 2n−1 lifts of S ′′ into M ′.
Symmetrically we can construct 2n−1-fold covering M ′′ of the surface M ′′.

Glue M ′ to M ′′ by identifying the corresponding lifts of S ′, S ′′. As a result we obtain
2n-fold covering T corresponding to H. All vertex groups of H are realized in T . By
Lemma 4.6 the natural identification π1(H, Y, w) with π1(T , x) is geometric. Theorem 4.7
is proved.

In the proof of Theorem 4.8 we will use the following theorem of P. Scott.

Theorem [Sc]. Let Σ be a compact surface with a basepoint x. For any finitely
generated subgroup H of π1(Σ, x) there is a finite covering p : (Σ1, x1) → (Σ, x) and an
incompressible subsurface S ⊆ Σ1 such that x1 ∈ int(S) and p∗(π1(S, x1)) = H.

Remind the definition of numbers se, which will be used in Theorem 4.8. Let A
be a fixed system of generators of π1(T, x), and let ϕ : π1(G, X, v) → π1(T, x) be an
isomorphism. Choose a maximal subtree in X and define edge subgroups Ge of the group
π1(G, X, v) with respect to this tree. Suppose that all the groups Ge are finitely generated.
Choose in ϕ(Ge) a finite set of generators and denote the sum of length of its elements
with respect to A by se.

Theorem 4.8. Let T be a closed surface, let (G, X) be a finite graph of groups with
finitely generated edge groups, and let ϕ : π1(G, X, v) → π1(T, x) be an isomorphism.
Then there is a subgroup H of a finite index n in π1(G, X, v) such that for its induced

decomposition π1(H, Y, w) and the covering p : (T̃ , x̃) → (T, x), corresponding to H, the

isomorphism p−1
∗ ◦ ϕ|H : π1(H, Y, w) → π1(T̃ , x̃) is geometric.

There is a recursive function f such that n 6 f(s) where s =
∑

e∈X1 se.

Proof. Identify the groups π1(G, X, v) and π1(T, x) using the isomorphism ϕ. By
the theorem of P. Scott, for each edge subgroup Ge there is a subgroup of finite index
G′

e 6 π1(T, x) such that Ge is realized in the finite covering corresponding to G′
e. For any

g ∈ π1(T, x) the subgroup Gg
e is realized in the finite covering corresponding to (G′

e)
g. Set

N =
⋂

e∈X1(
⋂

g∈π1(T,x)(G
′
e)

g). It is clear that N is a subgroup of finite index in π1(T, x).

Let T be the covering of T corresponding to N . The edge groups from the induced
decomposition N = π1(N, Z, u) have the form Gg

e ∩ N . By Lemma 4.3 they are realized
by incompressible subsurfaces in T . By theorem 4.7 there is a subgroup H of index 2rk(Z)

in N whose induced decomposition π1(H, Y, w) is realized in the corresponding 2rk(Z)-fold

covering T̃ of the surface T .
Now estimate the number n. Since the group π1(T, x) is not a non-trivial free product,

we may assume that all the groups Ge are non-trivial, hence |X1| 6 s. In [Sc] a procedure
for constructing the covering corresponding to G′

e is given. This procedure is effective,
because it uses a core of the covering corresponding to Ge, and this core can be constructed
effectively by Proposition 3.3 in [B]. Analyzing the proofs in [Sc] and [B], we can deduce
that there is a monotone recursive function f such that |π1(T, x) : G′

e| 6 f(se). Then
m = |π1(T, x) : N | 6 ∏

e∈X1(f(se))! 6 ((f(s))!)s. By Reidemeister – Shreier method the
group N is generated by at most (|A|−1)m+1 elements. Since π1(Z, u) is a factor group
of N , rk(Z) 6 (|A| − 1)m + 1. This implies the desired estimation of n.
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§ 5. The edge rigidity property

In this section we investigate decompositions of groups, concentrating on the follow-
ing question: in what extent the edge groups in these decompositions determine vertex
groups? Define some notions.

The extended graph of groups is the ordered set (G, X, x, Γ) where (G, X) is a graph
of groups, x ∈ X0 and Γ is a maximal tree in X. Set π1(G, X, x, Γ) = π1(G, X, x).
For an arbitrary vertex v ∈ X0 denote the reduced path in Γ from x to v by pv. The
subgroups puGup

−1
u = {pugp−1

u | g ∈ Gu}, where u ∈ X0, are called the vertex subgroups,
the subgroups pα(e)αe(Ge)p

−1
α(e), where e ∈ X1, are called the edge subgroups of the group

π1(G, X, v) with respect to Γ.

We will say that the group G has the edge rigidity property with respect to a finite set
of its subgroups G1, . . . , Gn if there is only a finite number of variants for sets of vertex
subgroups under identifications of G with the fundamental groups of extended graph of
groups with the edge subgroups G1, . . . , Gn.

We will say that G has the edge rigidity property if G has the edge rigidity property
with respect to any finite set of its finitely generated subgroups.

Theorem 5.1. The fundamental group of a closed surface different from the Klein
bottle has the edge rigidity property.

Proof. We will use the terminology and notations from the proof of Theorems 2.6 and
3.1. Let T be a closed surface different from the Klein bottle and the torus (for the torus
the theorem is obvious). Since π1(T, x) is freely indecomposable, it is sufficient to prove
that π1(T, x) has the edge rigidity property with respect to any finite set of non-trivial
finitely generated subgroups.

Suppose that π1(T, x) = G1 ∗
G3

G2 and G3 is realized by an incompressible subsurface

S in T . It follows from the proof of Theorem 2.6 that G1 is the fundamental group of the
union of S and some components of the complement of S in T , and G2 is the fundamental
group of the union of S and the remaining components of this complement. So, if G3 is
fixed, then there is only a finite number of variants for G1 and G2.

Suppose that the group π1(T, x) is identified with an HNN-extension 〈G, t |H1 =
t−1H2t〉 and H1 is realized by an incompressible subsurface S in T . It follows from the
proof of Theorem 3.1 that G = π1(M

′, x′) where M ′ is a subsurface in a 2-fold covering

T̃ of T . The subsurface M ′ contains the subsurfaces S ′ and S ′′ (see § 3), the boundary
of M ′ is the union of all negative boundary components of S ′ and all positive boundary
components of S ′′. If H1 is a fixed group, then there is only a finite number of variants
for a marking of boundary components of S by plus and minus. The same holds for S ′

and S ′′. Hence there is only a finite number of variants for G.
Suppose that the group π1(T, x) is identified with the fundamental group π1(G, X, v, Γ)

whose edge subgroups are realized by incompressible subsurfaces in T . Fix a vertex u in
X. Let E(u) denote the set of all edges of X, emanating from u. For e ∈ E let Xe,u

denote the component of X\{e, ē} containing u. Let Ge,u be the subgroup of π1(G, X, v, Γ)
corresponding to Xe,u. If e separates X, then the group π1(G, X, v, Γ) can be expressed
as an amalgamated product such that Ge,u is one of its factors. If e does not separate X,
then the group can be expressed as an HNN-extension with the base Ge,u. So, there is only
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a finite number of variants for Ge,u. Then the vertex subgroup puGup
−1
u =

⋂
e∈E(u) Ge,u is

defined up to a finite number of variants also.
Consider the general case, assuming that the edge subgroups of the group

π1(G, X, v, Γ) are finitely generated. By Theorem 4.8 there is a subgroup H of a finite
index in π1(G, X, v) whose induced decomposition π1(H, Y, w) is geometrically realized

in the covering (T̃ , x̃) corresponding to H. This index depends on the edge subgroups
Ge (e ∈ X1) only. So, if we fix the subgroups Ge, then there is only a finite number
of variants for vertex subgroups of π1(H, Y, w). There are groups Gu ∩ H among these
subgroups, where Gu goes over the set of vertex subgroups of π1(G, X, v, Γ). By Lemma
5.2 there is a finite number of variants for the groups Gu also.

The following lemma follows from [G, Theorem 6].

Lemma 5.2. Let T be a compact surface different from the Klein bottle, and let x be
a basepoint of T . For any nontrivial finitely generated subgroup H 6 π1(T, x) there is a
largest subgroup G with the property |G : H| < ∞.

It is clear that the free group of rank n > 2 does not have the edge rigidity property
with respect to the trivial subgroup.

The fundamental group of the Klein bottle G = 〈a, b | b−1ab = a−1〉 does not have the
edge rigidity property with respect to the subgroup 〈b2〉, because there is the decomposi-
tion G = 〈ba2k〉 ∗

〈b2〉
〈ba2k+1〉 for any integer k.

Describe some unusial examples of groups G without the edge rigidity property (see
[BW]). In these examples G = A ∗C Bi, where the subgroups A are C fixed, Bi � Bj

for i 6= j. In the first example each of the groups Bi is represented as an amalgamated
product, in the second example as an HNN-extension.

1. Let C < A, {Ci}i>1 be proper subgroups of C, τi : C1 → Ci be isomorphisms, and
{ai}i>1 be elements of A such that a1 = 1, and τi(c1) = aic1a

−1
i for any c1 ∈ C1, i > 1.

Let D1 < D, ϕ : C1 → D1 be an isomorphism. Set ϕi = ϕ ◦ τ−1
i , Bi = C ∗

Ci
ϕi=D1

D, and

Gi = A ∗C Bi. It is clear that for each i > 1 there is an isomorphism ψi : G1 → Gi such
that ψi(a) = a for a ∈ A and ψi(d) = a−1

i dai for d ∈ D. Show that there are finitely
presented groups A, Bi and C with the above properties and such that Bi � Bj for i 6= j.

Set C = 〈x | −〉, Ci = 〈x2i〉, A = 〈C, t | txt−1 = x2〉, ai = ti−1,D = 〈y〉, D1 = 〈y2〉,
ϕ(x2) = y2. Then Bi = 〈x, y |x2i

= y2〉.
2. Let groups A,C,Ci and elements ai be as in the first example, Bi = 〈C, t̃i | t̃ic1t̃

−1
i =

τi(c1) (c1 ∈ C1)〉, Gi = A∗C Bi. Then for any i > 1 there is the isomorphism ψi : G1 → Gi

such that ψi(a) = a for a ∈ A and ψi(t̃1) = a−1
i t̃i.

The author expresses his deep gratitude to V.A. Churkin for useful discussions on this
article.
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