Zahltheoretische Funktionen $\theta(x)$ und $\pi(x)$. Agraval-Kayal-Saxena-Primtest

Definition. Die Tschebyschow-Funktion θ ist für alle reellen x > 0 mit folgender Formel definiert:

$$\theta(x) = \sum_{\substack{p \leqslant x \\ p \in \text{Prim}}} \ln p.$$

Es ist bekannt, daß für alle natürlichen n > 4 gilt

$$\frac{n}{2} < \theta(n) < (4\ln 2)n.$$

Definition. Die Funktion $\pi(x)$ ist für alle reellen x > 0 mit folgender Formel definiert:

$$\pi(x) = \sum_{\substack{p \leqslant x \\ p \in \text{Prim}}} 1.$$

Also, $\pi(x)$ ist die Anzahl der Primzahlen, die nicht größer als x sind.

Aufgabe 1. Beweisen Sie, daß folgende Ungleichungen für alle natürlichen $n \ge 4$ gelten.

(a)
$$\pi(n) > \frac{n}{2\ln n}.$$

(b)
$$\theta(n) \geqslant \ln \sqrt{n} \cdot (\pi(n) - \pi(\sqrt{n})) \geqslant \ln \sqrt{n} \cdot (\pi(n) - \sqrt{n}).$$

(c)
$$\pi(n) < (9 \ln 2) \cdot \frac{n}{\ln n}.$$

Aufgabe 2. Sei p_n die n-te Primzahl. Beweisen Sie, daß positive reelle Zahlen c_1, c_2 existieren, so daß gilt

$$c_1 n \ln n < p_n < c_2 n \ln n.$$

Aufgabe 3. Für n = 13 finden Sie die kleinste Primzahl r mit

$$\operatorname{ord}_r(n) > \log_2^2 n$$
.

Aufgabe 4. Für n = 13 und r = 3

- a) finden Sie den Rest von $(x+1)^n \mod (x^r-1, n)$,
- b) finden Sie den Rest von $x^n + 1 \mod (x^r 1, n)$,
- c) bestimmen Sie die Kongruenz $(x+1)^n \equiv x^n+1 \mod (x^r-1,n)$.

Aufgabe 5. Es ist bekannt, daß 823543 eine Potenz einer Primzahl ist. Finden Sie diese Primzahl und diese Potenz.