Fox-Calculus und Moduln

Aufgabe 1. Kalkulieren Sie die folgenden Ableitungen:

- $1) \frac{\partial}{\partial z} (xyz^2x^{-1}y^{-1}z^{-2}),$
- $2) \frac{\partial}{\partial x} [x^n, y],$
- 3) $\frac{\partial}{\partial x}[x,y]^n$.

Aufgabe 2. Sei $w = w(x_1, \ldots, x_n)$. Beweisen Sie die folgende Formel:

$$w - e = \sum_{i=1}^{n} (x_i - e) \cdot \frac{\partial w}{\partial x_i}.$$

Aufgabe 3. Sei $G = \langle a \rangle$ eine unendliche zyklische Gruppe.

(1) Beweisen Sie, dass in dem G-Modul $\mathbb{Z}G$ gilt

$$\langle e + a^2, a^4 + a^7 \rangle_G = \langle a + e, a - e \rangle_G.$$

- (2) Ob die G-Moduln $\langle a+e, a-e \rangle_G$ und $\mathbb{Z}G$ gleich sind?
- (3) Ob der G-Modul $\langle a+e, a-e \rangle_G$ frei ist?

Definition. Sei G eine Gruppe und sei $\varepsilon: \mathbb{Z}G \to \mathbb{Z}$ ein Trivialisierungs-G-Homomorphismus ($\varepsilon(g) = 1$ für alle $g \in G$). Das G-Modul Ker ε heißt Augmentationsideal.

Aufgabe 4. Beweisen Sie, dass das Augmentationsideal der freien Gruppe F(X) ein freies Modul mit der Basis $\{x - e \mid x \in X\}$ ist.