A basis of the fixed point subgroup of an automorphism of a free group

Oleg Bogopolski and Olga Maslakova

G³ conference South Padre Island (USA) March 21-24, 2013

Outline

- 1. Main Theorem
- 2. Names
- 3. A relative train track for α
- 4. Graph D_f for the relative train track $f : \Gamma \to \Gamma$
- 5. A procedure for construction of $CoRe(D_f)$
- 6. How to convert this procedure into an algorithm?
- 7. Cancelations in f-iterates of paths of Γ
- 8. μ -subgraphs in details

Let F_n be the free group of finite rank n and let $\alpha \in Aut(F_n)$. Define

$$\operatorname{Fix}(\alpha) = \{ x \in F_n \, | \, \alpha(x) = x \}.$$

Rang problem of P. Scott (1978):

M. Bestvina and M. Handel (1992):

 $\operatorname{rk}(\operatorname{Fix}(\alpha)) \leqslant n$ Yes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Theorem

Basis problem. Find an algorithm for computing a basis of $Fix(\alpha)$.

- It has been solved in three special cases:
- for positive automorphisms (Cohen and Lustig)
- for special irreducible automorphisms (Turner)
- for all automorphisms of F_2 (Bogopolski).

Theorem (O. Bogopolski, O. Maslakova, 2004-2012). A basis of $Fix(\alpha)$ is computable.

(see http://de.arxiv.org/abs/1204.6728)

Names

Dyer Scott Gersten Goldstein Turner Cooper Paulin Thomas Stallings Bestvina Handel Gaboriau Levitt Cohen Lustig Sela Dicks Ventura Brinkmann

4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Dyer Scott		5
Gersten		
	Goldstein	
	Turner	
Cooper		
Paulin		
Thomas		
Stallings		
0	Bestvina	
	Handel	
Gaboriau		
Levitt		
	Cohen	
	Lustig	
Sela	8	
Dicks		
Ventura		
· circuiu		

Brinkmann

・ロ ・ ・ ● ・ ・ 三 ・ ・ 三 ・ り へ ()

Let Γ be a finite connected graph and $f : \Gamma \to \Gamma$ be a homotopy equivalence s.t. f maps vertices to vertices and edges to reduced edge-paths.

The map f is called a *relative train track* if ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let Γ be a finite connected graph and $f : \Gamma \to \Gamma$ be a homotopy equivalence s.t. f maps vertices to vertices and edges to reduced edge-paths.

The map f is called a relative train track if ...

To define this, we first need to define

- Turns in Γ (illegal and legal)
- Transition matrix
- Filtrations
- Strata (exponential, polynomial, zero)

Turns

Let Γ be a finite connected graph and $f : \Gamma \to \Gamma$ be a homotopy equivalence s.t. f maps vertices to vertices and edges to reduced edge-paths.

Differential of f. D $f: \Gamma^1 \to \Gamma^1$,

Tf : Turns \rightarrow Turns,

(Df)(E) = the first edge of f(E). $(Tf)(E_1, E_2) = ((Df)(E_1), (Df)(E_2)).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - ● ● ● ●

▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - ● ● ● ●

A turn (E_1, E_2) is called illegal if $\exists n \ge 0$ such that the turn $(Tf)^n(E_1, E_2)$ is degenerate. A turn (E_1, E_2) is called legal if $\forall n \ge 0$ the turn $(Tf)^n(E_1, E_2)$ is nondegenerate.

An edge-path p in Γ is called legal if each turn of p is legal. Legal paths are reduced.

Claim. Suppose that f(E) is legal for each edge E in Γ . Then, for every legal path p in Γ , the path $f^k(p)$ is legal $\forall k \ge 1$.

Transition matrix of the map $f: \Gamma \to \Gamma$

From each pair of mutually inverse edges of Γ we choose one edge. Let $\{E_1, \ldots, E_k\}$ be the set of chosen edges.

The transition matrix of the map $f : \Gamma \to \Gamma$ is the matrix M(f) of size $k \times k$ such that the ij^{th} entry of M(f) is equal to the total number of occurrences of E_i and $\overline{E_i}$ in the path $f(E_j)$. Ex.:

$$E_1
ightarrow E_1 \overline{E}_2 \ E_2
ightarrow E_2$$

$$M(f) = egin{pmatrix} 1 & 0 \ 1 & 1 \end{pmatrix}$$

Filtration

$$\emptyset = \Gamma_0 \subset \Gamma_1 \subset \cdots \subset \Gamma_N = \Gamma$$
, where $f(\Gamma_i) \subset \Gamma_i$

 $H_i := cl(\Gamma_i \setminus \Gamma_{i-1})$ is called the *i*-th *stratum*.

Filtration

$$\emptyset = \Gamma_0 \subset \Gamma_1 \subset \cdots \subset \Gamma_N = \Gamma$$
, where $f(\Gamma_i) \subset \Gamma_i$

 $H_i := cl(\Gamma_i \setminus \Gamma_{i-1})$ is called the *i*-th *stratum*. If the filtration is maximal, then the matrices M_1, \ldots, M_N are irreducible.

Strata

Frobenius: If $M \ge 0$ is a nonzero irreducible integer matrix, then $\exists \vec{v} > 0 \text{ and } \lambda \ge 1 \text{ such that } M\vec{v} = \lambda \vec{v}.$ If $\lambda = 1$, then M is a permutation matrix. v is unique up to a positive factor. $\lambda = \max$ of absolute values of eigenvalues of M.

A stratum $H_i := cl(\Gamma_i \setminus \Gamma_{i-1})$ is called exponential if $M_i \neq 0$ and $\lambda_i > 1$ polynomial if $M_i \neq 0$ and $\lambda_i = 1$ zero if $M_i = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

A metric for an exponential stratum

Let $H_r = cl(\Gamma_r \setminus \Gamma_{r-1})$ be an exponential stratum and let $E_{\ell+1}, \ldots, E_{\ell+s}$ be the edges of H_r .

We have $vM_r = \lambda_r v$ for some $v = (v_1, \ldots, v_s) > 0$ and $\lambda_r > 1$.

We set
$$L_r(E_{\ell+i}) = v_i$$
 for edges $E_{\ell+i}$ in H_r
and $L_r(E) = 0$ for edges E in Γ_{r-1} ,
and extend L_r to paths in Γ_r .

Claim. For any path $p \subset \Gamma_r$ holds $L_r(f^k(p)) = \lambda_r^k(L_r(p))$.

Relative train track

Let $f : \Gamma \to \Gamma$ be a homotopy equivalence such that $f(\Gamma^0) \subseteq \Gamma^0$ and f maps edges to reduced paths.

The map f is called a *relative train track* if there exists a maximal filtration in Γ such that each exponential stratum H_r of this filtration satisfies the following conditions:

- (RTT-i) Df maps the set of oriented edges of H_r to itself; in particular all mixed turns in (G_r, G_{r-1}) are legal;
- (RTT-ii) If $\rho \subset G_{r-1}$ is a nontrivial edge-path with endpoints in $H_r \cap G_{r-1}$, then $[f(\rho)]$ is a nontrivial path with endpoints in $H_r \cap G_{r-1}$;
- (RTT-iii) For each legal edge-path $\rho \subset H_r$, the subpaths of $f(\rho)$ which lie in H_r are legal.

Relative train track

A path $p \subset \Gamma_r$ is called *r-legal* if the pieces of *p* lying in H_r are legal.

Claim. For any r-legal reduced path $p \subset \Gamma_r$ holds $L_r([f^k(p)]) = \lambda_r^k(L_r(p)).$

Theorem of Bestvina and Handel (1992)

Theorem [BH] Let *F* be a free group of finite rank. For every automorphism $\alpha : F \to F$, one can algorithmically construct a relative train track $f : \Gamma \to \Gamma$ which realizes the outer class of α .

Theorem of Bestvina and Handel (1992)

Theorem [BH] Let F be a free group of finite rank. For any automorphism α of F one can algorithmically

- construct a relative train track $f: \Gamma \to \Gamma$
- indicate a vertex $v \in \Gamma^0$ and path p in Γ from v to f(v)
- indicate an isomorphism $i: F \to \pi_1(\Gamma, v)$

such that the automorphism $i^{-1}\alpha i$ of the group $\pi_1(\Gamma, v)$ coincides with the map given by the rule

 $[x]\mapsto [p\cdot f(x)\cdot \bar{p}],$

where $[x] \in \pi_1(\Gamma, v)$.

First improvement

Theorem [BH] Let F be a free group of finite rank. For any automorphism α of F one can algorithmically

- construct a relative train track $f : \Gamma \to \Gamma$
- indicate a vertex $v \in \Gamma^0$ and path p in Γ from v to f(v)
- indicate an isomorphism $i: F \to \pi_1(\Gamma, v)$
- compute a natural number n,

such that the automorphism $i^{-1}\alpha^n i$ of the group $\pi_1(\Gamma, v)$ coincides with the map given by the rule

$$[x]\mapsto [p\cdot f(x)\cdot \bar{p}],$$

where $[x] \in \pi_1(\Gamma, v)$.

(Pol) Every polynomial stratum H_r consists of only two mutually inverse edges, say E and \overline{E} . Moreover, $f(E) \equiv E \cdot a$, where a is a path in Γ_{r-1} .

Second improvement

Theorem Let *F* be a free group of finite rank. For any automorphism α of *F* one can algorithmically

- construct a relative train track $f_1: \Gamma_1 \to \Gamma_1$
- indicate a vertex $v_1 \in \Gamma_1^0$ fixed by f_1
- indicate an isomorphism $i: F \to \pi_1(\Gamma_1, v_1)$
- compute a natural number n,

such that

$$i^{-1}\alpha^n i = (f_1)_*$$

and

(Pol) Every polynomial stratum H_r consists of only two mutually inverse edges, say E and \overline{E} . Moreover, $f_1(E) \equiv E \cdot a$, where a is a path in Γ_{r-1} .

Setting

Claim. Let α be an automorphism of a free group F of finite rank. If we know a basis of $Fix(\alpha^n)$, we can compute a basis of $Fix(\alpha)$.

Proof. $H = Fix(\alpha)$ is a subgroup of $G = Fix(\alpha^n)$. The restriction $\alpha|_G$ is an automorphism of finite order of G. Let

$$\overline{G} = G \rtimes \langle \alpha |_{G} \rangle.$$

Kalajdzevski: one can compute a finite generator set of $C_{\overline{G}}(\alpha|_G)$. Reidemeister-Schreier: one can compute a finite generator set of $H = C_{\overline{G}}(\alpha|_G) \cap G$.

Setting

Passing from α to appropriate α^n , we can

- construct a relative train track $f : (\Gamma, v) \rightarrow (\Gamma, v)$
- indicate an isomorphism $i: F \to \pi_1(\Gamma, \nu)$

such that

$$i^{-1}\alpha i = f_*$$

and

(Pol) Every polynomial stratum H_r consists of only two mutually inverse edges, say E and \overline{E} . Moreover, $f(E) \equiv E \cdot a$, where a is a path in G_{r-1} .

Claim. To construct a basis of $Fix(\alpha)$, it suffices to construct a basis of

$$\overline{\mathrm{Fix}}(f) = \{ [p] \in \pi_1(\Gamma, v) \, | \, f(p) = p \}.$$

Graph D_f for the relative train track $f : \Gamma \to \Gamma$

- 1. Definition of f-paths in Γ
- 2. Definition of D_f
- 3. Proof that $\pi_1(D_f(\mathbf{1}_v),\mathbf{1}_v) \cong \overline{\operatorname{Fix}}(f) \cong \operatorname{Fix}(\alpha)$
- 4. Preferable directions in D_f
- 5. Repelling edges, dead vertices in D_f
- 6. A procedure to construct a core of D_f
- 7. How to convert this procedure into an algorithm

1. f-paths in Γ

An edge-path μ in Γ is called an *f*-path if $\omega(\mu) = \alpha(f(\mu))$:

If μ is an *f*-path and *E* is an edge in Γ such that $\alpha(E) = \alpha(\mu)$, then $\overline{E}\mu f(E)$ is also an *f*-path:

Definition of D_f

Vertices of D_f are reduced f-paths in Γ .

Two vertices μ and τ in D_f are connected by an edge with label E if E is an edge in Γ satisfying $\alpha(E) = \alpha(\mu)$ and $\tau = [\overline{E}\mu f(E)]$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Proof that $\pi_1(D_f(\mathbf{1}_v),\mathbf{1}_v)\cong\overline{\operatorname{Fix}}(f)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Proof that $\pi_1(D_f(\mathbf{1}_v),\mathbf{1}_v) \cong \overline{\mathrm{Fix}}(f)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Proof that $\pi_1(D_f(\mathbf{1}_v),\mathbf{1}_v) \cong \overline{\mathrm{Fix}}(f)$

Proof that $\pi_1(D_f(\mathbf{1}_v),\mathbf{1}_v) \cong \overline{\mathrm{Fix}}(f)$

Preferable directions in D_f

Let μ be an *f*-path in Γ . Suppose E_1, \ldots, E_k are all edges outgoing from $\alpha(\mu)$. Then the vertex μ is connected with the vertices $[\overline{E}_i \mu f(E_i)]$ of D_f . We set $\widehat{f}(\mu) := [\overline{E} \mu f(E)]$ if E is the first edge of the *f*-path μ .

Preferable directions in D_f

Let μ be an *f*-path in Γ . Suppose E_1, \ldots, E_k are all edges outgoing from $\alpha(\mu)$. Then the vertex μ is connected with the vertices $[\overline{E}_i \mu f(E_i)]$ of D_f . We set $\widehat{f}(\mu) := [\overline{E} \mu f(E)]$ if E is the first edge of the *f*-path μ .

26

The preferable direction at the vertex $\mu \in D_f$ is the direction of the edge from μ to $\hat{f}(\mu)$ with label E.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

▲ロト ▲御ト ▲臣ト ▲臣ト 三臣 - 釣A@

Definition of repelling edges in D_f

Let e be an edge of D_f with $\alpha(e) = u$, $\omega(e) = v$, and Lab(e) = E. The edge e is called *repelling* in D_f if E is not the first edge of the f-path u in Γ and \overline{E} is not the first edge of the f-path v in Γ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How to find repelling edges

Proposition (Cohen, Lustig). The repelling edges of D_f are in 1-1 correspondence with the occurrences of edges E in f(E), where $E \in \Gamma^1$. More precisely, there exists a bijection of the type:

There is only finitely many repelling edges and they can be algorithmically found.

μ -subgraphs in D_f

Recall that if $\mu = E_1 E_2 \dots E_m$ is a vertex in D_f with $m \ge 1$, then

$$\widehat{f}(\mu) = [E_2 \dots E_m f(E_1)].$$

We define $\mu_1 := \mu$ and $\mu_{i+1} := \hat{f}(\mu_i)$ if μ_i is nondegenerate. The μ -subgraph consists of the vertices μ_1, μ_2, \ldots and the edges which connect μ_i with μ_{i+1} and carry the preferable direction at μ_i .

Types of μ -subgraphs:

Claim. If $\mathbf{1}_{v}$ lies in a non-contractible component C of D_{f} , then C contains a repelling vertex μ such that $\mathbf{1}_{v}$ belongs to the μ -subgraph.

Let f be a homotopy equivalence $\Gamma \rightarrow \Gamma$ s.t. f maps vertices to vertices and edges to reduced edge-paths.

We have algorithmically defined preferred directions at almost all vertices of D_f . There exists finitely many repelling edges in D_f and they can be algorithmically found.

Turner: One can algorithmically define the so called *inverse* preferred direction at almost all vertices of D_f . It has the following properties.

1) There exists finitely many inv-repelling edges in D_f and they can be algorithmically found.

2) Suppose that R is a μ -ray in D_f . Then the preferred direction on all but finitely many edges in R is opposite to the inverse preferred direction.

In particular R contains a normal vertex, i.e. a vertex where the red and the blue directions exist and different.

3) Let R_1 be a μ_1 -ray and R_2 be a μ_2 -ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_1 and μ_2 are normal. Then R_1 and R_2 are either disjoint or one is contained in the other.

3) Let R_1 be a μ_1 -ray and R_2 be a μ_2 -ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_1 and μ_2 are normal. Then R_1 and R_2 are either disjoint or one is contained in the other.

3) Let R_1 be a μ_1 -ray and R_2 be a μ_2 -ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_1 and μ_2 are normal. Then R_1 and R_2 are either disjoint or one is contained in the other.

3) Let R_1 be a μ_1 -ray and R_2 be a μ_2 -ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_1 and μ_2 are normal. Then R_1 and R_2 are either disjoint or one is contained in the other.

3) Let R_1 be a μ_1 -ray and R_2 be a μ_2 -ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_1 and μ_2 are normal. Then R_1 and R_2 are either disjoint or one is contained in the other.

A procedure for construction of $CoRe(D_f)$

- (1) Compute repelling edges.
- (2) For each repelling vertex μ determine, whether the μ -subgraph is finite or not.
- (3) Compute all elements of all finite μ -subgraphs from (2).
- (4) For each two repelling vertices μ and τ with infinite μ -and τ -subgraphs determine, whether these subgraphs intersect.
- (5) If the μ-subgraph and the τ-subgraph from (4) intersect, find their first intersection point and compute their initial segments up to this point.

It suffices to solve the following problems:

Problem 1. Given a vertex μ of the graph D_f , determine whether the μ -subgraph is finite or not.

Problem 2. Given two vertices μ and τ of the graph D_f , verify whether τ is contained in the μ -subgraph.

We solve these problems in:

http://de.arxiv.org/abs/1204.6728

r-cancelation points in paths

A path $\mu \subset \Gamma$ has height r if $\mu \subset \Gamma_r$ and μ has at least one edge in H_r .

Let $\mu \subset \Gamma$ be a path of height *r*, where H_r is exponential.

A vertex v in μ is called an r-cancelation point in μ if the turn (A, B) at v is an illegal r-turn:

Non-deletable *r*-cancelation points

Let $\mu \subset \Gamma$ be a path of height *r*, where H_r is an exponential stratum.

Nondeletability of *r*-cancelation points in paths is verifiable

42

Theorem. Let $f : \Gamma \to \Gamma$ be a relative train track. Let μ be a path in Γ of height r, where H_r is exponential. Suppose that a vertex v divides μ into two r-legal paths and v is an r-cancelation point.

1) One can (effectively and uniformly) decide, whether v is deletable in μ or not.

2) If v is non-deletable in μ , one can compute the so called cancelation area $A(v, \mu)$ and the cancelation radius $a(v, \mu)$.

 $a(v,\mu) = L_r(A_{left}(v,\mu)) = L_r(A_{right}(v,\mu)).$

 $\mathit{r}\text{-}\mathsf{cancelation}$ areas in iterates of μ

Def. Let $\mu \subset \Gamma_r$ be a path of height r, where H_r is exponential. μ is called *r*-stable if the number of *r*-cancelation points in

 $\mu, [f(\mu)], [f^2(\mu)], \dots$

is the same. Hence these points are non-deletable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Several *r*-cancelation points in one path

Let μ be a path in Γ of height r, where H_r is exponential. Suppose: • vertices v_1, \ldots, v_n divide μ into r-legal paths μ_0, \ldots, μ_n .

• v_i is a nondeletable *r*-cancelation point in $\mu_{i-1}\mu_i$ for all *i*.

Let $a(v_i)$ be the cancelation radius of v_i in $\mu_{i-1}\mu_i$. Theorem. μ is *stable* iff $a(v_i) + a(v_{i+1}) \ge L_r(\mu_i)$ for all *i*.

Theorem. One can check, whether μ is *r*-stable. If μ is not *r*-stable, one can compute *n* such that $[f^n(\mu)]$ is *r*-stable.

Theorem.

1) There exists only finitely many *r*-cancelation areas in the infinite set of paths of height *r*. All *r*-cancelation areas A_1, \ldots, A_k can be computed.

2) After appropriate subdivision of $f : \Gamma \to \Gamma$ the following holds: One can compute a natural P = P(f) such that for every exponential stratum H_r and every *r*-cancelation area *A*, the *r*-cancelation area $[f^P(A)]$ is an edge-path.

μ -subgraphs in details (no cancelations)

Let $\mu = E_1 E_2 \dots E_n$ be an *f*-path. Below is an ideal situation (no cancelations):

$$\mu \equiv E_1 E_2 \dots E_n ,$$

$$\widehat{f}(\mu) \equiv E_2 E_3 \dots E_n \cdot f(E_1) ,$$

$$\widehat{f}^2(\mu) \equiv E_3 E_4 \dots E_n \cdot f(E_1) \cdot f(E_2) ,$$

$$\vdots$$

$$\widehat{f}^n(\mu) \equiv f(E_1) \cdot f(E_2) \cdot \dots \cdot f(E_n),$$

$$\vdots$$

Then Problems 1 and 2 can be reduced to: Problem 1'. Do there exist p > q such that $f^p(\mu) \equiv f^q(\mu)$? Problem 2'. Does there exist p such that $f^p(\mu) \equiv \tau$?

Solution. In this special case we have $\ell(\hat{f}^{i+1}(\mu)) \ge \ell(\hat{f}^{i}(\mu))$.

We define 3 types of *perfect f*-paths:

- r-perfect
- A-perfect
- E-perfect

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let H_r be an exponential stratum. An edge-path $\mu \subset \Gamma_r$ is called *r*-perfect if the following conditions are satisfied:

- μ is a reduced *f*-path and its first edge belongs to H_r ,
- μ is *r*-legal,
- $[\mu f(\mu)] \equiv \mu \cdot [f(\mu)]$ and the turn of this path at the point between μ and $[f(\mu)]$ is legal.

Let H_r be an exponential stratum. A reduced f-path $\mu \subset \Gamma_r$ containing edges from H_r is called A-perfect if

- all *r*-cancelation points in μ are non-deletable, the corresponding *r*-cancelation areas are edge-paths,
- the A-decomposition of μ starts on an A-area, i.e. it has the form $\mu \equiv A_1 b_1 \dots A_k b_k$,
- $[\mu f(\mu)] \equiv \mu \cdot [f(\mu)]$ and the turn at the point between μ and $[f(\mu)]$ is legal.

We may assume that $f : \Gamma \to \Gamma$ satisfies the condition (Pol): Each polynomial stratum H_r has a the unique (up to inversion) edge E and $f(E) \equiv E \cdot \sigma$, where σ is a path in Γ_{r-1} .

Let μ be an *f*-path of height *r*, where H_r is a polynomial stratum. μ is called *E*-perfect if

- the first edge of μ is E or \overline{E} ,
- every path $\hat{f}^{i}(\mu), i \ge 1$ contains the same number of *E*-edges as μ .

μ -subgraphs in details (there are cancelations)

We define 3 types of *perfect f*-paths:

- r-perfect
- A-perfect
- E-perfect

Property. If σ is an *r*-perfect or *A*-perfect *f*-path, then there is no cancelation in passing from σ to $\hat{f}(\sigma)$:

$$\sigma \equiv E_1 E_2 \dots E_n, \widehat{f}(\sigma) \equiv E_2 E_3 \dots E_n \cdot f(E_1),$$

 $\widehat{f}(\sigma)$ may be not perfect, but ... Theorem.

1) If a $\mu\text{-subgraph}$ is infinite, it contains ∞ many perfect vertices:

$$\widehat{f}^{n_1}(\mu), \widehat{f}^{n_2}(\mu), \widehat{f}^{n_3}(\mu)...$$

2) Perfectness is verifiable.

54

μ -subgraphs in details (there are cancelations)

Weak alternative. Moving along the μ -subgraph, we can detect one of:

- the μ -subgraph is finite,
- the μ -subgraph contains a perfect vertex v_0 .

In the second case we still have to decide, whether the $\mu\text{-subgraph}$ is finite or not.

Case 1. If v_0 is *r*-perfect, then

(1)
$$L_r(\widehat{f}^{i+1}(v_0)) \ge L_r(\widehat{f}^{i}(v_0)) > 0$$
 for all $i \ge 0$.

(2) There exist computable natural numbers $m_1 < m_2 < \ldots$, such that $L_r(\hat{f}^{-m_i}(v_0)) = \lambda_r^i L_r(v_0)$ for all $i \ge 1$.

⇒ In this case the μ -subgraph is ∞ and the membership problem in it is solvable.

μ -subgraphs in details (there are cancelations)

Case 2. If v_0 is A-perfect, then we can find a finite set $\{v_0, v_1, \ldots, v_k\}$ of A-perfect vertices in the v_0 -subgraph such that all A-perfect vertices in the v_0 -subgraph are:

Moreover, given a vertex u in the v_0 -subgraph, we can find a number ℓ , such that $\hat{f}^{\ell}(u)$ is an A-perfect vertex.

So the finiteness and the membership problems for the v_0 -subgraph can be reduced to:

Problem FIN. Does there exist $m > n \ge 0$ such that

$$[f^n(v_0)] = [f^m(v_0)]?$$

Problem MEM. Given an *f*-path τ , does there exist $n \ge 0$ s.t. $[f^n(v_0)] = \tau$?

Both can be answered with the help of a theorem of Brinkmann.

THANK YOU!