A basis of the fixed point subgroup of an automorphism of a free group

Oleg Bogopolski and Olga Maslakova

G^{3} conference
South Padre Island (USA)
March 21-24, 2013

Outline

1. Main Theorem
2. Names
3. A relative train track for α
4. Graph D_{f} for the relative train track $f: \Gamma \rightarrow \Gamma$
5. A procedure for construction of $\operatorname{CoRe}\left(D_{f}\right)$
6. How to convert this procedure into an algorithm?
7. Cancelations in f-iterates of paths of Γ
8. μ-subgraphs in details

Scott Problem

Let F_{n} be the free group of finite rank n and let $\alpha \in \operatorname{Aut}\left(F_{n}\right)$. Define

$$
\operatorname{Fix}(\alpha)=\left\{x \in F_{n} \mid \alpha(x)=x\right\}
$$

Rang problem of P. Scott (1978):
M. Bestvina and M. Handel (1992):
$\operatorname{rk}(\operatorname{Fix}(\alpha)) \leqslant n$
Yes

Main Theorem

Basis problem. Find an algorithm for computing a basis of $\operatorname{Fix}(\alpha)$.

It has been solved in three special cases:

- for positive automorphisms (Cohen and Lustig)
- for special irreducible automorphisms (Turner)
- for all automorphisms of F_{2} (Bogopolski).

Theorem (O. Bogopolski, O. Maslakova, 2004-2012).
A basis of $\operatorname{Fix}(\alpha)$ is computable.
(see http://de.arxiv.org/abs/1204.6728)

Dyer
Scott
Gersten
Goldstein
Turner
Cooper
Paulin
Thomas
Stallings
Bestvina
Handel
Gaboriau
Levitt
Cohen
Lustig
Sela
Dicks
Ventura
Brinkmann

Names

Dyer
Scott
Gersten

Goldstein
Turner
Cooper
Paulin
Thomas
Stallings
Bestvina
Handel
Gaboriau
Levitt
Cohen
Lustig
Sela
Dicks
Ventura
Brinkmann

Relative train tracks

Let Γ be a finite connected graph and $f: \Gamma \rightarrow \Gamma$ be a homotopy equivalence s.t.
f maps vertices to vertices and edges to reduced edge-paths.
The map f is called a relative train track if ...

Relative train tracks

Let Γ be a finite connected graph and $f: \Gamma \rightarrow \Gamma$ be a homotopy equivalence s.t. f maps vertices to vertices and edges to reduced edge-paths.

The map f is called a relative train track if ...
To define this, we first need to define

- Turns in Γ (illegal and legal)
- Transition matrix
- Filtrations
- Strata (exponential, polynomial, zero)

Let Γ be a finite connected graph
and $f: \Gamma \rightarrow \Gamma$ be a homotopy equivalence s.t.
f maps vertices to vertices and edges to reduced edge-paths.

A turn: A degenerate turn:

Differential of f.
$(D f)(E)=$ the first edge of $f(E)$.
$T f:$ Turns \rightarrow Turns, $\quad(T f)\left(E_{1}, E_{2}\right)=\left((D f)\left(E_{1}\right),(D f)\left(E_{2}\right)\right)$.

An illegal turn

A turn $\left(E_{1}, E_{2}\right)$ is called illegal
if $\exists n \geqslant 0$ such that the turn $(T f)^{n}\left(E_{1}, E_{2}\right)$ is degenerate.

Legal turns and paths

A turn $\left(E_{1}, E_{2}\right)$ is called legal if $\forall n \geqslant 0$ the turn $(T f)^{n}\left(E_{1}, E_{2}\right)$ is nondegenerate.

An edge-path p in Γ is called legal if each turn of p is legal. Legal paths are reduced.

Claim. Suppose that $f(E)$ is legal for each edge E in Γ. Then, for every legal path p in Γ, the path $f^{k}(p)$ is legal $\forall k \geqslant 1$.

Transition matrix of the map $f: \Gamma \rightarrow \Gamma$

From each pair of mutually inverse edges of Γ we choose one edge. Let $\left\{E_{1}, \ldots, E_{k}\right\}$ be the set of chosen edges.
The transition matrix of the map $f: \Gamma \rightarrow \Gamma$ is the matrix $M(f)$ of size $k \times k$ such that the $i j^{\text {th }}$ entry of $M(f)$ is equal to the total number of occurrences of E_{i} and $\overline{E_{i}}$ in the path $f\left(E_{j}\right)$.
Ex.:

$$
\begin{aligned}
& E_{1} \rightarrow E_{1} \bar{E}_{2} \\
& E_{2} \rightarrow E_{2}
\end{aligned}
$$

$$
M(f)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

Filtration

$$
\emptyset=\Gamma_{0} \subset \Gamma_{1} \subset \cdots \subset \Gamma_{N}=\Gamma, \text { where } f\left(\Gamma_{i}\right) \subset \Gamma_{i}
$$

$$
H_{i}:=c l\left(\Gamma_{i} \backslash \Gamma_{i-1}\right) \text { is called the } i \text {-th stratum. }
$$

Filtration

$\emptyset=\Gamma_{0} \subset \Gamma_{1} \subset \cdots \subset \Gamma_{N}=\Gamma$, where $f\left(\Gamma_{i}\right) \subset \Gamma_{i}$
$H_{i}:=c l\left(\Gamma_{i} \backslash \Gamma_{i-1}\right)$ is called the i-th stratum.
If the filtration is maximal, then the matrices M_{1}, \ldots, M_{N} are irreducible.

Strata

Frobenius: If $M \geqslant 0$ is a nonzero irreducible integer matrix, then $\exists \vec{v}>0$ and $\lambda \geqslant 1$ such that $M \vec{v}=\lambda \vec{v}$.

If $\lambda=1$, then M is a permutation matrix.
v is unique up to a positive factor.
$\lambda=\max$ of absolute values of eigenvalues of M.

A stratum $H_{i}:=c l\left(\Gamma_{i} \backslash \Gamma_{i-1}\right)$ is called exponential if $M_{i} \neq 0$ and $\lambda_{i}>1$ polynomial if $M_{i} \neq 0$ and $\lambda_{i}=1$
zero if $M_{i}=0$

Let $H_{r}=c l\left(\Gamma_{r} \backslash \Gamma_{r-1}\right)$ be an exponential stratum and let
$E_{\ell+1}, \ldots, E_{\ell+s}$ be the edges of H_{r}.
We have $v M_{r}=\lambda_{r} v$ for some $v=\left(v_{1}, \ldots, v_{s}\right)>0$ and $\lambda_{r}>1$.

We set $L_{r}\left(E_{\ell+i}\right)=v_{i}$ for edges $E_{\ell+i}$ in H_{r} and $L_{r}(E)=0$ for edges E in Γ_{r-1}, and extend L_{r} to paths in Γ_{r}.

Claim. For any path $p \subset \Gamma_{r}$ holds $L_{r}\left(f^{k}(p)\right)=\lambda_{r}^{k}\left(L_{r}(p)\right)$.

Relative train track

Let $f: \Gamma \rightarrow \Gamma$ be a homotopy equivalence such that $f\left(\Gamma^{0}\right) \subseteq \Gamma^{0}$ and f maps edges to reduced paths.
The map f is called a relative train track if there exists a maximal filtration in Γ such that each exponential stratum H_{r} of this filtration satisfies the following conditions:
(RTT-i) Df maps the set of oriented edges of H_{r} to itself; in particular all mixed turns in $\left(G_{r}, G_{r-1}\right)$ are legal;
(RTT-ii) If $\rho \subset G_{r-1}$ is a nontrivial edge-path with endpoints in $H_{r} \cap G_{r-1}$, then $[f(\rho)]$ is a nontrivial path with endpoints in $H_{r} \cap G_{r-1}$;
(RTT-iii) For each legal edge-path $\rho \subset H_{r}$, the subpaths of $f(\rho)$ which lie in H_{r} are legal.

Relative train track

$$
\downarrow f
$$

A useful fact

A path $p \subset \Gamma_{r}$ is called r-legal
if the pieces of p lying in H_{r} are legal.
Claim. For any r-legal reduced path $p \subset \Gamma_{r}$ holds

$$
L_{r}\left(\left[f^{k}(p)\right]\right)=\lambda_{r}^{k}\left(L_{r}(p)\right)
$$

Theorem of Bestvina and Handel (1992)

Theorem $[\mathrm{BH}]$ Let F be a free group of finite rank. For every automorphism $\alpha: F \rightarrow F$, one can algorithmically construct a relative train track $f: \Gamma \rightarrow \Gamma$ which realizes the outer class of α.

Theorem of Bestvina and Handel (1992)

Theorem $[\mathrm{BH}]$ Let F be a free group of finite rank. For any automorphism α of F one can algorithmically

- construct a relative train track $f: \Gamma \rightarrow \Gamma$
- indicate a vertex $v \in \Gamma^{0}$ and path p in Γ from v to $f(v)$
- indicate an isomorphism $i: F \rightarrow \pi_{1}(\Gamma, v)$
such that the automorphism $i^{-1} \alpha i$ of the group $\pi_{1}(\Gamma, v)$ coincides with the map given by the rule

$$
[x] \mapsto[p \cdot f(x) \cdot \bar{p}]
$$

where $[x] \in \pi_{1}(\Gamma, v)$.

First improvement

Theorem $[\mathrm{BH}]$ Let F be a free group of finite rank. For any automorphism α of F one can algorithmically

- construct a relative train track $f: \Gamma \rightarrow \Gamma$
- indicate a vertex $v \in \Gamma^{0}$ and path p in Γ from v to $f(v)$
- indicate an isomorphism $i: F \rightarrow \pi_{1}(\Gamma, v)$
- compute a natural number n,
such that the automorphism $i^{-1} \alpha^{n} i$ of the group $\pi_{1}(\Gamma, v)$ coincides with the map given by the rule

$$
[x] \mapsto[p \cdot f(x) \cdot \bar{p}],
$$

where $[x] \in \pi_{1}(\Gamma, v)$.
(Pol) Every polynomial stratum H_{r} consists of only two mutually inverse edges, say E and \bar{E}. Moreover, $f(E) \equiv E \cdot a$, where a is a path in Γ_{r-1}.

Second improvement

Theorem Let F be a free group of finite rank. For any automorphism α of F one can algorithmically

- construct a relative train track $f_{1}: \Gamma_{1} \rightarrow \Gamma_{1}$
- indicate a vertex $v_{1} \in \Gamma_{1}^{0}$ fixed by f_{1}
- indicate an isomorphism $i: F \rightarrow \pi_{1}\left(\Gamma_{1}, v_{1}\right)$
- compute a natural number n,
such that

$$
i^{-1} \alpha^{n} i=\left(f_{1}\right)_{*}
$$

and
(Pol) Every polynomial stratum H_{r} consists of only two mutually inverse edges, say E and \bar{E}. Moreover, $f_{1}(E) \equiv E \cdot a$, where a is a path in Γ_{r-1}.

Setting

Claim. Let α be an automorphism of a free group F of finite rank. If we know a basis of $\operatorname{Fix}\left(\alpha^{n}\right)$, we can compute a basis of $\operatorname{Fix}(\alpha)$.

Proof. $H=\operatorname{Fix}(\alpha)$ is a subgroup of $G=\operatorname{Fix}\left(\alpha^{n}\right)$.
The restriction $\left.\alpha\right|_{G}$ is an automorphism of finite order of G. Let

$$
\bar{G}=G \rtimes\left\langle\left.\alpha\right|_{G}\right\rangle .
$$

Kalajdzevski: one can compute a finite generator set of $C_{\bar{G}}\left(\left.\alpha\right|_{G}\right)$. Reidemeister-Schreier: one can compute a finite generator set of $H=C_{\bar{G}}\left(\left.\alpha\right|_{G}\right) \cap G$.

Setting

Passing from α to appropriate α^{n}, we can

- construct a relative train track $f:(\Gamma, v) \rightarrow(\Gamma, v)$
- indicate an isomorphism $i: F \rightarrow \pi_{1}(\Gamma, v)$
such that

$$
i^{-1} \alpha i=f_{*}
$$

and
(Pol) Every polynomial stratum H_{r} consists of only two mutually inverse edges, say E and \bar{E}. Moreover, $f(E) \equiv E \cdot a$, where a is a path in G_{r-1}.

Claim. To construct a basis of $\operatorname{Fix}(\alpha)$, it suffices to construct a basis of

$$
\overline{\operatorname{Fix}}(f)=\left\{[p] \in \pi_{1}(\Gamma, v) \mid f(p)=p\right\}
$$

Graph D_{f} for the relative train track $f: \Gamma \rightarrow \Gamma$

1. Definition of f-paths in Γ
2. Definition of D_{f}
3. Proof that $\pi_{1}\left(D_{f}\left(\mathbf{1}_{v}\right), \mathbf{1}_{v}\right) \cong \overline{\operatorname{Fix}}(f) \cong \operatorname{Fix}(\alpha)$
4. Preferable directions in D_{f}
5. Repelling edges, dead vertices in D_{f}
6. A procedure to construct a core of D_{f}
7. How to convert this procedure into an algorithm

An edge-path μ in Γ is called an f-path if $\omega(\mu)=\alpha(f(\mu))$:

$$
\begin{aligned}
& \mu=\mathbf{1}_{u} \\
& \bullet \\
& f(u)=u
\end{aligned}
$$

If μ is an f-path and E is an edge in Γ such that $\alpha(E)=\alpha(\mu)$, then $\bar{E} \mu f(E)$ is also an f-path:

Vertices of D_{f} are reduced f-paths in Γ.
Two vertices μ and τ in D_{f} are connected by an edge with label E if E is an edge in Γ satisfying $\alpha(E)=\alpha(\mu)$ and $\tau=[\bar{E} \mu f(E)]$.

Proof that $\pi_{1}\left(D_{f}\left(\mathbf{1}_{v}\right), \mathbf{1}_{v}\right) \cong \overline{\operatorname{Fix}}(f)$

Proof that $\pi_{1}\left(D_{f}\left(\mathbf{1}_{v}\right), \mathbf{1}_{v}\right) \cong \overline{\operatorname{Fix}}(f)$

[$\left.E_{1} \mathbf{1}_{v} f\left(E_{1}\right)\right]$

Proof that $\pi_{1}\left(D_{f}\left(\mathbf{1}_{v}\right), \mathbf{1}_{v}\right) \cong \overline{\operatorname{Fix}}(f)$

$\left[\bar{E}_{2}\left[\bar{E}_{1} \mathbf{1}_{\mathbf{v}} f\left(E_{1}\right)\right] f\left(E_{2}\right)\right]$

Proof that $\pi_{1}\left(D_{f}\left(\mathbf{1}_{v}\right), \mathbf{1}_{v}\right) \cong \overline{\operatorname{Fix}}(f)$

$\left[\bar{E}_{k} \ldots\left[\bar{E}_{2}\left[E_{1} \mathbf{1}_{\mathrm{v}} f\left(E_{1}\right)\right] f\left(E_{2}\right)\right] \ldots f\left(E_{k}\right)\right]=\mathbf{1}_{\mathrm{v}}$
$\left[E_{1} E_{2} \ldots E_{k}\right]=\left[f\left(E_{1} E_{2} \ldots f\left(E_{k}\right)\right)\right] \in \overline{\operatorname{Fix}}(f)$

Preferable directions in D_{f}

Let μ be an f-path in Γ.
Suppose E_{1}, \ldots, E_{k} are all edges outgoing from $\alpha(\mu)$.
Then the vertex μ is connected with the vertices $\left[\bar{E}_{i} \mu f\left(E_{i}\right)\right]$ of D_{f}. We set $\widehat{f}(\mu):=[\bar{E} \mu f(E)]$ if E is the first edge of the f-path μ. in Γ : in D_{f} :

Preferable directions in D_{f}

Let μ be an f-path in Γ.
Suppose E_{1}, \ldots, E_{k} are all edges outgoing from $\alpha(\mu)$.
Then the vertex μ is connected with the vertices $\left[\bar{E}_{i} \mu f\left(E_{i}\right)\right]$ of D_{f}.
We set $\widehat{f}(\mu):=[\bar{E} \mu f(E)]$ if E is the first edge of the f-path μ. in Γ : in D_{f} :

The preferable direction at the vertex $\mu \in D_{f}$ is the direction of the edge from μ to $\widehat{f}(\mu)$ with label E.

Graph D_{f} : example

Graph D_{f} : example

Graph D_{f} : example

Graph D_{f} : example

Definition of repelling edges in D_{f}

repelling edges
 not repelling edges

Let e be an edge of D_{f} with $\alpha(e)=u, \omega(e)=v$, and $\operatorname{Lab}(e)=E$. The edge e is called repelling in D_{f} if E is not the first edge of the f-path u in Γ and \bar{E} is not the first edge of the f-path v in Γ.

How to find repelling edges

Proposition (Cohen, Lustig). The repelling edges of D_{f} are in 1-1 correspondence with the occurrences of edges E in $f(E)$, where $E \in \Gamma^{1}$. More precisely, there exists a bijection of the type:

There is only finitely many repelling edges and they can be algorithmically found.

μ-subgraphs in D_{f}

Recall that if $\mu=E_{1} E_{2} \ldots E_{m}$ is a vertex in D_{f} with $m \geqslant 1$, then

$$
\widehat{f}(\mu)=\left[E_{2} \ldots E_{m} f\left(E_{1}\right)\right] .
$$

We define $\mu_{1}:=\mu$ and $\mu_{i+1}:=\widehat{f}\left(\mu_{i}\right)$ if μ_{i} is nondegenerate. The μ-subgraph consists of the vertices μ_{1}, μ_{2}, \ldots and the edges which connect μ_{i} with μ_{i+1} and carry the preferable direction at μ_{i}.

Types of μ-subgraphs:

a segment with a cycle

An important claim

Claim. If $\mathbf{1}_{v}$ lies in a non-contractible component C of D_{f}, then C contains a repelling vertex μ such that $\mathbf{1}_{v}$ belongs to the μ-subgraph.

Inverse preferred direction

Let f be a homotopy equivalence $\Gamma \rightarrow \Gamma$ s.t. f maps vertices to vertices and edges to reduced edge-paths.

We have algorithmically defined preferred directions at almost all vertices of D_{f}. There exists finitely many repelling edges in D_{f} and they can be algorithmically found.

Turner: One can algorithmically define the so called inverse preferred direction at almost all vertices of D_{f}. It has the following properties.

1) There exists finitely many inv-repelling edges in D_{f} and they can be algorithmically found.

Inverse preferred direction

2) Suppose that R is a μ-ray in D_{f}. Then the preferred direction on all but finitely many edges in R is opposite to the inverse preferred direction.

In particular R contains a normal vertex, i.e. a vertex where the red and the blue directions exist and different.

Inverse preferred direction

3) Let R_{1} be a μ_{1}-ray and R_{2} be a μ_{2}-ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_{1} and μ_{2} are normal. Then R_{1} and R_{2} are either disjoint or one is contained in the other.

Inverse preferred direction

3) Let R_{1} be a μ_{1}-ray and R_{2} be a μ_{2}-ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_{1} and μ_{2} are normal. Then R_{1} and R_{2} are either disjoint or one is contained in the other.

Inverse preferred direction

3) Let R_{1} be a μ_{1}-ray and R_{2} be a μ_{2}-ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_{1} and μ_{2} are normal. Then R_{1} and R_{2} are either disjoint or one is contained in the other.

Inverse preferred direction

3) Let R_{1} be a μ_{1}-ray and R_{2} be a μ_{2}-ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_{1} and μ_{2} are normal. Then R_{1} and R_{2} are either disjoint or one is contained in the other.

Inverse preferred direction

3) Let R_{1} be a μ_{1}-ray and R_{2} be a μ_{2}-ray, both don't contain inv-repelling edges and suppose that their initial vertices μ_{1} and μ_{2} are normal. Then R_{1} and R_{2} are either disjoint or one is contained in the other.

A procedure for construction of $\operatorname{CoRe}\left(D_{f}\right)$

(1) Compute repelling edges.
(2) For each repelling vertex μ determine, whether the μ-subgraph is finite or not.
(3) Compute all elements of all finite μ-subgraphs from (2).
(4) For each two repelling vertices μ and τ with infinite μ-and τ-subgraphs determine, whether these subgraphs intersect.
(5) If the μ-subgraph and the τ-subgraph from (4) intersect, find their first intersection point and compute their initial segments up to this point.

How to convert this procedure into an algorithm?

It suffices to solve the following problems:

Problem 1. Given a vertex μ of the graph D_{f}, determine whether the μ-subgraph is finite or not.

Problem 2. Given two vertices μ and τ of the graph D_{f}, verify whether τ is contained in the μ-subgraph.

We solve these problems in:
http://de.arxiv.org/abs/1204.6728

r-cancelation points in paths

A path $\mu \subset \Gamma$ has height r if $\mu \subset \Gamma_{r}$ and μ has at least one edge in H_{r}.

Let $\mu \subset \Gamma$ be a path of height r, where H_{r} is exponential.
A vertex v in μ is called an r-cancelation point in μ if the turn (A, B) at v is an illegal r-turn:

Non-deletable r-cancelation points

Let $\mu \subset \Gamma$ be a path of height r, where H_{r} is an exponential stratum.

Suppose

- v divides μ into two r-legal subpaths
- v is an r-cancelation point in μ

Then

- v is called a nondeletable r-cancelation point in μ
if $\exists \infty$ illegal r-turns $\left(A_{k}, B_{k}\right)$.

Nondeletability of r-cancelation points in paths is verifiable

Theorem. Let $f: \Gamma \rightarrow \Gamma$ be a relative train track. Let μ be a path in Γ of height r, where H_{r} is exponential. Suppose that a vertex v divides μ into two r-legal paths and v is an r-cancelation point.

Then:

1) One can (effectively and uniformly) decide, whether v is deletable in μ or not.
2) If v is non-deletable in μ, one can compute the so called cancelation area $A(v, \mu)$ and the cancelation radius $a(v, \mu)$.

$$
a(v, \mu)=L_{r}\left(A_{\text {left }}(v, \mu)\right)=L_{r}\left(A_{\text {right }}(v, \mu)\right) .
$$

r-cancelation areas in iterates of μ

Let

- H_{r} be exp
- $\operatorname{Height}(\mu)=r$
- μ is not r-legal

- v divides μ into two r-legal subpaths
- v is a nondeletable r-cancelation point in μ

Different r-cancelation areas can interact ${ }_{44}$

(2)

Def. Let $\mu \subset \Gamma_{r}$ be a path of height r, where H_{r} is exponential. μ is called r-stable if the number of r-cancelation points in

$$
\mu,[f(\mu)],\left[f^{2}(\mu)\right], \ldots
$$

is the same. Hence these points are non-deletable.

Several r-cancelation points in one path

Let μ be a path in Γ of height r, where H_{r} is exponential. Suppose:

- vertices v_{1}, \ldots, v_{n} divide μ into r-legal paths μ_{0}, \ldots, μ_{n}.
- v_{i} is a nondeletable r-cancelation point in $\mu_{i-1} \mu_{i}$ for all i.

Let $a\left(v_{i}\right)$ be the cancelation radius of v_{i} in $\mu_{i-1} \mu_{i}$. Theorem. μ is stable iff $a\left(v_{i}\right)+a\left(v_{i+1}\right) \geqslant L_{r}\left(\mu_{i}\right)$ for all i.

Stability theorem

Theorem. One can check, whether μ is r-stable.
If μ is not r-stable, one can compute n such that $\left[f^{n}(\mu)\right]$ is r-stable.

Finiteness and computability of the r-cancelation areas

Theorem.

1) There exists only finitely many r-cancelation areas in the infinite set of paths of height r. All r-cancelation areas A_{1}, \ldots, A_{k} can be computed.
2) After appropriate subdivision of $f: \Gamma \rightarrow \Gamma$ the following holds:

One can compute a natural $P=P(f)$ such that for every exponential stratum H_{r} and every r-cancelation area A, the r-cancelation area $\left[f^{P}(A)\right]$ is an edge-path.

Let $\mu=E_{1} E_{2} \ldots E_{n}$ be an f-path.
Below is an ideal situation (no cancelations):

$$
\begin{array}{ll}
\mu & \equiv E_{1} E_{2} \ldots E_{n} \\
\widehat{f}(\mu) & \equiv E_{2} E_{3} \ldots E_{n} \cdot f\left(E_{1}\right) \\
\widehat{f}^{2}(\mu) & \equiv E_{3} E_{4} \ldots E_{n} \cdot f\left(E_{1}\right) \cdot f\left(E_{2}\right), \\
\vdots & \\
\widehat{f}^{n}(\mu) & \equiv f\left(E_{1}\right) \cdot f\left(E_{2}\right) \cdot \ldots \cdot f\left(E_{n}\right),
\end{array}
$$

Then Problems 1 and 2 can be reduced to:
Problem 1'. Do there exist $p>q$ such that $f^{p}(\mu) \equiv f^{q}(\mu)$?
Problem 2'. Does there exist p such that $f^{p}(\mu) \equiv \tau$?
Solution. In this special case we have $\ell\left(\widehat{f}^{i+1}(\mu)\right) \geqslant \ell\left(\widehat{f}^{i}(\mu)\right)$.

We define 3 types of perfect f-paths:

- r-perfect
- A-perfect
- E-perfect

Definition of an r-perfect path

Let H_{r} be an exponential stratum. An edge-path $\mu \subset \Gamma_{r}$ is called r-perfect if the following conditions are satisfied:

- μ is a reduced f-path and its first edge belongs to H_{r},
- μ is r-legal,
- $[\mu f(\mu)] \equiv \mu \cdot[f(\mu)]$ and the turn of this path at the point between μ and $[f(\mu)]$ is legal.

Definition of an A-perfect path

Let H_{r} be an exponential stratum. A reduced f-path $\mu \subset \Gamma_{r}$ containing edges from H_{r} is called A-perfect if

- all r-cancelation points in μ are non-deletable, the corresponding r-cancelation areas are edge-paths,
- the A-decomposition of μ starts on an A-area, i.e. it has the form $\mu \equiv A_{1} b_{1} \ldots A_{k} b_{k}$,
- $[\mu f(\mu)] \equiv \mu \cdot[f(\mu)]$ and the turn at the point between μ and $[f(\mu)]$ is legal.

Definition of an E-perfect path

We may assume that $f: \Gamma \rightarrow \Gamma$ satisfies the condition (Pol):
Each polynomial stratum H_{r} has a the unique (up to inversion) edge E and $f(E) \equiv E \cdot \sigma$, where σ is a path in Γ_{r-1}.

Let μ be an f-path of height r, where H_{r} is a polynomial stratum. μ is called E-perfect if

- the first edge of μ is E or \bar{E},
- every path $\widehat{f}^{i}(\mu), i \geqslant 1$ contains the same number of E-edges as μ.

μ-subgraphs in details (there are cancelations)

We define 3 types of perfect f-paths:

- r-perfect
- A-perfect
- E-perfect

Property. If σ is an r-perfect or A-perfect f-path, then there is no cancelation in passing from σ to $\widehat{f}(\sigma)$:

$$
\begin{aligned}
\sigma & \equiv E_{1} E_{2} \ldots E_{n} \\
\widehat{f}(\sigma) & \equiv E_{2} E_{3} \ldots E_{n} \cdot f\left(E_{1}\right)
\end{aligned}
$$

$\widehat{f}(\sigma)$ may be not perfect, but ...
Theorem.

1) If a μ-subgraph is infinite, it contains ∞ many perfect vertices:

$$
\widehat{f}^{n_{1}}(\mu), \widehat{f}^{n_{2}}(\mu), \widehat{f}^{n_{3}}(\mu) \ldots
$$

2) Perfectness is verifiable.

μ-subgraphs in details (there are cancelations)

Weak alternative. Moving along the μ-subgraph, we can detect one of:

- the μ-subgraph is finite,
- the μ-subgraph contains a perfect vertex v_{0}.

In the second case we still have to decide, whether the μ-subgraph is finite or not.

Case 1. If v_{0} is r-perfect, then
(1) $L_{r}\left(\widehat{f}^{i+1}\left(v_{0}\right)\right) \geqslant L_{r}\left(\widehat{f}^{i}\left(v_{0}\right)\right)>0$ for all $i \geqslant 0$.
(2) There exist computable natural numbers $m_{1}<m_{2}<\ldots$, such that
$L_{r}\left(\widehat{f} m_{i}\left(v_{0}\right)\right)=\lambda_{r}^{i} L_{r}\left(v_{0}\right)$ for all $i \geqslant 1$.
\Rightarrow In this case the μ-subgraph is ∞ and the membership problem in it is solvable.

Case 2. If v_{0} is A-perfect, then we can find a finite set $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ of A-perfect vertices in the v_{0}-subgraph such that all A-perfect vertices in the v_{0}-subgraph are:

$$
\begin{array}{llll}
v_{0}, & v_{1}, & \ldots, & v_{k}, \\
{\left[f\left(v_{0}\right)\right],} & {\left[f\left(v_{1}\right)\right],} & \ldots, & {\left[f\left(v_{k}\right)\right]} \\
{\left[f^{2}\left(v_{0}\right)\right],} & {\left[f^{2}\left(v_{1}\right)\right],} & \cdots, & {\left[f^{2}\left(v_{k}\right)\right],}
\end{array}
$$

Moreover, given a vertex u in the v_{0}-subgraph, we can find a number ℓ, such that $\widehat{f}^{\ell}(u)$ is an A-perfect vertex.

So the finiteness and the membership problems for the v_{0}-subgraph can be reduced to:
Problem FIN. Does there exist $m>n \geqslant 0$ such that

$$
\left[f^{n}\left(v_{0}\right)\right]=\left[f^{m}\left(v_{0}\right)\right] ?
$$

Problem MEM. Given an f-path τ, does there exist $n \geqslant 0$ s.t.

$$
\left[f^{n}\left(v_{0}\right)\right]=\tau ?
$$

Both can be answered with the help of a theorem of Brinkmann.

THANK YOU!

