INTRODUCTION TO TRAIN TRACKS

The train track technique invented by Bestvina and Handel in 1992, enables to solve difficult problems on $\operatorname{Aut}(F_n)$ and $\operatorname{Out}(F_n)$.

- Tits alternative for $Out(F_n)$. (Bestvina, Feighn, Handel)
- Scott problem: $rk(Fix(\alpha)) \leq n$. (Bestvina, Handel)
- Computing a basis of $Fix(\alpha)$. (Bogopolski, Maslakova)
- The conjugacy problem for $\operatorname{Aut}(F_n)$???

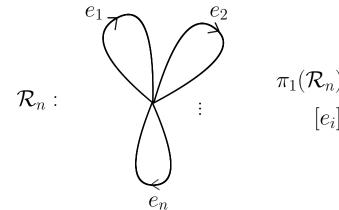
A difficulty in studying of automorphisms $\varphi: F_n \to F_n$

Unpredictable cancelations in computing of $x, \varphi(x), \varphi^2(x), \ldots$

$$\varphi: \begin{cases} x_1 \mapsto x_2 \\ x_2 \mapsto x_3 \\ x_3 \mapsto x_3 x_1^{-1} \end{cases}$$

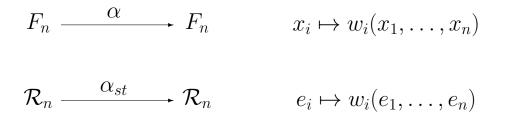
$$\begin{array}{l} x_3 \mapsto x_3 x_1^{-1} \\ \mapsto x_3 x_1^{-1} x_2^{-1} \\ \mapsto x_3 x_1^{-1} x_2^{-1} x_3^{-1} \\ \mapsto x_3 x_1^{-1} x_2^{-1} x_3^{-1} x_1 x_3^{-1} \\ \mapsto x_3 x_1^{-1} x_2^{-1} x_3^{-1} x_1 x_3^{-1} x_2 x_1 x_3^{-1} \\ \mapsto x_3 x_1^{-1} x_2^{-1} x_3^{-1} x_1 x_3^{-1} x_2 x_1 x_3^{-1} \\ \mapsto x_3 x_1^{-1} x_2^{-1} x_3^{-1} x_1 x_3^{-1} x_2 x_1 x_3^{-1} \end{array}$$

A rose with n petals



$$\pi_1(\mathcal{R}_n) \cong F(x_1, \dots, x_n)$$
$$[e_i] \mapsto x_i$$

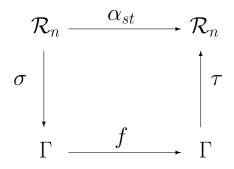
The standard topological representative of $\alpha \in Aut(F_n)$



A topological representative of $\alpha \in Aut(F_n)$

Definition. Let Γ be a finite connected graph. A homotopy equivalence $f : \Gamma \to \Gamma$ is called a *topological representative* of α if

- $f(\Gamma^0) \subseteq \Gamma^0,$
- -f is locally injective on the interior of each edge of Γ ,
- there exist two "mutually inverse" homotopy equivalences $\tau : \mathcal{R}_n \to \Gamma$ and $\sigma : \Gamma \to \mathcal{R}_n$ such that the following diagram is commutative.

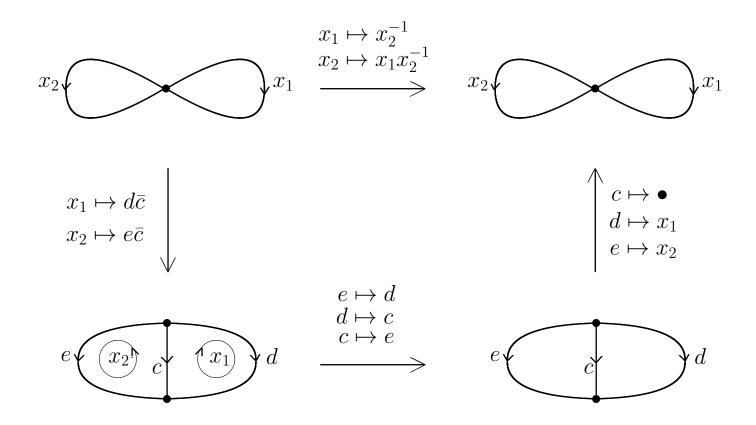


We want to find a good topological representative $f : \Gamma \to \Gamma$ of α , i.e. such that, for each edge E of Γ , the paths $E, f(E), f^2(E), \ldots$ are reduced.

Example

$$\varphi: \begin{cases} x_1 \mapsto x_2^{-1} \\ x_2 \mapsto x_1 x_2^{-1} \end{cases}$$

$$x_2 \mapsto x_1 x_2^{-1} \mapsto x_2^{-1} \cdot x_2 x_1^{-1}.$$



Irreducible outer automorphisms

Definition. An automorphism $\mathcal{O} \in \text{Out}(F_n)$ is *irreducible* if one of the following equivalent conditions is satisfied:

Geo.

Each topological representative $f: \Gamma \to \Gamma$ of \mathcal{O} which has no hanging edges,

has no proper f-invariant subgraphs different from forests.

Alg.

There does not exist a decomposition of F_n of the form

$$F_n \neq H_1 * H_2 * \dots * H_{k} * L$$

where $1 < H_i < F_n$, and $\mathcal{O}([H_i]) = [H_{i+1}] \mod k$.

A sufficient condition for the irreducibility of \mathcal{O}

If

- the char. pol. of $\mathcal{O}_{ab}: \mathbb{Z}^n \to \mathbb{Z}^n$ is irreducible over \mathbb{Z} and
- Trace(\mathcal{O}_{ab}) $\neq 0$,

then \mathcal{O} is irreducible.

Example. $[\phi], [\psi]$ are irreducible, $[\theta]$ is reducible.

$$\varphi: \begin{cases} x_1 \mapsto x_2^{-1} \\ x_2 \mapsto x_1 x_2^{-1} \end{cases} \quad \psi: \begin{cases} x_1 \mapsto x_2 \\ x_2 \mapsto x_3 \\ x_3 \mapsto x_3 x_1^{-1} \end{cases} \quad \theta: \begin{cases} x_1 \mapsto x_1 \\ x_2 \mapsto x_1 x_2 \end{cases}$$

Train tracks

Definition. A topological representative $f : \Gamma \to \Gamma$ of \mathcal{O} is called *a train track* for \mathcal{O} if, for each edge E of Γ , all the paths $E, f(E), f^2(E), \ldots$ are reduced.

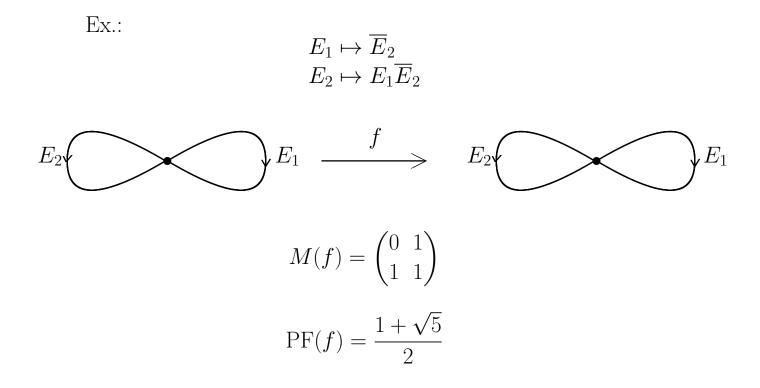
Theorem (Bestvina, Handel; 92). Each irreducible automorphism $\mathcal{O} \in \text{Out}(F_n)$ has a topological representative which is a train track map.

Remark. Given a topological representative $f : \Gamma \to \Gamma$, one can verify whether f is a train track or not.

Transition matrix of the map $f: \Gamma \to \Gamma$

From each pair of mutually inverse edges of Γ we choose one edge. Let $\{E_1, \ldots, E_k\}$ be the set of chosen edges.

The transition matrix of the map $f : \Gamma \to \Gamma$ is the matrix M(f) of size $k \times k$ such that the ij^{th} entry of M(f) is equal to the total number of occurrences of E_i and $\overline{E_i}$ in the path $f(E_i)$.



Theorem (Frobenius). If $M \ge 0$ is a nonzero irreducible integer matrix, then $\exists \vec{v} > 0$ and $\lambda \ge 1$ such that $M\vec{v} = \lambda \vec{v}$.

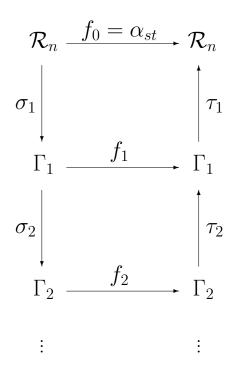
If $\lambda = 1$, then M is a permutation matrix. v is unique up to a positive factor. $\lambda = \max$ of absolute values of eigenvalues of M

Remark. If $f : \Gamma \to \Gamma$ is an irreducible topological representative, Γ does not have hanging edges and nontrivial invariant forests, then M(f) is irreducible.

The idea of the proof of Bestvina – Handel Theorem

A topological representative $f : \Gamma \to \Gamma$ is called *good* if M(f) is irreducible and the $deg(v) \ge 3$ for each vertex of $v \in \Gamma^0$.

Note, if $rk(\Gamma) = n$, then the number of edges in Γ is at most 3n-3. In particular, $size(M(f)) \leq 3n-3$.



Let $\alpha \in \operatorname{Aut}(F_n)$ be irreducible. In particular, f_0 is good. **The algorithm** constructs a tower of topological representatives as above such that

- $\operatorname{PF}(f_0) \ge \operatorname{PF}(f_1) \ge \operatorname{PF}(f_2) \ge \dots$,
- if f_i is not a train track, but f_i is good, then $f_{i+\ell}$ is also good and $PF(f_i) > PF(f_{i+\ell})$ for some universally bounded $\ell = \ell(i)$.

Clearly, if the algorithm stops on f_k , then f_k is a train track.

The algorithm stops, since, for every $\lambda > 0$, there is only finitely many nonnegative integer irreducible matrices M of bounded size ($\leq 3n - 3$) with $PF(M) < \lambda$.

TOOLS

Transformations $f \to f_1$

1. tightening2. collapsing f -invar. forest	$M(f)$ and $M(f_1)$ are irr. $\Longrightarrow PF(f_1) < PF(f)$	
 3. subdivision 4. folding 	$M(P)$ irr. $\Longrightarrow M(f_1)$ irr. $\Longrightarrow PF(f_1) = PF(f)$	1
5. valency-one homotopy + cleaning	$M(f) \text{ and } M(f_1) \text{ are irr.} \Longrightarrow $ $PF(f_1) < PF(f)$)
6. valency-two homotopy + cleaning	$PF(f_1) \leqslant PF(f)$)

Cleaning means tightening and collapsing of the maximal f-invariant forest.

Perron-Frobenius metric on Γ

Let $f : \Gamma \to \Gamma$ be a topological representative of \mathcal{O} . We enumerate the edges e_1, \ldots, e_m of Γ and construct the transition matrix M(f).

Suppose that M(f) is irreducible.

Then $\vec{v}M(f) = \lambda \vec{v}$ for $\lambda = PF(f)$ and some $\vec{v} = (v_1, \dots, v_m) > 0$. We define the PF-metric on Γ by $L(e_i) = v_i$.

Then $L(f(\rho)) = \lambda L(\rho)$ for any path ρ in Γ .