Gruppentheorie

Übungsblatt 3

Aufgabe 1. Seien $A = \langle a, b^2, bab^{-1} \rangle$ und $B = \langle ab, ba \rangle$ zwei Untergruppen der freien Gruppe F(a, b).

- a) Berechnen Sie eine Basis der freien Gruppe $A \cap B$.
- b) Finden Sie den Index $|B:(A\cap B)|$.

Aufgabe 2.

- a) Sei H Schnitt aller Untergruppen des Index 2 in F(a,b). Beweisen Sie, dass H normal in F(a,b) und dass $F(a,b)/H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ ist.
 - b) Finden Sie eine Basis einer normalen Untergruppe H in F(a,b) mit $F(a,b)/H \cong \mathbb{Z}_4$.

Aufgabe 3. Sei $1 \neq H$ eine endlich erzeugte Untergruppe einer freien Gruppe F(X). Beweisen Sie: wenn H normal in F(X) ist, dann ist der Index |F(X)| : H endlich.

Hinweis:

- 1) Wie sieht $St(\Gamma_H)$ aus, wenn |F(X):H| unendlich ist?
- 2) Sei $1 \neq h \in H$. Angenommen |F(X)|: $H| = \infty$, beweisen Sie, dass ein $g \in F(X)$ existiert, so dass den Weg p in $St(\Gamma_H)$ mit $\alpha(p) = v$ und $Lab(p) = ghg^{-1}$ nicht geschlossen ist.

Die Differenzierung in F(X) wird am Montag erklärt.

Aufgabe 4. Kalkulieren Sie die folgenden Ableitungen für $n \in \mathbb{N}$:

1)
$$\frac{\partial}{\partial z}(xyz^2x^{-1}y^{-1}z^{-2}),$$

$$2) \frac{\partial}{\partial x} [x^n, y],$$

3)
$$\frac{\partial}{\partial x}[x,y]^n$$
.

Hier benutzen wir die Bezeichnung [a, b] für $a^{-1}b^{-1}ab$.