Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Prof. Dr. Oleg Bogopolski Svenja Lage

SoSe 2019 Abgabe Di., 28.05, 10:20 Uhr

Analysis II Übungsblatt 8

Aufgabe 1. (Diese Aufgabe soll bei der Berechnung von Integralen in Aufgabe 2 helfen.)

Für $\alpha \in \mathbb{R}$ definieren wir die Funktionen f und g_{α} von $(0, \infty)$ nach \mathbb{R} durch $f(t) := \ln(t + \sqrt{t^2 + 1})$ und $g_{\alpha}(t) := t^{\alpha} \cdot \sqrt{t^2 + 1}$.

(a) Finden Sie
$$a, b \in \mathbb{R}$$
, so dass $\sqrt{t^2 + 1} = a \cdot f'(t) + b \cdot g'_1(t)$ gilt. [4P]

(b) Finden Sie
$$c, d \in \mathbb{R}$$
, so dass $\frac{\sqrt{t^2 + 1}}{t^2} = c \cdot f'(t) + d \cdot (g_{-1})'(t)$ gilt. [4P]

Aufgabe 2.

(a) Wir betrachten die folgenden zwei unendlichen Wege:

[4+4P]

$$\gamma: [0, \infty) \to \mathbb{R}^2, \quad \gamma(t) = t(\cos(t), \sin(t)),$$

 $\delta: (0, \infty) \to \mathbb{R}^2, \quad \delta(t) = \frac{1}{4}(\cos(t), \sin(t)).$

Seien a und b zwei reelle Zahlen mit $0 < a < b < \infty$.

- (a1) Berechnen Sie die Länge $L(\gamma|_{[a,b]})$ des Teilweges $\gamma|_{[a,b]}$.
- (a2) Berechnen Sie die Länge $L(\delta|_{[a,b]})$ des Teilweges $\delta|_{[a,b]}$.
- (b) Skizzieren Sie die Spuren der Wege γ und δ in \mathbb{R}^2 . Zeigen Sie die Richtungen auf beiden Spuren, die dem wachsenden t entsprechen. [5P]
- (c) Untersuchen Sie, ob der Grenzwert $\lim_{b\to\infty} L(\delta|_{[1,b]})$ existiert. [5P]

Aufgabe 3. Sei K_1 der Kreis in \mathbb{R}^2 mit dem Mittelpunkt (0,0) und Radius 1. Sei K_2 der Kreis in \mathbb{R}^2 mit dem Mittelpunkt (2,0) und Radius 1. Wir betrachten den Punkt P = (1,0), der auf dem Kreis K_2 liegt. Nun rollen wir K_2 entgegen dem Uhrzeigersinn auf K_1 ab. Die Spur des Punktes P bildet eine geschlossene Kurve γ . Diese Kurve heißt Kardioide.

(a) Beweisen Sie, dass γ so parametrisiert werden kann: [7P]

$$\gamma: [0, 2\pi] \to \mathbb{R}^2, \ \gamma(t) = (2\cos(t) - \cos(2t), 2\sin(t) - \sin(2t)).$$

(b) Beweisen Sie, dass die Länge von γ gleich 16 ist. [7P]