Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Prof. Dr. Oleg Bogopolski Dr. Christian Axler WiSe 2018/19 Abgabe: Di. 18.12 bis 14:30 Uhr

Alle Antworten müssen begründet werden! Aufgaben 3 und 4 können Sie erst nach der Vorlesung am Freitag lösen.

Analysis I Übungsblatt 10

Aufgabe 1. Wir betrachten die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Beweisen Sie:

(a) f ist differenzierbar. [3P.]

(b) f' ist nicht differenzierbar in $x_0 = 0$. [3P.]

- (c) Ist $g(x) = f^2(x)$, so hat g ein lokales Minimum in $x_0 = 0$. [3P.]
- (d) Für jedes $\epsilon > 0$ ist g im Intervall $(0, \epsilon)$ nicht monoton wachsend und im Intervall $(-\epsilon, 0)$ nicht monoton fallend. [3P.]
- (e) Skizzieren Sie den Graph von q. [3P.]

Hinweis zu (b). Es genügt zu beweisen, dass f' nicht stetig in $x_0 = 0$ ist.

Aufgabe 2. Wir betrachten die Funktion $f:(0,\infty)\to\mathbb{R},\ x\mapsto x^{\frac{1}{x}}$.

- (a) Beweisen Sie, dass f nur eine kritische Stelle besitzt. Finden Sie diese Stelle x_0 . [3P.]
- (b) Beweisen Sie, dass f streng monoton wachsend auf $(0, x_0)$ und streng monoton fallend auf (x_0, ∞) ist. [3P.]
- (c) Ohne Rechner beantworten Sie die Frage: Was ist größer, e^{π} , oder π^{e} ?

 Begründen Sie Ihre Antwort.

 [3P.]
- (d) Beweisen Sie, dass $\lim_{x\to 0} f(x) = 0$ und $\lim_{x\to \infty} f(x) = 1$ ist. [3P.]

Hinweis. Schauen Sie sich die Definition 8.6 und Sätze 8.5 und 10.8 des Kurzskripts an.

Fortsetzung Seite 2.

Aufgabe 3. Bestimmen Sie für die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{1+x^2}$$

maximale Intervalle, auf denen f konvex bzw. konkav ist.

Aufgabe 4.

(a) Beweisen Sie:
$$\exp(x) = 1 + x + o(x)$$
 für $x \to 0$. [2P.]

[3P.]

(b) Beweisen Sie:
$$\sin(x) = x - \frac{x^3}{3!} + o(x^3)$$
 für $x \to 0$. [2P.]

(c) Berechnen Sie:
$$\lim_{x\to 0} \frac{\sin^2(x)}{1-e^{(x^2)}}$$
. [3P.]

(d) Berechnen Sie:
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)}\right)$$
. [3P.]

Hinweis zu (a) und (b). Satz 6.10 und Lemma 8.14 des Kurzskripts sind hier nützlich.