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O N  T H E  M U L T I P L I C I T Y  OF I L L U M I N A T I O N  OF C O N V E X  B O D I E S  

B Y  P O I N T  S O U R C E S  

O. V .  B o g o p o l ' s k i i  and  V.  A.  Vasi l 'ev  

In this paper  we investigate a combinatorial geometry problem on the multiplicity of illumination of 
sets by point sources. Being of interest in itself, the problem considered is orientated towards problems of 
nonsymmetr ic  analogs of Shapley value in cooperative games with accessory payments  [1]. 

In Theorem 1 we give the exact lower bound of a number  of sources that  are strictly separated from a 
convex body of R n and illuminate it with a multiplicity not less than two. We obtain an analogous result 
for nonconvex bodies with a finite set of nonsmooth points (see Proposition 1). 

We have established the hypothesis on the minimal number of sources for the general case, that  is, 
for a multiplicity of i l lumination more than two. 

For a nonempty  subset X C_ R n we denote the convex hull of X by coX;  Br is a closed ball (in 
/2-norm) of radius e > 0 and with center at a point z E Rn; L[z, y) is a ray on a vertex x passing through 
a point g; II(x, y) is a straight line passing through the points x and y; Ix, g] is the segment connecting 
points x and g. 

By a body V E R" we mean a compact set V such that  for any point z of its boundary  OV and for 
any e > 0 "are have B~(x) N int V r Q. Using the usual terminology of combinatorial geometry [2, 3], we 
introduce the following definition. 

D e f i n i t i o n  1. Let V be a body of R ". We say that  a point y E OV is i l luminated by a point (a source) 
x E R n \ V, if there exists e > 0 such that  for any z E B~(y) n OV we have [z, z] f~ V = {z}. 

For convex bodies Definition 1 is equivalent to the following definition. 

D e f i n i t i o n  1 t. Let V be a convex body of R ". We say that  a point y E OV is i l luminated by a point (a 
source) z E R" \ V, if Ix, y] N V =  {y} and L[x,y)  Nint  V r ~.  

Let V be a body  of IR" and X be a subset of R" such that V N X = O. A multiplicity of illumination 
of a point y E OV (with respect to X)  is a cardinality r ex(g)  of the set of points of X that  il luminate g. 

D e f i n i t i o n  2. The  quanti ty  r e x ( V )  = sup{rex(y)  J y E OV} is called the multiplicity of illumination of 
the body V by the set X. 

By Vx we denote the set of points g E OV that  are illuminated by a point z. 

Remark 1. The condition r e x ( V )  = 1 is equivalent to the condition Vx N V~, = ~ for x, x ~ E X,  x 7~ z'. 

T h e o r e m  1. Let V C_ IR n be a convex body, X C_ R n a set of points such that IXI _> n +  1 and 
co X N V = Q. Then the multipBcity of illumination of the body V by the set X is not less than two. 

We first prove the following lemma. 

[ , e m m a .  Let V be a convex body o f X ' ,  x E R" \ V, and x' E co({x) U V) \ V. Then V~, C_ V,. 

Proof. It is sufficient to prove that  z E OV and [x', z] N V = {z} imply [x, z] N V = {z}. If z E L[x, x'), 
then the la t ter  is obvious. Therefore, we consider that  z ~ L[x, x'). We denote by t a point lying on the 
ray L[x,z')  and such tha t  [x,t] N V = {t}. 
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Suppose there exists a point v E [x, z) r'l V. The point t lies on the continuation of a side of triangle 
xx'z ,  and the point v lies inside [x, z]. Then by Pasch's axiom of the system of Hilbert 's  axioms of 
Euclidean geometry  the segment [v,t] intersects the side [x', z] at some interior point u. But  since the 
body V is convex and v , t  E V,  it follows that  u E [v,t] C_ V; contradicting [x',z] M V = {z}. 

Proof. It is sufficient to prove the theorem for the case IX I = n + 1. We apply the induction over n. For 
n = 1 the s ta tement  of the theorem is obviously valid. Let us go over by induction from n - 1 to n. Let 
the body  V C_ IR n and the set X = {Xl , . . .  ,x~+l} satisfy the hypotheses of the theorem, and r e x ( V )  = 1. 
Since co X M V = 0 ,  we see that  there exists a hyperplane H strictly separating X and V. Take some point 

' = L [ x i , v )  r"lH, i = l ,  . n + l .  Then by t h e l e m m a ,  t h e s e t  X '  v E i n tV  and put  x i . .  , : { x i , . . .  , X n . { _ l }  , 

as well as the set X ,  illuminate V with multiplicity one and, furthermore,  X '  C_ H,  H M V = 0 .  
Therefore, without  loss of generality we can consider in the sequel tha t  X C__ H.  Let us show that  

without loss of generality we can also assume that  xl E intH co(X \ {xl}. 
Let H ~ be  a hyperplane of support  to V that  is parallel to the plane H.  For r E R by H ~ we denote 

a hyperplane parallel to H ~ and lying at a distance Irl from H ~ in the same half-space (with respect to 
H ~ as the body  V for r <__ 0, or in the other half-plane for r > 0. 

Since int V 7 ~ 0 ,  there exists r0 < 0 such that  

1) for r0 < r < 0 the set V ~ = H ~ N V is a (convex) body  in the hyperplane H TM , and 
2) the point v E int V and the hyperplane H ~ are strictly separated by the hyperplane H TM . 

For r > r0 we define the points x ;  = L[z2, v) M H ~, . . . ,  x~+ 1 = L[xn+l, v) M H r. Further,  we put  
X ~ = { x ~ , . . . , x ~ + l } .  Then either X ~ M V ~ 5 k e ,  or X ~ C_ H ~ \ g ' .  Let us show that  c o X "  M V ~ r e in 
both cases. Toward this end we prove the following statement: 

for any ro < r < O and z E H ~ \ V ~ 
(r~)~ c_ V~. (t) 

Let y E (V~)~. Then by Definition 1', L[x,y)  Mint H ,  V r 7 k ft. To prove the inclusion y E V,, it 
is sufficient to show that  intH r V ~ C_ int V. However, this is obvious since co ({v, w} U V ~) C_ V, where 

w E  V ~ 
Therefore, in the case X "  C H ~ \ V  ~ (T0 < r < 0) it follows from (1) and r e x ( V )  = 1 that  

rex .  (V ~) = 1. But  then by the inductive hypothesis we have co X ~ R V ~ ~k O. 
Thus, under our assumptions for all r E (%,0)  we have c o X  ~ M V ~ r 2~. 
Now for each 7, % < r < 0, we choose a point y~ E c o x  ~ M V ~ and coefficients a ~ , . . . ,  a~+l  such 

that yr ~pn+] r r ~ 7 ' n +  1 r ~ = 1} is = z_~i=2 a i x i ,  /__,i=2 a}- = 1, a ;  _> 0 , . . . , a n +  1 >_ 0. Since the simplex {x E IR~[~ i=lX i  

compact,  we see that there exist coefficients a ~  0 such that  V'~+l 0 = 1, a ~ _> 0, 0 > 0 ' ,O!n+ l  Z-Ji=20~i ' ' ' ' O L n + l  -- 
0 r--9-0 and the vector ( a ~  , a n + l )  is a limit vector for the sequence of vectors ( a ~ , . . . , ~ + l ) ,  r = 2,  a ,  . . . .  

Put  y0 V,~+] 0 0 Then y0 is the limit point of the sequence y~ r = r0 ~0 = z - ~ i - - - - 2 0 Q 2 : i "  , 2,  T , " ' ,  and, consequently, 
y0 E V ~ since V is closed. 

, ,~+1B~(xO)a V o ' = H a ML[xl ,y~  with Further,  we fix e > 0. Then y0 E int co Ui=2 and for the point 2:1 
n+l Ha" sufficiently small # > 0, we have x~ E int co Ui=2 B~(2:~ n 

" of the sets Now for each i = 2 , . . . ,  n + 1 we choose a point x i 

N H n co({z } u V) 

so that 
! r ~ ! . . .  2:n+1}.  (2)  2:1 E in t  CO'iX 2 , 

By the choice of x i' and the lemma we have Vx} C_ Vx~ for i = 1, 2..,. ., n + 1. It follows from this and from 

rex (V)  = 1, that  m x , ( V ) :  1, where X ' =  {2:~,.. ' �9 , 2:n+1}" Moreover, X '  C_ H a and the inclusion (2) is 

true. 
So, wi thout  loss of generality we can assume that the set X lies in a hyperplane H not intersecting 

V, r e x ( V )  = 1 and 
2:1 E i n t c o { 0 5 2 , . . .  , x n + l } .  (3)  
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a~ 2 

FIG. 1 

Let A E V be a nearest point to the point xi with respect to Euclidean metric I2, and let h = l(xi, A) 
h be the distance between Xl and A. Then there exists a ball Be(O) C_ int V such that e < ~- and l(Xl, O) < 

}h. There also exists Cl such that 0 < c 1 ( 2 and l(xj,Bsl(Xl)) > 6s 1 for j = 2 , . . .  ,n  + 1. 
} 

Let us put S1 = O(Be,(zl) M H) and $2 = Si + xlO. We build a cylinder R on the bases S1 and 
{ ' }} { 1} S2 and say that the sets S2+t 'Ox l  [ 0 < t <  and S2+t.  Ox~ [ 0 < t <  g are the lower half part 

and the lower third part of R, respectively. Then 

1) the lower half part of R lies in K = co({xi} U Be(O)), since el < ~, and 
2 e 8 2) R M V lies in the lower third of R, otherwise I(Xl, V) < 51 + 51(x~, O) < g + gh < h. 

Let us define a function F :  Bs,(Xl) A H --+ ~{ in such a way that F(x) is the distance from the point 

z to V along the direction zlO, that is, 

F(x)=l(x ,VnII~) ,  xEBe~(Xl)NH, 

where II~ is a straight line passing through the point x and parallel to the straight line II(xl,  O). Since 
the body V is convex, we see that the finite-valued function F is convex and, therefore, continuous [4]. By 
virtue of the compactness of S1 the lower bound d = inf F(x) is realized. Let C1 E Si and B 1 E R N V 

zESi 

be points such that CiB1 II and I(C1, B1) = d. It is clear that B1 lies in the lower third part of the 
cylinder R. 

Let us choose a point xi E {x2 , . . . ,  an+l} so that a point C2 E Be~(xl) lies inside the segment [xi, 6'1] 
(see Fig. 1). This is possible, otherwise the sets {x2, . . . ,  Xn+l} and Be~(Zl) are separated by a hyperplane 
passing through C1, contradicting the condition (3). 

Now let us consider the triangle ziCIB1. Let B2 be an interior point of the segment [xi,/~1] SUCh that 
~(C2,B2) II I I (A ,B1) .  Then [C2,B2] C_ R. Since I(C2,B2) < l(C1,Bi), we have B2 ~ V. On the other 
hand, 

l(C2,B2) ~> -~I(C1,B1), (4) 

since 
[(C1,B1) [(gi,C1) [(gi, C2) ~-l(C2,C1) _ [ ~- l(C2,C1) 2g I 4 

-- -- -- < I + - -  - 

[(C2, B2) l(xi, C2) l(zi, C2) l(zi, C2) 691 3 

It follows from (4) and from B1 lying in the lower third part of the cylinder R that the point B2 lies in the 
lower half part of R and, hence, in K. By the lemma we have VB~ _C V~I and VB2 C_ V~. Besides, VB2 r 0, 
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since B2 ~ V. From here it follows that  V~ 1 n V~ =/= 0 and rex(V)  >_ 2, contradicting the  hypothesis.  The 
theorem is proved. 

D e f i n i t i o n  3. We say that  a point y of the boundary  of the body V is smooth, if at this point there 
exists a unique hyperplane tha t  is tangent  to V. 

P r o p o s i t i o n  1. Let V be a body of R ~ (possibly, nonconvex) with a iqnite set of nonsmooth points of 
OV; let X be a set of points o/ 'R ~ such that 

1) lXl > 3, and 
2) c o X n V =  o.  

Then the multiplicity of i11umination of the body V by the set X is not less than two. 
If aii points of OV are smooth or n = 1, then condition 1) may be replaced by 

1') IXl > 2. 

Proof. For n = 1 the proposition is obvious. Let n > 2, IX[ > 3, and let Xl  = {x i , z2 ,xs}  be a three- 
element subset of X.  Also let z E OV be the nearest point to co X1, and d the distance from z to co X1. 
Since d, the neighborhood of the set c o X i ,  is also a convex set, we see that  there are no points of V inside 
segments connecting z with any point of co X1. Therefore, if z is a smooth point, then  z E V~ N V~ 2 and 
rex(V) >_ 2. 

Suppose z is a nonsmooth  point and Bs(z) is a ball such that  co (B~(z) U Xi )  does not contain any 
nonsmooth points except for z. 

Let us prove that  one can choose a point t E T = co(Be(z)  U Xi )  n OV such that  for some distinct 
xi ,x j  E X1, the set CO{Zi,Zj,t} A OV does not contain the point z. We first choose a point y E T that  is 
different from z. The following two cases are possible: 

a) z ~ co{x i ,x j ,y}  for some distinct x i ,x j  E X1, or 
b) z E co{x i ,x j ,y}  for some distinct xi ,x j  E Xi .  

In case a) we put t = y. 
In case b) the points xi ,  x2, x s ,y  and z lie in the same affine plane P of dimension 2. In addition, in 

this case z E [xi,y] for some zi E {xl ,x2,z3}.  
If there exists a point of T not lying in P,  then as t we choose any such point. 
But if T C__ P ,  then  as t we take a point of T such that  t and some point xj E X~ \ {xi} lie in the 

same half-plane defined by the straight line II(xi, y), and t @ (x~, y). The triple x~, z j, t is required. 
Thus, the set co{x/, z j, t} n OV is nonempty,  compact,  and does not contain nonsmooth  points of OV. 

Let v be a point of CO{Xi, Xj,t  } I~ OV such that  the sum of the distances from v to the points xi and xj 
is minimal. Then  v is a smooth point and there exist no points of V on the segments [xi, v] and [z j, v] 
except for v. Hence, v E V~ N V~,  that  is, rnx(V)  > 2 also in this case. 

If all points of OV are smooth, then the proof of the assumption is analogous to tha t  of the first 
section of the present proof. 

D e f i n i t i o n  4. For n, k E N, n >_ 1, k >_ 2, by f (n ,  k) we denote a minimal natura l  number  such tha t  for 
a convex body of R n and for any set X C C_ R n of points such that  

1) IX I >_ f (n ,  k), and 
2) c o X n V =  O, 

the set X illuminates the body V with a multiplicity not less than k. 

C o n j e c t u r e .  f (n ,  k) = n(k - 1) + 1. 

Remark 2. The conjecture is true for k = 2 (Theorem 1) and for n = 2. 

Remark 3. The  following example shows that  

f (n ,k )  >_ n(k - 1) + 1. 
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As V we take a simplex {z C R n n 1}, and as a + I ~-~i=1 xi <_ X set of points with the propert ies 
n 

1) X lies in a plane P = {x E a"  I E ,=l  x, = - 1 ) ,  
2) x = x1  u . . .  u x n ,  where X~ N Xj  = O for i 7~ j ;  IX~[ = k - 1 for i = 1 , . . .  ,n; and points of X~ 

(and only these points of X)  illuminate the interior of the face of the body  V, 

n Fi = x E R +  I xs <_ 1, xi = 0  i =  1 , . . . , n .  
i=1 

It is easy to unders tand that there exists such a set X of the cardinality n (k  - 1) that  this set 
illuminates the b o d y  V with multiplicity k - 1, and, if we add a new point of P to X ,  then the new set 
illuminates V with multiplicity k. 
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