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In this paper we investigate a combinatorial geometry problem on the multiplicity of illumination of
sets by point sources. Being of interest in itself, the problem considered is orientated towards problems of
nonsymmetric analogs of Shapley value in cooperative games with accessory payments [1].

In Theorem 1 we give the exact lower bound of a number of sources that are strictly separated from a
convex body of R™ and illuminate it with a multiplicity not less than two. We obtain an analogous result
for nonconvex bodies with a finite set of nonsmooth points (see Proposition 1).

We have established the hypothesis on the minimal number of sources for the general case, that is,
for a multiplicity of illumination more than two.

For a nonempty subset X C R"™ we denote the convex hull of X by coX; B.(z) is a closed ball (in
l-norm) of radius € > 0 and with center at a point z € R"; L[z,y) is a ray on a vertex z passing through
a point y; II(z,y) is a straight line passing through the points z and y; [z,y] is the segment connecting
points z and y.

By a body V € R™ we mean a compact set V such that for any point z of its boundary 8V and for
any £ > 0 we have B.(z) Nint V # @. Using the usual terminology of combinatorial geometry [2, 3], we
introduce the following definition.

Definition 1. Let V be a body of R”. We say that a point y € 0V is illuminated by a point (a source)
z € R™\ V, if there exists € > 0 such that for any z € B.(y) N 0V we have [z,2] NV = {z}.

For convex bodies Definition 1 is equivalent to the following definition.

Definition 1'. Let V be a convex body of R". We say that a point y € dV is illuminated by a point (a
source) z € R*\V, if [z,y] NV = {y} and L{z,y) Nint V # @.

Let V be a body of R and X be a subset of R” such that VNX = &. A multiplicity of illumination
of a point y € OV (with respect to X) is a cardinality myx(y) of the set of points of X that illuminate y.

Definition 2. The quantity mx (V) = sup{mx(y) | y € OV} is called the multiplicity of illumination of
the body V by the set X.

By V., we denote the set of points y € OV that are illuminated by a point z.
Remark 1. The condition mx (V) =1 is equivalent to the condition V, NV, = @ for z,2' € X, z # 2.

Theorem 1. Let V C R" be a convex body, X C R" a set of points such that |X| > n + 1 and
coX NV = @. Then the multiplicity of illumination of the body V by the set X is not less than two.

We first prove the following lemma.
Lemma. Let V be a convex body of R", z € R*\ V, and ' € co({z} UV)\ V. Then V,» C V,.

Proof. 1t is sufficient to prove that z € OV and [z', 2| NV = {z} imply [z,2] NV = {2}. If z € L[z,2"),
then the latter is obvious. Therefore, we consider that z ¢ L{z,z"). We denote by t a point lying on the
ray L{z,z') and such that [z,t]NV = {t}.



Suppose there exists a point v € [z,z) N V. The point ¢ lies on the continuation of a side of triangle
zz'z, and the point v lies inside [z,z]. Then by Pasch’s axiom of the system of Hilbert’s axioms of
Euclidean geometry the segment [v,t] intersects the side [z, 2] at some interior point u. But since the
body V is convex and v,t € V, it follows that u € [v,t] C V, contradicting [z', 2] NV = {z}.

Proof. Tt is sufficient to prove the theorem for the case |X| = n + 1. We apply the induction over n. For
n = 1 the statement of the theorem is obviously valid. Let us go over by induction from n — 1 to n. Let
the body V C R™ and the set X = {z1,..., 241} satisfy the hypotheses of the theorem, and mx (V) = 1.
Since co X NV = &, we see that there exists a hyperplane H strictly separating X and V. Take some point
v € int V and put z} = L{z;,v)N H,:=1,...,n+ 1. Then by the lemma, the set X' = {z},..., 2},
as well as the set X, illuminate V' with multiplicity one and, furthermore, X' CH, HNV = @.

Therefore, without loss of generality we can consider in the sequel that X C H. Let us show that
without loss of generality we can also assume that z1 € intg co(X \ {z1}.

Let H® be a hyperplane of support to V that is parallel to the plane H. For 7 € R by H™ we denote
a hyperplane parallel to H® and lying at a distance |7| from H® in the same half-space (with respect to
H?®) as the body V for 7 <0, or in the other half-plane for 7 > 0.

Since int V # @, there exists 7o < 0 such that

1) for 7p < 7 < 0 the set V™ = H" NV is a (convex) body in the hyperplane H™, and
2) the point v € int V and the hyperplane H® are strictly separated by the hyperplane H™.
For 7 > 7y we define the points 7 = L{z2,v) NH", ..., 25,11 = L[zny1,v) N H™. Further, we put
X" ={25,...,27,,}. Then either X"NVT" # &, or X" C H"\ V". Let us show that coX"NV"™ # @ in
both cases. Toward this end we prove the following statement:
foranym <7 <0andz€e H"\V" '
(V)2 € Ve (1)

Let y € (V7),. Then by Definition 1', L{z,y) Ninty- V™ # &. To prove the inclusion y € V,, it
is sufficient to show that inty- V7 C int V. However, this is obvious since co({v,w} U V™) C V, where
w e VO

Therefore, in the case X™ C HT\ V™ (10 < 7 < 0) it follows from (1) and mx(V) = 1 that
mx-(V7) = 1. But then by the inductive hypothesis we have co X" NV # @.

Thus, under our assumptions for all 7 € (79,0) we have co X" NV # &,

Now for each 7, 79 < 7 < 0, we choose a point y” € coX™ N V™ and coeficients o, ..., a7, such
that y™ = Z"+21 alzl, ?+21 al =1,a] 20,... n+1 > 0. Since the snnplex {3: e R% [21_1 :z:z = 1} is
compact, we see that there exist coefficients a3, ..., a%,; such that anzl a?=1,a3>0,...,a%,, >0
and the vector (ag, . a(r]z+1) is a limit vector for the sequence of vectors ( 5, ey n+1), T = ZZQ, L,

7o
, 2,..., and, consequently,

Put y° = E?f; a%z?. Then y° is the limit point of the sequence y™, 7 =
y® € V9, since V is closed.

Further we fix € > 0. Then y° € int co U"+l (29)NV? and for the point z} = H* N L[z1,y"), with
sufficiently small i > 0, we have € int co|Ji7; B (a:o) nH*:

Now for each i = 2,...,n + 1 we choose a point z!' of the sets

vl 2

(B.(z!YNH*)Neo({z;} U V)

so that

7} € intco{ah, ..., xh 1} (2)
By the choice of z! and the lemma we have Vs C Vy, for i = 1,2,...,n+ 1. It follows from this and from
mx(V) =1, that mX,(V) = 1, where X' = {7317--~ Thiq)- Moreover, X' C H* and the inclusion (2) is
true.

So, without loss of generality we can assume that the set X lies in a hyperplane H not intersecting
V,mx(V)=1and
zy € intco{zy,.. ., Tptr ) (3)



Fig. 1

Let A € V be a nearest point to the point z; with respect to Euclidean metric [, and let A = (21, A)
be the distance between z1 and A. Then there exists a ball B.(O) C int V such that ¢ < g and I(z1,0) <
£h. There also exists ¢; such that 0 < &; < £ and I(zj, Be, (1)) > 6e1 for j =2,...,n + 1.

Let us put S1 = (B, (z1)NH) and S, = 51 + QTO) We build a cylinder R on the bases S; and
Sy and say that the sets {S’g +t- _O_:vz [0<t< %} and {5'2 +¢. 5:10—1) [0<t< %} are the lower half part
and the lower third part of R, respectively. Then

1) the lower half part of R lies in K = co({z1} U B.(0)), since €1 < 3, and

2) RNV lies in the lower third of R, otherwise I(z1,V) < 1 + 21(21,0) < £ + §h < h.

Let us define a function F': B.,(z1) N H — R in such a way that F(z) is the distance from the point
z to V along the direction :TO), that is,

F(z)=l(z,V NnIl,), z € Be, (z1)NH,

where II; is a straight line passing through the point z and parallel to the straight line II(z;,0). Since

the body V is convex, we see that the finite-valued function F is convex and, therefore, continuous [4]. By

virtue of the compactness of S; the lower bound d = Ié’lg: F(z) is realized. Let C; € S} and By € RNV
z€S

be points such that C’1_B1> I m and [(Cy,B;) = d. It is clear that B lies in the lower third part of the
cylinder R.

Let us choose a point z; € {z3,...,Zn41} so that a point Cy € B,,(z1) lies inside the segment [z;, C1]
(see Fig. 1). This is possible, otherwise the sets {z3,...,2n41} and B. (1) are separated by a hyperplane
passing through Cy, contradicting the condition (3).

Now let us consider the triangle 2;C1 B;. Let B, be an interior point of the segment [z;, B;] such that
1(Cy, By) || I(Cy, By). Then [Cy, B2) € R. Since I(Cy,B2) < {(Cy,By), we have By ¢ V. On the other
hand,

3
[(C2, By) > Zl(CIaBl)a (4)
since
I(Cy, By) _ [(zi,Ch) _ Wzi, C2) +U(Cy,Cr) 14 [(Cy,Ch) <14 2e1 4
Z(CQ,BQ) l(.’Ei,Cg) l(xi,oz) - l(li,Cz) 651 N 3

It follows from (4) and from B; lying in the lower third part of the cylinder R that the point B, lies in the
lower half part of R and, hence, in K. By the lemmma we have Vg, C V;, and Vg, C V,,. Besides, Vg, # 0,



since By ¢ V. From here it follows that V;, NV, # 0 and mx (V) > 2, coniradicting the hypothesis. The
theorem is proved.

Definition 3. We say that a point y of the boundary of the body V is smooth, if at this point there
exists a unique hyperplane that is tangent to V.

Proposition 1. Let V be a body of R (possibly, nonconvex) with a finite set of nonsmooth points of
dV; let X be a set of points of R™ such that

1) |X| >3, and
2) coXNV =0,

Then the multiplicity of illumination of the body V' by the set X is not less than two.
If all points of @V are smooth or n = 1, then condition 1) may be replaced by

v) X1 =2

Proof. For n = 1 the proposition is obvious. Let n > 2, |X| > 3, and let X; = {;,22,23} be a three-
element subset of X. Also let z € OV be the nearest point to co Xy, and d the distance from z to co Xj.
Since d, the neighborhood of the set co Xy, is also a convex set, we see that there are no points of V inside
segments connecting z with any point of co X;. Therefore, if z is a smooth point, then z € V;, NV, and
mx(V) > 2.

Suppose z is a nonsmooth point and B.(z) is a ball such that co(B:(z) U X;) does not contain any
nonsmooth points except for z.

Let us prove that one can choose a point t € T' = co(B.(z) U Xl) N 0V such that for some distinct
z;,z; € X1, the set co{zi,zj,t} N OV does not contain the point 2. We first choose a point y € T that is
different from z. The following two cases are possible:

a) z ¢ co{z;,z;,y} for some distinct 2;,2; € Xy, or

b) z € co{w;,z;,y} for some distinct z;,z; € X;.

In case a) we put t = y.

In case b) the points z1,22,z3,y and z lie in the same affine plane P of dimension 2. In addition, in
this case z € [z;,y] for some z; € {z1, 22,23}

If there exists a point of T not lying in P, then as ¢ we choose any such point.

But if 7' C P, then as t we take a point of T such that ¢ and some point z; € Xy \ {z;} lie in the
same half-plane defined by the straight line TI(z;,y), and t ¢ (zi,y). The triple ;,z;,¢ is required.

Thus, the set co{z;,z;,t} N OV is nonempty, compact, and does not contain nonsmooth points of V.
Let v be a point of co{z;,z;,t} N OV such that the sum of the distances from v to the points z; and z;
is minimal. Then v is a smooth point and there exist no points of V on the segments [z;,v] and [z, ]
except for v. Hence, v € V,;; NV, that is, mx(V) > 2 also in this case.

If all points of 8V are smooth, then the proof of the assumption is analogous to that of the first
section of the present proof.

Definition 4. Forn,k € N, n > 1, k > 2, by f(n, k) we denote a minimal natural number such that for
a convex body of R” and for any set X C R™ of points such that

1) |X| > f(n,k), and
2) coXNV =g,

the set X illuminates the body V with a multiplicity not less than k.
Conjecture. f(n,k)=n(k~1)+1
Remark 2. The conjecture is true for k = 2 (Theorem 1) and for n = 2.

Remark 3. The following example shows that

f(n,k) >n(k—-1)+1.



As V we take a simplex {:c eRY | o < 1}, and as X a set of points with the properties

1) X liesin a plane P={z e R" | Y1, z; = -1},

2) X =X;U---UX,, where X;NX; =@ fori # j; | X;| =k —1for:=1,...,n; and points of X;
(and only these points of X) illuminate the interior of the face of the body V,

n
Fiz{‘reRilz:Esslami:O} i=1,...,n.
=1

It is easy to understand that there exists such a set X of the cardinality n(k — 1) that this set
illuminates the body V with multiplicity ¥ — 1, and, if we add a new point of P to X, then the new set

illuminates V with multiplicity k.
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