Abgabe: 26.10 bis 16:00 Uhr Besprechung: 28.10

3+4+3P.

Gruppentheorie

Übungsblatt 1

Aufgabe 1. 3+3+4P.

- (a) Berechnen Sie die Menge aller linken Nebenklassen von $H = \{id, (123), (132)\}$ in A_4 . (A_n ist die Gruppe aller geraden Permutationen der Symbole $1, 2, \ldots, n$.)
- (b) Ist H normal in A_4 ? Begründen Sie Ihre Antwort.
- (c) Listen Sie alle normalen Untergruppen von A_4 auf.

Hinweis zu (c): Benutzen Sie Aufgabe 2 (b) aus Blatt 0 und den Satz von Lagrange: Ist H eine Untergruppe einer endlichen Gruppe G, dann ist |H| ein Teiler von |G|.

Aufgabe 2. Wir betrachten die multiplikative Gruppe G aller Matrizen der Form

$$\begin{pmatrix}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{pmatrix}$$

mit $a, b, c \in \mathbb{R}$. Auch betrachten wir die folgende Untergruppe von G:

$$H = \{ g \in G \mid g_{12} = g_{23} = 0 \}.$$

- (a) Beweisen Sie, dass H normal in G ist.
- (b) Wir betrachten die Abbildung

$$\varphi: G \to \mathbb{R} \oplus \mathbb{R},$$

$$g \to (g_{12}, g_{23}).$$

Beweisen Sie, dass φ ein surjektiver Homomorphismus ist.

(c) Beweisen Sie: $G/H \cong \mathbb{R} \oplus \mathbb{R}$.

Hinweis. Unter \mathbb{R} verstehen wir die Gruppe $(\mathbb{R}, +)$.

Aufgabe 3. 5+5P.

- (a) Schreiben Sie alle Elemente von $GL_2(\mathbb{Z}_2)$ auf.
- (b) Finden Sie einen Isomorphismus $\varphi : GL_2(\mathbb{Z}_2) \to S_3$.

Hinweis. $GL_n(K)$ ist die Gruppe aller invertierbaren $n \times n$ -Matrizen über K.

Aufgabe 4. Seien $A \leq G$ und $B \leq G$. Beweisen Sie, dass $|A:(A \cap B)| \leq |G:B|$ gilt. **10 P.**

Hinweis. Sei X die Menge der linken Nebenklassen von $A\cap B$ in A und sei Y die Menge der linken Nebenklassen von B in G. Denken Sie sich eine injektive Abbildung von X nach Y aus.