Abgabe: 7.12. bis 16:00 Uhr

Besprechung: 9.12.

Einführung in die Gruppentheorie

Übungsblatt 7

Aufgabe 1. Sei N der Normalisator von $H = \langle (12345) \rangle$ in A_5 .

4+4+2P.

- (a) Finden Sie ein Element der Ordnung 2 in N.
- (b) Beweisen Sie, dass |N| = 10 ist.
- (c) Beweisen Sie, dass $N \cong D_5$ ist.

Hinweis. (b) Wegen $H \leq N$ ist 5 ein Teiler von |N|. Nach (a) ist 2 ein Teiler von |N|. Also ist 10 ein Teiler von |N|. Wenden Sie Poincaré-Satz 7.4 und Satz 6.6.b) an, um zu beweisen, dass A_5 keine Untergruppen der Ordnungen 20 und 30 enthält.

(c) Sei c ein Element der Ordnung 2 aus (a). Überprüfen Sie: $c(12345)c^{-1} = (12345)^{-1}$.

Aufgabe 2. 4+6P.

- (a) Beweisen Sie, dass die Anzahl der Elemente von G, die mit g konjugiert sind, gleich $|G:C_G(g)|$ ist.
- (b) Wie viele Matrizen in $SL_2(5)$ sind mit der Matrix

$$\begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix}$$

konjugiert?

Hinweis. (a) Geben Sie eine bijektive Abbildung von $A = \{xgx^{-1} \mid x \in G\}$ nach $B := \{xC_G(g) \mid x \in G\}$ an.

Aufgabe 3. 4+4+4P.

- (a) Sei $A = \langle a \rangle \cong \mathbb{Z}_7$. Beschreiben Sie Aut(A).
- (b) Sei $B = \langle b \rangle \cong \mathbb{Z}_3$. Beschreiben Sie alle Homomorphismen $\varphi : B \to Aut(A)$.
- (c) Beweisen Sie, dass es nur zwei Gruppen (bis auf Isomorphie) der Ordnung 21 gibt: \mathbb{Z}_{21} und $\mathbb{Z}_7 \rtimes_2 \mathbb{Z}_3$.

Hinweis. (c) Sei |G|=21. Nach Sylow-Satz existieren zwei Untergruppen $A,B\leqslant G$ mit |A|=7 und |B|=3. Zuerst beweisen Sie, dass $A \leq G$ ist (benutzen Sie Sylow-Satz 10.6.(4)). Danach beweisen Sie dass $G=A\rtimes B$ ist. Aus Satz 12.6.4) folgt, dass $G\cong A\rtimes_{\varphi} B$ für ein passendes φ ist.

Aufgabe 4. Beweisen Sie ausführlich: $Aut(\mathbb{Z}_n) \cong \mathbb{Z}_n^*$.

8P.

Hinweis. Siehe Beispiel 8.5.