
AN ALGORITHM FOR FINDING A BASIS
OF THE FIXED POINT SUBGROUP OF AN AUTOMORPHISM

OF A FREE GROUP

OLEG BOGOPOLSKI∗ AND OLGA MASLAKOVA†

Abstract. We describe an algorithm which, given an automorphism φ of a free
group F of finite rank, computes a basis of the fixed point subgroup Fix(φ).

1. Introduction

Let Fn be the free group of finite rank n. For any automorphism φ of Fn the
fixed point subgroup of φ is

Fix(φ) = {x ∈ Fn |φ(x) = x}.

In the seminal paper [3], Bestvina and Handel proved the Scott conjecture that

rk Fix(φ) 6 n.

However, the following problem has been open for almost 20 years.

Problem A. Find an algorithm for computing a basis of Fix(φ), where φ is an
automorphism of a free group F of finite rank.

A weaker form of this problem is formulated in [15, Problem (F1) (a)].
Problem A has been solved in three special cases: for positive automorphisms

in the paper [7] of Cohen and Lustig, for special irreducible automorphisms in the
paper of Turner [14, Proposition B], and for all automorphisms of F2 in the paper
of Bogopolski [4].
In 1999, Maslakova, a former PhD student of the first named author, attempted

to solve this problem in general case. However, her proof published in [12], see
also [13], was not complete. So, we have decided to give a full and correct proof.
The main result of this paper is the following.
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Theorem 1.1. Let Fn be the free group of a finite rank n. There exists an algorithm
which, given an automorphism φ of Fn finds a basis of its fixed point subgroup
Fix(φ) = {x ∈ Fn |φ(x) = x}.

As in [3], we use the relative train track techniques. A relative train track is a
homotopy equivalence f : Γ → Γ of a finite graph Γ with certain good properties,
see Section 3. In [3, Theorem 5.12]), Bestvina and Handel proved that every outer
automorphism O of Fn can be represented by a relative train track f : Γ → Γ.
However, to start our algorithm, we need to represent the automorphism φ (and
not its outer class) by a relative train track f : (Γ, v) → (Γ, v). This is done in
Theorem 4.4.
We use f to define an auxiliary graph Df (first introduced in [10] in another

setting, see also [14]). The fundamental group of one of the components of Df ,
denoted Df (1v), can be identified with Fix(φ) (see Section 5). Thus, to compute
a basis of Fix(φ), we need to construct the core Core(Df (1v)) of this component.
At all but finite number of the vertices of Df there is a preferable outgoing direc-

tion. This determines a flow on almost all of Df . The inverse automorphism φ−1

determines its own flow on almost all of Df . According to [14] (see also [7]), there
is a procedure for constructing a part of Core(Df ) which contains Core(Df (1v)) if
the latter is non-contractible: one should start from a finite number of computable
exceptional edges and follow the first flow for sufficiently long. Theoretically we
could arrive at a dead vertex, or get a loop, or arrive at a vertex where two rays
of this flow meet, or none of these may occur. To convert this procedure into an
algorithm, we must detect at the beginning, which possibility occurs. For that,
we must solve the Finiteness and the Membership problems for vertices and cer-
tain subgraphs of Df (see Section 5). We solve these problems in this paper.
Our algorithm for finding a basis of Fix(φ) is given in Section 15.

2. Preliminaries

Let Γ be a finite connected graph, Γ0 be the set of its vertices, Γ1 be the set of its
edges. The initial vertex of an edge E is denoted by α(E), the terminal by ω(E),
the inverse edge to E is denoted by E.
The geometric realization of Γ is obtained by identification of each edge of Γ with

a real segment [a, b] of length 1. This realization is denoted again by Γ. Using this
realization, we can work with partial edges and compute distances between points
inside edges without passing to a subdivision. Partial edges in Γ are identified with
subsegments [a1, b1] ⊂ [a, b]. Let l be the corresponding metric on Γ.
We work only with piecewise linear maps. For brevity, we skip the wording

piecewise linear, e.g., we say a path instead of a piecewise linear path.
A nontrivial path in Γ is a continuous map τ : [0, 1] → Γ with the following

property: there exist numbers 0 = s1 < s2 < · · · < sk < sk+1 = 1 and a sequence of
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(possibly partial) edges E1, E2, . . . , Ek, such that τ |[si,si+1] is a linear map onto Ei for
each i = 1, . . . , k. We will not usually distinguish between τ and the concatenation
of (partial) edges E1E2 . . . Ek. The length of τ is l(τ) :=

∑k
i=1 l(Ei). A trivial path

in Γ is a map τ : [0, 1] → Γ whose image consists of a single point. The trivial path
whose image is {u} is denoted by 1u; we set l(1u) = 0. An edge-path in Γ is either
a path of the form E1E2 . . . Ek, where all Ei are full edges, or a trivial path 1u,
where u is a vertex. The initial and the terminal points of a path τ are denoted
by α(τ) and ω(τ), respectively. The inverse path to τ is denoted by τ . By [τ ] we
denote the reduced path in Γ which is homotopic to τ relative to the endpoints of τ .
Let [[τ ]] be the class of paths homotopic to τ relative to the endpoints of τ . For
two paths τ, µ, we write τ = µ if these paths are homotopic relative to endpoints
and we write τ ≡ µ if they graphically coincide. The concatenation of τ and µ (if
exists) is denoted by τµ or τ · µ.
Let PLHE be the class of all homotopy equivalences f : Γ → Γ such that Γ

is a finite connected graph, f(Γ0) ⊆ Γ0, and for each edge E the following is
satisfied: f(E) ≡ E1E2 . . . Ek, where each Ei is an edge and E has a subdivision
into segments, E ≡ e1e2 . . . ek, such that f |ei : ei → Ei is surjective and linear
with respect to the metric l. The abbreviation PLHE stands for piecewise linear
homotopy equivalence. If f : Γ → Γ belongs to PLHE , then, for every path τ in Γ,
the map f ◦ τ is also a path in Γ. We denote it by f(τ).

The homotopy equivalence f : Γ → Γ is called tight (resp. nondegenerate) if for
each edge E in Γ the path f(E) is reduced (resp. nontrivial). The norm of f is the
number ||f || := max{l(f(E)) |E is an edge of Γ}. We use the following bounded
cancelation lemma from [8], where it is credited to Grayson and Thurston.

Lemma 2.1. Let Γ be a finite connected graph and f : Γ → Γ be a homotopy
equivalence sending edges to edge paths. Let τ1, τ2 be reduced paths in Γ such that
ω(τ1) = α(τ2) and the path τ1τ2 is reduced. Then

l([f(τ1τ2)]) > l([f(τ1)]) + l([f(τ2)])− 2C⋆,

where C⋆ > 0 is an algorithmically computable constant which depends only on f .

3. Relative train tracks for outer automorphisms of free groups

First we recall the definition of a relative train track from [3]. Since we are
interested in algorithmic problems, we will work only with homotopy equivalences
from the class PLHE .
Let Γ be a finite connected graph and let f : Γ → Γ be a tight and nondegenerate

homotopy equivalence from the class PLHE .
A turn in Γ is an unordered pair of edges of Γ originating at a common vertex.

A turn is nondegenerate if these edges are distinct, and it is degenerate otherwise.
The map f : Γ → Γ induces a map Df : Γ1 → Γ1 which sends each edge E ∈ Γ1

to the first edge of the path f(E). This induces a map Tf on turns in Γ by
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the rule Tf(E1, E2) = (Df(E1), Df(E2)). A turn (E1, E2) is legal if the turns
(Tf)n(E1, E2) are nondegenerate for all n > 0; a turn is illegal if it is not legal.
An edge path E1E2 . . . Em in Γ is legal if all its turns (Ei, Ei+1) are legal. Clearly,
a legal edge path is reduced.
From each pair of mutually inverse edges of the graph Γ we choose one edge.

Let {E1, . . . , Ek} be the ordered set of chosen edges. The transition matrix of the
map f (with respect to this ordering) is the matrix M(f) of the size k × k such
that the ijth entry of M(f) is equal to the total number of occurrences of the edges
Ei and Ei in the path f(Ej).

A filtration for f : Γ → Γ is an increasing sequence of (not necessarily connected)
f -invariant subgraphs ∅ = G0 ⊂ · · · ⊂ GN = Γ. The subgraph Hi = cl(Gi\Gi−1)
is called the i-th stratum. Edges in Hi are called i-edges. A turn with both edges
in Hi is called an i-turn. A turn with one edge in Hi and another in Gi−1 is called
mixed in (Gi, Gi−1). We assume that the edges of Γ are ordered so that the edges
from Hi precede the edges from Hi+1. The edges from Hi define a square submatrix
M[i] of M(f).
If the filtration is maximal, then each matrix M[i] is irreducible. If M[i] is nonzero

and irreducible, then it has the associated Perron-Frobenius eigenvalue λi > 1. If
λi > 1, then the stratum Hi is called exponential. If λi = 1, then Hi is called
polynomial. In this case M[i] is a permutation matrix, hence for every edge E ∈ H1

i

the path f(E) contains exactly one edge of Hi, all other edges of f(E) lie in Gr−1.
A stratum Hi is called a zero stratum if M[i] is a zero matrix. In this case f(E)
lies in Gi−1 for every edge E ∈ H1

i .

Definition 3.1. Let Γ be a finite connected graph and let f : Γ → Γ be a tight and
nondegenerate homotopy equivalence from the class PLHE . The map f is called a
PL-relative train track if there exists a maximal filtration ∅ = G0 ⊂ · · · ⊂ GN = Γ
for f such that each exponential stratum Hr of this filtration satisfies the following
conditions:

(RTT-i) Df maps the set of edges of Hr to itself; in particular all mixed turns in
(Gr, Gr−1) are legal.

(RTT-ii) If ρ ⊂ Gr−1 is a reduced nontrivial edge path with endpoints in Hr ∩ Gr−1,
then [f(ρ)] is a nontrivial edge path with endpoints in Hr ∩Gr−1.

(RTT-iii) For each legal edge path ρ ⊂ Hr, the path f(ρ) does not contain any illegal
turns in Hr.

Definition 3.2. We use the above notations.
1) A path ρ in Γ is said to be of height r if it lies in Gr, but not in Gr−1.
2) Let Hr be an exponential stratum. A nontrivial reduced path ρ in Gr is

called r-legal if the minimal edge path containing ρ does not contain any illegal
turns in Hr.

The following proposition will be often used in the further proof.
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Proposition 3.3. (see [3, Lemma 5.8]) Suppose that f : Γ → Γ is a PL-relative
train track and Hr is an exponential stratum of Γ. Let ρ be a reduced r-legal path:

ρ ≡ b0 · a1 · b1 · . . . · ak · bk,
where k > 1, a1, . . . , ak are paths in Hr, and b0, . . . , bk are paths in Gr−1, and all
these paths except maybe b0 and bk are nontrivial. Then

[f(ρ)] ≡ [f(b0)] · f(a1) · [f(b1)] · . . . · f(ak) · [f(bk)]
and this path is r-legal. Moreover, for all i > 1 we have

[f i(ρ)] ≡ [f i(b0)] · [f i(a1)] · [f i(b1)] · . . . · [f i(ak)] · [f i(bk)]

and these paths are r-legal.

The r-length function Lr. Let f : Γ → Γ be a PL-relative train track and
Hr be an exponential stratum. Choose a positive vector v⃗ satisfying v⃗M[r] = λrv⃗.
Since M[r] is an integer matrix, we can choose v⃗ so that the coordinates of v⃗ are
rational functions of λr over Q. First we define the r-length Lr on edges of Gr.
If E is the ith edge of Hr, we set Lr(E) = vi; if E is an edge of Gr−1, we set
Lr(E) = 0. Then we have Lr(f(E)) = λrLr(E).
For every edge path τ in Gr, we define Lr(τ) as the sum of r-lengths of edges

of τ . We extend this definition to all paths (not necessarily edge paths) in Gr, as
it was done in Lemma 5.10 in [3]. For an arbitrary path µ in Gr, let L

•
r(µ) be the

sum of r-lengths of full r-edges which occur in µ if they exist and zero if not. For
any path ρ in Gr, we set

Lr(ρ) := lim
k→∞

λ−k
r L•

r(f
k(ρ)).

Lemma 3.4. Let Hr be an exponential stratum. The function Lr has the following
properties:

1) Lr(f(ρ)) = λrLr(ρ) for any path ρ in Gr.
2) Lr([f(ρ)]) = λrLr(ρ) for any reduced r-legal path ρ in Gr.
3) If ρ is a nontrivial initial or terminal segment of an r-edge, then Lr(ρ) > 0.
4) If ρ is a nontrivial segment of an r-edge, then there exists k ∈ N such that

fk(ρ) does not lie in an r-edge.
5) If ρ is a nontrivial path in Gr with Lr(ρ) = 0, then there exists k ∈ N such

that fk(ρ) lies in Gr−1.

Proof. 1) follows from the definition of Lr, 2) from Proposition 3.3, and 3) from
(RTT-i) and 4). We prove 4). For that we use the following statements:

i) For each k ∈ N, the map fk restricted to each component of Γ \ f−k(Γ0) is
linear with respect to the metric l.

ii) Let k0 be the number of r-edges in Hr plus 1. Then for each r-edge E the
path fk0(E) contains at least two r-edges.
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The first follows from the assumption that f lies in the class PLHE , the second
one from the assumption that the stratum Hr is irreducible and exponential.
Claim. There exists a number 0 < a < 1 satisfying the following property:

if τ is a segment of an r-edge and fk0(τ) lies in an r-edge, then l(fk0(τ)) > l(τ)/a.

Proof. Let E be an r-edge. Write fk0(E) ≡ E1b1E2 . . . bs−1Es, where E1, . . . , Es

are r-edges and b1, . . . , bs−1 are paths inGr−1 or trivial. WriteE ≡ E ′
1b

′
1E

′
2 . . . b

′
s−1E

′
s,

where fk0(E ′
i) ≡ Ei and fk0(b′i) ≡ bi. Since s > 2, the number

aE := max{l(E ′
1), l(E

′
2), . . . , l(E

′
s)}

is smaller than 1. Let a be the maximum of aE over all r-edges E. By assumption,
τ lies in some E ′

i. Since fk0 maps E ′
i onto Ei linearly with respect to l and since

l(E ′
i) 6 a = al(Ei), we have l(τ) 6 al(fk0(τ)). 2
To complete 4), we take the minimal m ∈ N with l(ρ) > am. Then fk0m(ρ) does

not lie in an r-edge.
Now we prove 5). Since Lr(ρ) = 0, the statement 3) implies that ρ lies either in

Gr−1, or in the interior of an r-edge. In the first case we are done. In the second
case, by 4), there exists k ∈ N such that fk(ρ) does not lie in an r-edge. Again 3)
implies that fk(ρ) lies in Gr−1. 2

A representation of an outer automorphism of Fn by a PL-relative train
track. The rose with n petals Rn is the graph with one vertex ∗ and n geometric
edges. We assume that the free group on n letters Fn is identified with π1(Rn, ∗).
Obviously, every automorphism φ of Fn can be represented by a homotopy equiv-
alence Rn → Rn.
In [3, Theorem 5.12]), Bestvina and Handel proved that every outer automor-

phism O of Fn can be represented by a relative train track f : Γ → Γ. One can
show that this proof can be organized in a constructive way. Also, we may assume
that f is a PL-relative train track. Thus, we have the following start point for our
algorithm.

Theorem 3.5. (see [3, Theorem 5.12]) Let Fn be the free group of finite rank n.
There is an algorithm which, given an outer automorphism O of F , constructs
a PL-relative train track f : Γ → Γ and a homotopy equivalence (a marking)
τ : Rn → Γ such that f represents O with respect to τ .

The latter means that for any homotopy equivalence σ : Γ → Rn which is a
homotopy inverse to τ , the map (σ ◦ f ◦ τ)∗ : π1(Rn, ∗) → π1(Rn, ∗) represents O.

4. Relative train tracks for automorphisms of free groups

Let F be a free group of finite rank, φ be an automorphism of F , and O be
the outer automorphism class of φ. Theorem 3.5 gives a representation of O by a
PL-relative train track. However this is not sufficient for our aims. The purpose
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of this section is to show that φ itself can be represented by a PL-relative train
track, see Theorem 4.4.

Notation 4.1. Let Γ be a finite connected graph and f : Γ → Γ be a homotopy
equivalence. For each vertex v ∈ Γ0 we define the isomorphism

fv : π1(Γ, v) → π1(Γ, f(v)),

[[µ]] 7→ [[f(µ)]], where [[µ]] ∈ π1(Γ, v).

For each path p in Γ from v to f(v) we define the automorphism

fv,p : π1(Γ, v) → π1(Γ, v),

[[µ]] 7→ [[pf(µ)p̄]], where [[µ]] ∈ π1(Γ, v).

Remark 4.2. By Theorem 3.5, given an automorphism φ of F , one can construct a
finite connected graph Γ, a PL-relative train track f : Γ → Γ, and an isomorphism
i : F → π1(Γ, v), where v is a vertex of Γ, such that the automorphism i ◦φ ◦ i−1 :
π1(Γ, v) → π1(Γ, v) coincides with fv,p for some path p ⊂ Γ from v to f(v).
We claim that p can be computed. Indeed, if q is an arbitrary path in Γ from v to

f(v), then fv,q differs from fv,p by an inner automorphism of π1(Γ, v). Comparing
fv,q with i ◦ φ ◦ i−1, we can compute this inner automorphism and hence p. This
gives us the following form of Theorem 3.5.

Theorem 4.3. Let F be a free group of finite rank. There is an algorithm which,
given an automorphism φ of F , constructs a PL-relative train track f : Γ → Γ
and indicates a vertex v ∈ Γ0, a path p ⊂ Γ from v to f(v), and an isomorphism
i : F → π1(Γ, v) such that the automorphism i ◦ φ ◦ i−1 : π1(Γ, v) → π1(Γ, v)
coincides with fv,p.

The following theorem says that in Theorem 4.3 we can provide f(v) = v and
choose p equal to the trivial path at v.

Theorem 4.4. Let F be a free group of finite rank. There is an algorithm which,
given an automorphism φ of F , constructs a PL-relative train track f1 : Γ1 → Γ1

with a vertex v1 ∈ Γ0
1 fixed by f1, and indicates an isomorphism j : F → π1(Γ1, v1)

such that j ◦ φ ◦ j−1 = (f1)v1.

Proof. Let f : Γ → Γ, v, p, and i : F → π1(Γ, v) be the PL-relative train track,
the vertex, the path, and the isomorphism from Theorem 4.3, respectively. Then
we have i ◦ φ = fv,p ◦ i. Hence, for every w ∈ F , we have

i(φ(w)) = [[p]] [[f(i(w))]] [[p̄]]. (4.1)

Let Γ1 be the graph obtained from Γ by adding a new vertex v1 and a new edge
E connecting v1 and f(v). We extend the homotopy equivalence f : Γ → Γ to
a map f1 : Γ1 → Γ1 by the rule f1(v1) = v1 and f1(E) := Ef(p). Clearly, f1 is
a homotopy equivalence. We define a maximal filtration for f1 by extending the
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maximal filtration for f with the help of the new top polynomial stratum consisting
of the edges E and Ē. Finally, we define the isomorphism j : F → π1(Γ1, v1) by
the rule

j(w) := [[E]] [[f(i(w))]] [[Ē]], w ∈ F. (4.2)

To complete the proof, we verify that the automorphism j ◦ φ ◦ j−1 of the group
π1(Γ1, v1) coincides with the induced automorphism (f1)v1 : π1(Γ1, v1) → π1(Γ1, v1).
It suffices to check that (f1)v1(j(w)) = j(φ(w)) for every w ∈ F :

(f1)v1(j(w))
(4.2)
= (f1)v1

(
[[E]] [[f(i(w))]] [[Ē]]

)
= [[f1(E)]] [[f 2(i(w))]] [[f1(Ē)]] =

[[Ef(p)]] [[f 2(i(w))]] [[f(p̄)Ē]] = [[E]] [[f
(
p f(i(w)) p̄

)
]] [[Ē]]

(4.1)
=

[[E]] [[f(i(φ(w)))]] [[Ē]]
(4.2)
= j(φ(w)).

2

Thus, for computing a basis of Fix(φ), it suffices to compute a basis of the group

Fix(f1) = {[[µ]] ∈ π1(Γ1, v1) | f1(µ) = µ},

where Γ1 is the graph, v1 is the vertex, and f1 is the PL-relative train track from
Theorem 4.4.

5. Graphs Df and CoRe(Cf ) for a homotopy equivalence f : Γ → Γ

Let Γ be a finite connected graph with a distinguished vertex v∗. Let f : Γ → Γ
be a homotopy equivalence which maps vertices of Γ to vertices and edges to
reduced edge paths, and suppose that f fixes v∗. We consider the group

Fix(f) := {[[p]] ∈ π1(Γ, v∗) | f(p) = p}.

In papers [10, 14], the authors suggest a procedure for computation of a basis of
Fix(f) with the help of a graph Df . This procedure is not an algorithm in general
case, since one cannot determine from the beginning, whether it terminates or not.
We give a description of this procedure. We also show that the procedure can be
converted into an algorithm if the Membership and the Finiteness problems can
be algorithmically solved.

First, we recall some constructions and facts from [10, 14] and [7].
A. Definition of f-paths. An edge path µ in Γ is called an f -path if the last

point of µ coincides with the first point of f(µ). Observe that

- the trivial path at a vertex u of Γ, denoted 1u, is an f -path if and only if
u is fixed by f ;

- if µ is an f -path, then [µ] is also an f -path;
- if µ is an f -path and E is an edge in Γ such that α(E) = α(µ), then Eµf(E)
is also an f -path.
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B. Definition of the graph Df . The vertices of Df are reduced f -paths in
Γ. Let µ be a reduced f -path in Γ and let E1, . . . , En be all edges in Γ outgoing from
α(µ). Then we connect the vertex µ ofDf to the vertices [E1µf(E1)], . . . , [Enµf(En)]
by edges with labels E1, . . . , En, respectively, see Figure 1. The label of a nontriv-
ial edge path in the graph Df is the product of labels of consecutive edges of this
path. The label of a trivial edge path at a vertex µ of Df is 1α(µ).
For a vertex µ of Df , let Df (µ) be the component of Df containing µ.

Lemma 5.1. (see [10]) The fundamental group of each component of Df is finitely
generated. Moreover, π1(Df (1v∗),1v∗)

∼= Fix(f).

The proof in [10] uses preferable directions at vertices of Df .
C. Preferable directions at vertices of Df , dead and alive vertices of Df .

For a reduced nontrivial f -path µ in Γ, we set f̂(µ) := [Eµf(E)], where E is the

first edge of µ. Then µ and f̂(µ) are vertices of the graph Df connected by the edge
with the label E. The direction of this edge is called preferable at the vertex µ.
We will put the symbol ◃ on this edge near the vertex µ.

in Γ: in Df :

E1 µ

f (E1)

E2 f (E)

E

f (E2)

Eµ [Eµf (E)] =
̂

f (µ)

E1

[E1µf (E1)]

E2

[E2µf (E2)]

Figure 1.
On the left we consider µ as a path in Γ, and on the right as a vertex in Df .

The red triangle on the right shows the preferable direction at the vertex µ.

Note that only the vertices 1w, where w ∈ Γ0 and f(w) = w, do not admit a
preferable direction. We call such vertices dead and all other vertices of Df alive.
Observe that at each vertex of Df , there is at most one outwardly ◃-directed edge.

D. Ordinary, repelling and attracting edges of Df .

Definition 5.2. Let e be an edge of Df , let p, q be the initial and the terminal
vertices of e, and let E ∈ Γ1 be the label of e.

(1) The edge e is called ordinary in Df if one of the following holds:
(a) E is the first edge of the path p in Γ and E is not the first edge of the

path q in Γ.
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(b) E is not the first edge of the path p in Γ and E is the first edge of the
path q in Γ.

(2) The edge e is called repelling in Df if E is not the first edge of the path p
in Γ and E is not the first edge of the path q in Γ.
A vertex of Df is called repelling if it is the initial or the terminal vertex of
a repelling edge.

(3) The edge e is called attracting in Df if E is the first edge of the path p in
Γ and E is the first edge of the path q in Γ.

An edge of Df is called exceptional if it is attracting or repelling.
-u u
E

p q
⊲ -u u

E

p q
⊳ -u u

E

p q
⊲ ⊳ -u u

E

p q

Figure 2. Two ordinary edges, an attracting edge, and a repelling edge in Df .

Proposition 5.3. (see [10, 14] and [7]) The repelling edges of Df are in 1-1 cor-
respondence with the occurrences of edges E in f(E), where E ∈ Γ1. There exist
only finitely many repelling edges in Df and they can be algorithmically found.

E. Definition of a µ-subgraph of Df . Let µ be a vertex in Df . If µ is not
a dead vertex, i.e., if µ ≡ E1E2 . . . Em for some edges Ei ∈ Γ1, m > 1, we can

pass from µ to the vertex f̂(µ) ≡ [E2 . . . Emf(E1)] by using the direction which is
preferable at µ.

The vertices of the µ-subgraph are the vertices µ1, µ2, . . . of Df such that µ1 = µ

and µi+1 = f̂(µi) if the vertex µi is not dead, i > 1. The edges of the µ-subgraph
are those which connect µi with µi+1 and carry the preferable direction at µi.

Note that the µ-subgraph is finite if and only if starting from µ and moving
along the preferable directions we will came to a dead vertex or to a vertex which
we have seen earlier. If the µ-subgraph is infinite, we call it a µ-ray. Thus, any
µ-subgraph is one of the following four types:

· · ·r r r r r u a segment ending at a dead vertex
µ
◃ ◃ ◃ ◃

· · ·r r r r r r a segment with an attracting edge
which can be considered as a cycleµ

◃ ◃ ◃ ◃ ▹

· · ·r r r r r r
µ
◃ ◃ ◃ ◃ &%

'$r
r

... a segment with a cycle

r

▹

◃

◃

r r r r · · ·
µ

a ray◃ ◃ ◃

Figure 3. Types of µ-subgraphs in Df .

Let µ and τ be two vertices of Df . Clearly, if the µ-subgraph and the τ -subgraph
intersect, then they differ only by their finite “initial subsegments”. Observe:
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- if µ0 is a vertex of a µ-subgraph, then the µ0-subgraph is contained in the
µ-subgraph;

- if µ0 is a vertex of a µ-subgraph and τ0 is a vertex of a τ -subgraph, then
the µ-subgraph and the τ -subgraph intersect if and only if the µ0-subgraph
and the τ0-subgraph intersect;

- a µ-ray does not intersect a finite τ -subgraph.

From this point, we start to develop the above approach.
F. Definitions of the graphs Cf and CoRe(Cf ). A component of Df is called

repelling if it contains at least one repelling edge. Let C1, . . . , Cn be all repelling
components of Df . For each Ci, let CoRe(Ci) be the minimal connected subgraph

of Ci which contains all repelling edges of Ci and carries π1(Ci). We set Cf :=
n
∪
i=1

Ci

and CoRe(Cf ) :=
n
∪
i=1

CoRe(Ci).

Figure 4. An example of a graph Df with three repelling components.

Below we show how to compute a basis of the group π1(Df (1v∗),1v∗) if we know
how to construct the graph CoRe(Cf ).

Lemma 5.4. Let 1u be a dead vertex of Df . If the component Df (1u) is non-
contractible, then it lies in Cf .

Proof. Suppose that Df (1u) is non-contractible. Then there exists an edge path
p = E1E2 . . . Ek in Df (1u) such that ω(Ek) = 1u, the edges of p are distinct, and
α(E1) = ω(Es) for some 1 6 s 6 k. We show that p contains a repelling edge.
Suppose not, then the direction of Ek is preferable at α(Ek). By induction, the
direction of Ei is preferable at the point α(Ei) for every i = 1, . . . , k (see Figure 5).

1u
EkEs+1

Es

E1

Figure 5.

In particular, α(E1) ̸= 1u, and hence k > s. Then there are two preferable
directions at α(E1), namely the direction of E1 and the direction of Es+1, a con-
tradiction. Thus, p must contain a repelling edge. 2

Lemma 5.5. Let 1u be a dead vertex of Df . The vertex 1u lies in Cf if and only
if it lies in the µ-subgraph for some repelling vertex µ.
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Proof. Suppose that 1u lies in Cf . Then there exists a shortest path E1E2 . . . Ek,
where the edge E1 is repelling and ω(Ek) = 1u. If k = 1, then 1u is repelling as
a vertex of a repelling edge, and we are done. If k > 2, the edges E2, . . . , Ek are
not repelling. In particular, the preferable direction at α(Ek) coincides with the
direction of Ek. By induction one can prove that the preferable direction at α(Ei)
coincides with the direction of Ei for i > 2. Then 1u lies in the µ-subgraph for
µ := ω(E1) and the vertex µ is repelling. The converse claim is clear. 2

Proposition 5.6. Suppose we can algorithmically construct CoRe(Cf ) and decide
whether there exists a repelling vertex µ such that the µ-subgraph contains the
vertex 1v∗. Then we can compute a basis of π1(Df (1v∗),1v∗).

Proof. Suppose that 1v∗ does not lie in the µ-subgraph for any repelling vertex µ.
Then, by Lemma 5.5, 1v∗ ̸∈ Cf and, by Lemma 5.4, Df (1v∗) is contractible.
Now suppose that 1v∗ lies in the µ-subgraph for some repelling vertex µ. Since

CoRe(Cf ) is supposed to be constructible and each repelling vertex lies in CoRe(Cf ),
we can find the component of CoRe(Cf ) containing µ. Let ∆ be the union of
this component and the µ-subgraph; note that the µ-subgraph terminates at 1v∗ .
Then ∆ is a core of Df (1v∗) containing 1v∗ . In particular, we can compute a basis
of π1(Df (1v∗),1v∗). 2

G. To construct the graph CoRe(Cf ), it suffices to do the following:

(1) Find all repelling edges of Df .
(2) For each alive repelling vertex µ determine, whether the µ-subgraph is finite

or not.
(3) Compute all elements of all finite µ-subgraphs from (2).
(4) For each two repelling vertices µ and τ with infinite µ-and τ -subgraphs

determine, whether these subgraphs intersect.
(5) If the µ-subgraph and the τ -subgraph from (4) intersect, find their first

intersection point and compute their initial segments up to this point.

To convert this procedure to an algorithm, we shall construct algorithms for steps
(2) and (4). In papers [7] and [14] these algorithms are given only in some special
cases (for positive automorphisms and for irreducible automorphisms represented
by train tracks for which each fixed point is a vertex). The main idea in these
papers is to use an inverse preferred direction at vertices in the graph Df . This
direction can be constructed algorithmically (in general case) with the help of a
homotopic inverse to f . It determines its own repelling edges and repelling and
dead vertices; they can be algorithmically found.
H. Inverse preferred directions in Df . We will realize the following plan.

First we define a map g : Γ → Γ which is a homotopy inverse to f : Γ → Γ.
Then we show that there is a label preserving graph map Φ : Df → Dg. Finally
we define the inverse preferred directions at vertices in Df by pulling back the
preferred directions in Dg by Φ. This idea is due to Turner [14], and has sources
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in the paper of Cohen and Lustig [7]. Note that in [14], the map Φ is claimed to
be locally injective (see Proposition in Section 3 there), and we claim that Φ is an
isomorphism.

Definition 5.7. For the given homotopy equivalence f : Γ → Γ, we can efficiently
construct a homotopy equivalence g : Γ → Γ such that g maps vertices of Γ to
vertices, edges to edge paths, and the maps h := g ◦ f and f ◦ g are homotopic to
the identity on Γ. From now on, we fix g. Let H : Γ × [0, 1] → Γ be a homotopy
from the identity id to h. For each point u in Γ, let pu be the path from u to
h(u) determined by the homotopy H: namely pu(t) = H(u, t), t ∈ [0, 1]. We set
K⋆(f) := max{l(pu) : u ∈ Γ0}.

First we define a map Φ from the set of vertices of Df to the set of vertices
of Dg. Let µ be a vertex in Df . We consider µ as a reduced f -path in Γ and let u
be the initial vertex of µ. Then we set Φ(µ) = [pug(µ)]. Clearly, Φ(µ) is a reduced
g-path in Γ. Hence Φ(µ) can be considered as a vertex in Dg.

Lemma 5.8. The map Φ can be continued to a graph homomorphism Φ : Df → Dg

preserving the labels of edges.

Proof. Let µ and µ1 be two vertices in Df connected by an edge with label
E, i.e., µ1 = [Eµf(E)]. We must show that Φ(µ) and Φ(µ1) are connected by
an edge with the label E, i.e., Φ(µ1) = [EΦ(µ)g(E)]. Let u and w be the initial
and the terminal vertices of E. Then u and w are the initial vertices of µ and µ1,
respectively. We have

Φ(µ1) = [pwg
(
f(E)µE

)
] = [pwh(E)g(µ)g(E)] = [Epug(µ)g(E)] = [EΦ(µ)g(E)].

Here we use the fact that H is a homotopy and hence

[h(ℓ)] = [pα(ℓ)ℓpω(ℓ)] (5.1)

for any path ℓ in Γ. 2

Remark 5.9. Let µ be a vertex in Df . Then the following holds:

1) The f -path µ and the g-path Φ(µ) have the same initial vertices in Γ.
2) Let E1, . . . , En be the edges outgoing from α(µ) in Γ. Then the vertices µ

and Φ(µ) of the graphs Df and Dg have degree n and the labels of edges
outgoing from each of these vertices are E1, . . . , En.

Proposition 5.10. The map Φ : Df → Dg is an isomorphism of graphs.

Proof. By Lemma 5.8 and Remark 5.9, it suffices to show that Φ is bijective on
vertices. First we show that Φ is injective on vertices. Let µ1, µ2 be two different
vertices of Df . If the f -paths µ1 and µ2 have different initial vertices in Γ, then,
by Remark 5.9. 1), the g-paths Φ(µ1) and Φ(µ2) have different initial vertices in Γ
too, hence Φ(µ1) ̸= Φ(µ2).
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Suppose that the initial vertices of the f -paths µ1 and µ2 coincide and equal
to u. Then their terminal vertices also coincide and equal to f(u). Since the
f -paths µ1, µ2 are reduced, µ1 ̸= µ2, and g is a homotopy equivalence, we have
[g(µ1)] ̸= [g(µ2)], hence Φ(µ1) = [pug(µ1)] ̸= [pug(µ2)] = Φ(µ2).

Now we show that Φ is surjective on vertices. Let τ be a vertex in Dg, i.e., τ is a
reduced g-path in Γ. Let u be the initial vertex of the path τ . We will find a reduced
f -path µ in Γ such that Φ(µ) = τ . Let µ1 be an arbitrary path in Γ from u to f(u).
Then the paths τ and pug(µ1) have the same endpoints, so τpug(µ1) is a loop based
at g(u). Hence, there exists a loop σ in Γ based at u such that g(σ) = τpug(µ1).
We set µ := [σµ1]. Then µ is an f -path and Φ(µ) = [pug(µ)] = [pug(µ1)g(σ)] = τ .

2

Definition 5.11. The inverse preferred direction at a vertex µ in Df is the preim-
age of the preferred direction at the vertex Φ(µ) in Dg under Φ.

We formulate this more detailed. Recall that Φ(µ) = [pug(µ)], where u is the
initial vertex of the f -path µ. First suppose that the g-path Φ(µ) is nontrivial and
let E be the first edge of this path. Then the inverse preferred direction at the
vertex µ of Df is the direction of the edge of Df which starts at µ and has the
label E. If the g-path Φ(µ) is trivial in Γ, the inverse preferred direction at µ in
Df is not defined.

Proposition 5.12. The inverse preferred direction is defined at almost all vertices
of Df .

Proof. If the inverse preferred direction at a vertex µ in Df is not defined, then
Φ(µ) lies in the finite set {1u |u ∈ Γ0}. Since Φ is injective, the number of such µ
is finite. 2

Definition 5.13. Preimages, with respect to Φ, of repelling edges, repelling ver-
tices and dead vertices of Dg are called inv-repelling edges, inv-repelling vertices
and inv-dead vertices of Df , respectively.

By Proposition 5.3 applied to g, there are only finitely many inv-repelling edges,
inv-repelling vertices, and inv-dead vertices in Df , and they can be algorithmically
found.

I. Normal vertices

Definition 5.14. A vertex of Df is called normal if the preferred and the inverse
preferred directions at this vertex exist and do not coincide.

The main purpose of this subsection are Propositions 5.18 and 5.19; they will
help us to decide, whether two rays in Df (given by their initial vertices) meet.
The following lemma easily follows from Lemma 2.1.
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Lemma 5.15. Let Γ be a finite connected graph and f : Γ → Γ be a homotopy
equivalence sending edges to edge paths. Let p be an initial subpath of a reduced
path q. Write [f(p)] ≡ ab, where a is the maximal common initial subpath of [f(p)]
and [f(q)]. Then l(b) 6 C⋆(f).

The source of the following lemma is Proposition (4.3) in [7].

Lemma 5.16. Let R be a µ-subgraph with consecutive vertices µ = µ0, µ1, . . . , and
with labels of consecutive edges E1, E2, . . . . For each j > 0 with alive vertex µj,
let k(j) be the maximal natural number such that µj ≡ Ej+1 . . . Ej+k(j) · Zj for
some Zj. If j > l(µ0) and R has at least j + k(j) + 2 vertices, then l(Zj) 6 C⋆(f).

Proof. With notation Xj := E1E2 . . . Ej, we have µj ≡ [Xjµ0f(Xj)]. Hence,
f(Xj) = µ0Xjµj. Therefore [f(Xj)] ≡ [µ0Xj] · Ej+1 . . . Ej+k(j) · Zj. Indeed, the
condition j > l(µ0) guarantees that the last edge of [µ0Xj] is Ej which is not
inverse to Ej+1. Applying the same arguments to µj+k(j), we have

[f(Xj+k(j))] ≡ [µ0Xj+k(j)] · Ej+k(j)+1 . . . Ej+k(j)+k(j+k(j)) · Zj+k(j)

≡ [µ0Xj] · Ej+1 . . . Ej+k(j) · Ej+k(j)+1 . . . Ej+k(j)+k(j+k(j)) · Zj+k(j).

From Lemma 5.15 applied to Xj and Xj+k(j), we deduce that l(Zj) 6 C⋆(f). 2

The source of the following lemma is Proposition (4.10) from [14]. The map g
and the constant K⋆(f) were defined in Definition 5.7.

Lemma 5.17. Let R be a µ-subgraph with consecutive vertices µ = µ0, µ1, . . . , and
with labels of consecutive edges E1, E2, . . . . Let j be a natural number such that
j > l(µ0) and l(µj) > C⋆(f) · (||g|| + 1) + K⋆(f). If R has at least j + k(j) + 2
vertices, then µj+k(j) is normal. (Here k(j) is as in Lemma 5.16.)

Proof. It suffices to show that the first edge of the g-path Φ(µj+k(j)) is Ej+k(j).
Then, by Definition 5.11, the inv-preferred direction at µj+k(j) in Df will coincide

with the direction of the edge outgoing from µj+k(j) and having the label Ej+k(j).
On the other hand, the (direct) preferred direction at µj+k(j) in Df coincides with
the direction of the edge outgoing from µj+k(j) and having the label Ej+k(j)+1.
Since these labels do not coincide, the vertex µj+k(j) is normal. By Lemma 5.16,

µj ≡ Ej+1 . . . Ej+k(j) · Zj with l(Zj) 6 C⋆(f). (5.2)

This implies

µj+k(j) = Ej+1 . . . Ej+k(j) µj f(Ej+1 . . . Ej+k(j)) = Zjf(Ej+1 . . . Ej+k(j)).

Recall that Φ(µ) = [pα(µ)g(µ)]. Then, using (5.1), where h = g ◦ f , we have

Φ(µj+k(j)) ≡ [pω(Ej+k(j))(g ◦ f)(Ej+1 . . . Ej+k(j)) g(Zj)]

≡ [Ej+1 . . . Ej+k(j) pα(Ej+1)g(Zj)].
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From (5.2) and the assumption in this lemma, we have

l(Ej+1 . . . Ej+k(j)) = k(j) > l(µj)− C⋆(f)

> K⋆(f) + C⋆(f) · ||g||
> l(pα(Ej+1)) + l(g(Zj)).

Therefore the first edge of Φ(µj+k(j)) is Ej+k(j). 2

Proposition 5.18. There exists an algorithm which, given an f -path µ, either
proves that the µ-subgraph R is finite or finds a normal vertex in R.

Proof. Computing consecutive vertices of R, µ = µ0, µ1, . . . , we either prove that
R is finite, or find the first j with j > l(µ0) and l(µj) > C⋆(f) · (||g||+1)+K⋆(f).
If we find such j, we compute k(j) (note that k(j) 6 l(µj)) and check, whether
µ0, µ1, . . . , µj+k(j)+1 exist and different. If the result is negative, then R is finite; if
positive, then the vertex µj+k(j) is normal by Lemma 5.17. 2

The following proposition is contained in Claim b) in the proof of Theorem A
in [14]. This claim was inspired by Lemma (4.8) and Proposition (4.10) from [7].
The proof of this proposition is valid in general situation, i.e., for any homotopy
equivalence f : Γ → Γ sending edges to edge paths. We give it for completeness.

Proposition 5.19. Let R1 and R2 be a µ1-ray and a µ2-ray in Df , respectively.
Suppose that they do not contain inv-repelling vertices and that their initial vertices
µ1 and µ2 are normal. Then R1 and R2 are either disjoint or one of them is
contained in the other.

Proof. Suppose that the rays R1 and R2 intersect and none of them is contained
in the other. We indicate the preferred directions by red triangles and the inv-
preferred directions by blue triangles. Since µ1 and µ2 are normal, the blue and
the red triangles at µ1 and at µ2 look in different directions, see Figure 6 (a).

∞ ∞

(a) (b)

Figure 6.

Since R1 and R2 do not contain inv-repelling vertices, we can inductively re-
construct the inv-preferred directions at the vertices of R1 and R2 until the first
intersection point of these rays, see Figure 6 (b). We obtain two inv-preferred
directions at this point, a contradiction. 2

J. How to convert the procedure in G into an algorithm
As it was observed, it suffices to find algorithms for steps (2) and (4). Using

Propositions 5.18 and 5.19, Step (4) can be replaced by the following three steps.
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(4.1) For each repelling vertex µ whose µ-subgraph is a ray, find in this µ-ray a
vertex µ′ such that the µ′-ray does not contain inv-repelling vertices.

(4.2) Find a normal vertex µ′′ in the µ′-ray.
(4.3) For every two repelling vertices µ and τ whose µ- and τ -subgraphs are rays,

verify whether τ ′′ is contained in the µ′′-ray or µ′′ is contained in the τ ′′-ray.

Step (4.2) can be done algorithmically by Proposition 5.18. Steps (4.1) and (4.3)
can be done if we find an algorithm for the following problem.

Membership problem. Given two vertices µ and τ of the graph Df , verify
whether τ is contained in the µ-subgraph.

Indeed, for Step (4.1) we first find all inv-repelling vertices in Df . Then we
detect those of them which lie in the µ-ray. Let I be the minimal initial segment
of the µ-ray which contains all these vertices. We can take µ′ equal to the first
vertex in the µ-ray which lies outside I. Step (4.3) is a partial case of the above
problem.

Step (2) can be done if we find an algorithm for the following problem:
Finiteness problem. Given a vertex µ of the graph Df , determine whether

the µ-subgraph is finite or not.

Thus, to construct CoRe(Cf ) algorithmically, it suffices to find algorithms for
these problems. Moreover, if we find an algorithm for the Finiteness problem, then
we can decide whether there exists a repelling vertex µ such that the µ-subgraph
contains the vertex 1v∗ . Then, by Proposition 5.6, we can compute a basis of
π1(Df (1v∗),1v∗). Using Lemma 5.1, we can compute a basis of Fix(f).
Corollary 7.13 says that the PL-relative train track from Theorem 4.4 may be

assumed to satisfy (RTT-iv). In Section 14 we will present algorithms for the above
problems in case where f is a PL-relative train track satisfying (RTT-iv).

6. Neighborhoods of attracting points at infinity

Definition 6.1. 1) If p is a reduced path in Df from τ to σ with the label
E1E2 . . . Ek, then there is a reduced path in Df from [f(τ)] to [f(σ)] with the
label [f(E1E2 . . . Ek)]. We denote this path by f•(p).

2) Let R be a µ-subgraph. For each i > 0 with alive vertex f̂ i(µ), let ei+1 be

the edge of Df from f̂ i(µ) to f̂ i+1(µ) that carries preferable direction. Let n ∈ N.
A reduced path p in Df is called n-transversal to the µ-subgraph if ω(p) = f̂ n(µ)
and the last edge of p is different from en and ēn+1. Let Sn(µ) be the set of vertices
σ ∈ Df such that there exists a reduced path p starting at σ and n-transversal to
the µ-subgraph. The set Sn(µ) is called the n-sphere determined by µ at infinity.
The set On(µ) := ∪

k>n
Sk(µ) is called the n-neighborhood determined by µ at infinity.
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Theorem 6.2. Let R be a µ-subgraph with consecutive vertices µ = µ0, µ1, . . . .
Let s be a natural number such that s > (l(µ0) + 1) · (||f || + 3) and l(µs) > 2C⋆,
and R contains at least s+ k(s)+ 2 vertices, where k(s) is defined in Lemma 5.16.
If σ ∈ Ss(µ), then [f(σ)] ∈ St(µ) for some computable t satisfying s < t.
Moreover, given an s-transversal path connecting σ to the µ-subgraph, one can

construct a t-transversal path connecting [f(σ)] to the µ-subgraph.

Proof. Let E1, E2, . . . be the labels of consecutive edges of R. We set j :=
l(µ0) + 1. Using notations of Lemma 5.16 we have

j + k(j) 6 j + l(µj) = j + l([Xjµ0f(Xj)]) 6 2j + l(µ0) + ||f || · j < s.

. . .r

µ0

r

µj
⊲ r

Ej+1 . . .
r

Ej+k(j)
⊲ r

µj+k(j)

r

[f(µj)]

Zj

r

µs µt

⊲ r

Es+1

r

σ

r

[f(σ)]

r r

Es+k(s)
r⊲

µs+k(s)

r

[f(µs)]

Zs

Figure 7.

Let [µj, µs] be the segment of R from µj to µs with the label Xj,s := Ej+1 . . . Es.
Then µs ≡ [Xj,sµjf(Xj,s)], hence [f(Xj,s)] ≡ [µjXj,sµs]. By Lemma 5.16, we have
µj ≡ Ej+1 . . . Ej+k(j) · Zj and µs ≡ Es+1 . . . Es+k(s) · Zs, where l(Zj) 6 C⋆ and
l(Zs) 6 C⋆. Using this and the estimate j + k(j) < s, one can easily check that
the label of the path f•([µj, µs]) is [f(Xj,s)] ≡ Zj · Ej+k(j)+1 . . . Es+k(s) · Zs.

Let [σ, µs] be a reduced path from σ to µs with the last edge different from
the last edge of the path [µj, µs]. By Lemma 2.1, the maximal common terminal
segment of f•([σ, µs]) and f•([µj, µs]) has length at most C⋆. Then [f(σ)] ∈ St(µ)
for some t > s + k(s) − C⋆. By Lemma 5.16, we have l(µs) 6 k(s) + C⋆, and by
assumption we have l(µs) > 2C⋆. Then t > s as desired. 2

The following corollary seems to be known; we give it for completeness.

Corollary 6.3. If a µ-subgraph is a ray, then there exists n ∈ N such f induces
a contracting map on the neighborhood On(µ): f(Os(µ)) ⊂ Os+1(µ) for all s > n
and ∩

k>1
fk(On(µ)) = ∅.

7. r-cancelation areas

Let f : Γ → Γ be a PL-relative train track with the maximal filtration ∅ =
G0 ⊂ · · · ⊂ GN = Γ.

Definition 7.1. 1) Let p, q be reduced paths in Γ with the same initial point. By
I(p, q) we denote the largest common initial subpath of p and q. Then p ≡ I(p, q)·p′
and q ≡ I(p, q) · q′ for some paths p′, q′. We denote Λ(p, q) := (p′, q′).
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2) Let τ ≡ p̄ · q be a reduced path in Γ. For k > 1, we set

(pk, qk) ≡ Λ
(
[fk(p)], [fk(q)]

)
and Ik ≡ I

(
[fk(p)], [fk(q)]

)
Then [fk(τ)] ≡ p̄k · qk. The occurrence yk := α(pk) = α(qk) in [fk(τ)] is called the
k-successor of y := α(q).

Definition 7.2. Let Hr be an exponential stratum. Let τ ≡ p̄ · q be a reduced
path in Gr, where p and q are r-legal paths. For k ∈ N, let ck be the maximal
initial subpath of p such that [fk(ck)] is a subpath of Ik and the terminal (possibly
partial) edge of ck lies in Hr if it exists. Clearly, c1 ⊆ c2 ⊆ · · · ⊆ p. Let (p)min be
the minimal path containing all ck. Note that the terminal point of (p)min is not
necessarily a vertex. We define (q)min analogously.

Definition 7.3. Let Hr be an exponential stratum. Let τ be a reduced path in Gr.
An occurrence of a vertex y in τ is called an r-cancelation point in τ if τ contains
a subpath āb, where a and b are nontrivial partial edges such that α(a) = α(b) = y
and the full edges containing a and b form an illegal r-turn.

Lemma 7.4. Let Hr be an exponential stratum. Suppose that τ ≡ p̄q is a reduced
path in Gr such that the paths p and q are r-legal and the common initial point of
p and q is an r-cancelation point in τ . Then the following statements hold:

1) The initial and the terminal (possibly partial) edges of the paths (p)min and
(q)min lie in Hr.
2) The number of r-edges in (p)min and in (q)min, including their terminal (possi-

bly partial) r-edges, is bounded from above by a computable natural number ncritical

depending only on f . In particular, Lr

(
(p)min

)
< Lcritical and Lr

(
(q)min

)
< Lcritical,

where Lcritical := max{Lr(E) |E ∈ H1
r } · ncritical.

Proof. 1) The initial (partial) edges of the paths (p)min and (q)min lie in Hr,
since the common initial vertex of these paths is an r-cancelation point in τ . The
terminal (partial) edges of (p)min and (q)min lie in Hr by definition of these paths.
2) We claim that this statement holds for ncritical := 2⌈K⌉ + 2, where K is the

protection constant defined in the proof of [2, Lemma 4.2.2]. Suppose the contrary,
e.g., the number of r-edges in (p)min is larger than 2⌈K⌉ + 2. Then there exists
a K-protected r-edge E in the interior of (p)min, and by this lemma, [fn(E)] is a
subpath of [fn(τ)] for any n ∈ N. This contradicts Definition 7.2. Note that K is
computable and depends only on f . 2

Definition 7.5. Let Hr be an exponential stratum. Suppose that τ ≡ p̄q is a
reduced path in Gr such that the paths p and q are r-legal and the common initial
point y of p and q is an r-cancelation point in τ . We say that y is non-deletable in
τ if for every k > 1 the k-successor yk is an r-cancelation point in [fk(τ)]. We say
that y is deletable in τ if this does not hold.
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If y is non-deletable in τ , we call the path A := (p)min(q)min the r-cancelation
area (in τ). The number a := Lr((p)min) = Lr((q)min) is called the r-cancelation
radius of A.

Lemma 7.6. Each r-cancelation area A satisfies the following properties:

1) Each [fk(A)] is an r-cancelation area. In particular, each [fk(A)] contains
exactly one r-cancelation point.

2) The initial and the terminal (possibly partial) edges of each [fk(A)] are
contained in Hr.

3) The number of r-edges in [fk(A)] is bounded independently of k.

Proof. 1) follows from the above definition, 2) and 3) from Lemma 7.4. 2

Remark 7.7. The set of r-cancelation areas coincides with the set Pr defined
before Lemma 4.2.5 in [2].

Proposition 7.8. Let Hr be an exponential stratum.
1) Given two r-legal paths β, γ in Gr with Lr(β) > 0 and Lr(γ) > 0, there exists

at most one r-cancelation area A such that β̄ and γ are some initial and terminal
subpaths of A.
2) The number of r-cancelation areas is at most Mr := m2

rn
2
r, where mr is the

number of edges in Hr and nr is the number of sequences (p1, p2, . . . , ps), where all
pi are r-legal edge paths in Hr with

∑s
i=1 Lr(pi) 6 Lcritical, s ∈ {0} ∪ N.

Proof. 1) Without loss of generality, we may assume that Lr(β) = Lr(γ). Sup-
pose that A ≡ p̄q is an r-cancelation area, where p and q are r-legal and β and
γ are terminal subpaths of p and q, respectively. Let k be the minimal natural
number such that

λk
r · Lr(β) > Lcritical.

Then Lr([f
k(β)] = Lr([f

k(γ)]) > Lcritical. This implies that [fk(p̄q)] = [b̄c], where b
is obtained from [fk(β)] by deleting the maximal initial subpath lying in Gr−1 and
c is obtained analogously from [fk(γ)]. Hence [fk(p̄q)] and so p̄q are completely
determined by β and γ.
2) First we introduce notations. For any reduced path τ in Gr, we can write

τ ≡ c0τ1c1 . . . τscs, where the paths c1, c2, . . . , cs−1 lie in Gr−1 and are nontrivial,
the paths τ1, τ2, . . . , τs lie in Hr and are nontrivial, and c0, cs lie in Gr−1 or are
trivial. We denote τ ∩Hr := (τ1, τ2, . . . , τs).
Let τ ′s is obtained from τs by deleting the terminal partial edge of τs if it exists.

We set ⌊τ ∩Hr⌋ := (τ1, . . . , τs−1, τ
′
s) if τ

′
s is not empty and ⌊τ ∩Hr⌋ := (τ1, . . . , τs−1)

if τ ′s is empty.
The following claim is proven in the proof of Lemma 4.2.5 in [2]:
For any two sequences µ := (µ1, µ2, . . . , µs), σ := (σ1, σ2, . . . , σt) where µ1, . . . , µs,

σ1, . . . , σt are r-legal edge paths in Hr, and for any two edges E1, E2 in Hr, there
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exists at most one r-cancelation area A ≡ p̄q such that the paths p and q are
r-legal, ⌊p ∩Hr⌋ = µ, ⌊q ∩Hr⌋ = σ, and the terminal (possibly partial) edge of p
is a part of E1, and the terminal (possibly partial) edge of q is a part of E2.
Clearly, this claim and Lemma 7.4. 2) imply the statement 2). 2

Definition 7.9. Let Hr be an exponential stratum. Let x be a point in an r-edge
E. The (l, Lr)E-coordinates of x is the pair (l(p), Lr(p)), where p is the initial
segment of E with ω(p) = x.

The following lemma follows from the fact that f : Γ → Γ lies in the class PLHE .
Lemma 7.10. Let Hr be an exponential stratum. For each r-edge E and each
m ∈ N, the set {x ∈ E | fm(x) = x} is finite. Given such E and m, we can
efficiently compute the set of (l, Lr)E-coordinates of all points of this set.

Theorem 7.11. There is an efficient algorithm finding all r-cancelation areas of f .

Proof. Let A be the set of all r-cancelation areas. Let U be the set of all
endpoints of all r-cancelation areas. The set U is f -invariant and lies in Hr by
Lemma 7.6, and |U | 6 Mr by Proposition 7.8. We consider the subset U ′ :=
{fMr(u) |u ∈ U} of U . Then each point of U ′ is fixed by fm for some 0 < m 6 Mr.
Therefore U ′ is contained in the set

U ′ :=
∪

E∈H1
r

Mr∪
m=1

{x ∈ E | fm(x) = x}.

This set is finite and computable by Lemma 7.10. Then the set

U := {u ∈ Hr | fMr(u) ∈ U ′}
is finite and computable, and contains U .
Let P be the set of nontrivial initial segments ρ of r-edges with ω(ρ) ∈ U .

Suppose that A is an r-cancelation area. We write A ≡ p̄q, where p and q are
r-legal paths. Then p and q have terminal segments β and γ, respectively, which
lie in P . By Proposition 7.8.1), A is completely determined by β and γ. The proof
of this proposition gives us the following algorithm constructing all elements of A:

(a) Compute L = min{Lr(ρ)| ρ ∈ P} and the minimal k ∈ N such that λk
r ·L >

Lcritical. Denote Ak := {[fk(A)] |A ∈ A}. Clearly, Ak ⊆ A.
(b) Compute the set Ψk of all paths of the form b̄c, where α(b) = α(c) is a

vertex, b and c are nontrivial terminal subpaths of [fk(β)] and of [fk(γ)]
for some β, γ ∈ P , Lr(b) = Lr(c) 6 Lcritical, and the first (possibly partial)
edges of b and c form a nondegenerate illegal r-turn. Then Ak ⊆ Ψk.

(c) Compute the set Ψ of reduced paths d ⊂ Gr such that [fk(d)] ∈ Ψk and d
contains exactly one r-cancelation point. Then A ⊆ Ψ.

(d) Compute the set Ψ̃ = {τ ∈ Ψ | [f i(τ)] ∈ Ψ, i = 1, . . . , |Ψ|}. This is possible
since Ψ is finite. Then A = Ψ̃. 2
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Remark 7.12. Let Hr be an exponential stratum and let Nr be the number of
r-cancelation areas. Then, for each r-cancelation area A, the path [fNr(A)] is
an indivisible periodic Nielsen path (abbreviated INP; see [2, Definition 5.1.1]) of
height r, and each INP of height r has this form. Thus, by Theorem 7.11, we can
find all INP of height r.

Corollary 7.13. The PL-relative train track f : Γ → Γ representing φ ∈ Aut(Fn)
as in Theorem 4.4 can be constructed so that the following condition is satisfied:
(RTT-iv) There is a computable natural number P = P (f) such that for each

exponential stratum Hr and each r-cancelation area A of f , the r-cancelation area
[fP (A)] is an edge path.

Proof. Let P be the maximum of numbers of r-cancelation areas in Γ over all r.
Then (RTT-iv) can be arranged via subdivisions at endpoints of [fP (A)], where A
runs over all r-cancelation areas. These endpoints can be found by Theorem 7.11.
2

8. r-stable paths and their A-decompositions

Let f : Γ → Γ be a PL-relative train track with the maximal filtration ∅ =
G0 ⊂ · · · ⊂ GN = Γ. Now we analyze cancelations in f -images of paths in Gr with
several r-cancelation points.

Definition 8.1. LetHr be an exponential stratum in Γ. Let τ be a reduced path in
Gr and y1, . . . , yk be all r-cancelation points in τ . We say that these r-cancelation
points in τ are non-deletable if the number of r-cancelation points in [f i(τ)] is equal
to k for every i > 0. In this case the path τ is called r-stable.

Theorem 8.2. Let Hr be an exponential stratum in Γ. There exists an algorithm
which, given a reduced edge path τ ⊂ Gr, computes i0 > 0 such that the path
[f i0(τ)] is r-stable. In particular, one can check whether τ is r-stable or not.

Proof. Let y1, . . . , yk be all r-cancelation points in τ . Let y0 and yk+1 be the
initial and the terminal points of τ , respectively. Let τi be the subpath of τ from
yi to yi+1, i = 0, . . . , k.
For each 1 6 i 6 k, we check (using Theorem 7.11) whether τi−1τi contains an

r-cancelation area or not. If some τi−1τi does not contain an r-cancelation area,
then yi is deletable in τi−1τi and we can find Ti such that [fTi(τi−1τi)] is r-legal or
trivial. Then the number of r-cancelation points in [fTi(τ)] is smaller than k and
we proceed by induction.
Now suppose that each τi−1τi contains a cancelation area Ai. If the interiors

of each neighboring Ai, Ai+1 don’t overlap, then τ is r-stable. If the interiors of
some neighboring Ai, Ai+1 overlap, then there exists T such that the number of
r-cancelation points in [fT (τ)] is smaller than k and we proceed by induction. 2
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Definition 8.3. Let Hr be an exponential stratum in Γ.
1) For any reduced path µ ⊂ Gr, there exists a minimal i0 such that the path

[f i0(µ)] is r-stable. The latter path is denoted by (µ)stab.
2) Let τ be a reduced r-stable path in Gr. Then τ can be written as τ ≡

b0 · A1 · b1 · . . . · Ak · bk, where b0, . . . , bk are r-legal or trivial paths in Gr and
A1, . . . , Ak are all r-cancelation areas in τ . We call such decomposition the A-
decomposition of τ and denote Nr(τ) := k. The subpaths bi and Ai are called
blocks of τ . Any subpath of τ which is a concatenation of blocks of τ is called a
block subpath of τ .

The following lemma is obvious.

Lemma 8.4. Let µ be an r-stable path such that the A-decomposition of µ starts
(ends) with an r-cancelation area. Suppose that µ1 is obtained from µ by deleting
the first (last) (possibly partial) edge. Then Nr

(
(µ1)stab

)
= Nr(µ)− 1.

Remark 8.5. Suppose that τ has the A-decomposition

τ ≡ b0 · A1 · b1 · . . . · Ak · bk.
Then, for every i > 1, the path [f i(τ)] has the A-decomposition

[f i(τ)] ≡ bi0 · A i
1 · bi1 · . . . · A i

k · bik,
where bij ≡ [f i(bj)] and A i

j ≡ [f i(Aj)] for all possible j.

9. Splitting lemma

Lemma 9.3 (Splitting lemma) is important for describing the splittings of paths
in Gr, where the stratum Hr is exponential. A variation of this lemma for r-
stable paths is given by Bestvina, Feighn and Handel in [2, Lemma 4.2.6]. Almost
the same formulation as our is given by Brinkmann in [6, Lemma 2.7] 1. In [6],
Brinkmann writes that his Lemma 2.7 is a consequence of Proposition 6.2 in [5].
However, the proof of this proposition in [5] is not correct. Since we use the main
result of [6] in our proof, we decided to give a correct proof of the Splitting lemma
in this section.

Notation 9.1. Let f : Γ → Γ be a PL-relative train track. For any exponential
stratum Hr, let Er be the set of endpoints of all r-cancelation areas.

In this section we use the number Mr that was defined in Proposition 7.8.

1The only difference is that Brinkmann (wrongly) misses quantifiers, and we put quantifiers
correctly. As Brinkmann, we formulate our Splitting lemma for PL-relative train tracks. Indeed,
in the second paragraph of Section 1 in [6], he writes “Throughout this paper, we only consider
homotopy equivalences that map vertices to vertices and edges to edge paths of constant (but
not necessarily identical) speed”.



24 OLEG BOGOPOLSKI∗ AND OLGA MASLAKOVA†

Lemma 9.2. Let f : Γ → Γ be a PL-relative train track and Hr be an exponential
stratum.

1) The set Er lies in Hr, is f -invariant, computable, and |Er| 6 Mr.
2) If b is a nontrivial path in Gr with endpoints in Er and with Lr(b) = 0, then

fMr(b) is an edge path in Gr−1.

Proof. 1) follows from Lemma 7.6, Theorem 7.11 and Proposition 7.8.2). We
prove 2). By Lemma 3.4.5), there exists k such that fk(b) lies in Gr−1. The
endpoints of b and hence of fk(b) lie in Er, and Er lies in Hr. Therefore the
endpoints of fk(b) are vertices. Since Er is f -invariant and |Er| 6 Mr, and since
the f -images of vertices are vertices, we have that the endpoints of fMr(b) are
vertices. Since Lr(b) = 0, the path fMr(b) lies in Gr−1. 2

Lemma 9.3. (Splitting lemma) Let f : Γ → Γ be a PL-relative train track and
let Hr be an exponential stratum of Γ. Given a nontrivial reduced edge path τ of
height r and given L > 0, one can find an exponent S > 0 such that at least one
of the following three possibilities occurs:

1) [fS(τ)] contains an r-legal subpath of r-length greater than L.
2) [fS(τ)] contains fewer illegal r-turns than τ .
3) [fS(τ)] is a concatenation of indivisible periodic Nielsen paths of height r

and edge paths in Gr−1.

Proof. By Theorem 8.2, we can find the minimal i0 such that [f i0(τ)] is r-stable.
If i0 > 0, then τ is not r-stable and we have 2) with S := i0.
Suppose that i0 = 0. Then there exists the A-decomposition τ ≡ b0 · A1 · b1 ·

. . . · Ak · bk as in Definition 8.3. (Note that we can recognize all non-deletable
r-cancelation points in τ and compute the r-cancelation radii for all Aj; hence, we
can compute all Lr(bj).) Then, for all i > 0, we have the A-decomposition

[f i(τ)] ≡ bi0 · A i
1 · bi1 · . . . · A i

k · bik
with notations from Remark 8.5. Since all bj are r-legal or trivial, we have

Lr(b
i
j) = λi

r · Lr(bj).

If Lr(bj) > 0 for some j, we compute the minimal natural S with λS
r ·Lr(bj) > L.

Then we have 1) for this S.
Suppose that Lr(bj) = 0 for all j. Then k > 1, otherwise τ ≡ b0 is an edge path

which lies in Gr−1 and this contradicts the assumption about the height of τ .
First we prove that bk is trivial or is an edge path in Gr−1. Since ω(bk) = ω(τ)

is a vertex, it suffices to prove that α(bk) is a vertex too. Note that α(bk) lies in
an r-edge E; this follows from α(bk) = ω(Ak) and from the fact that the endpoints
of r-cancelation areas lie in Hr. Suppose that α(bk) is not a vertex. Then the
first partial edge of bk is a nontrivial terminal segment of E, hence Lr(bk) > 0 by
Lemma 3.4. 3), a contradiction.
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Thus, bk is a (possibly trivial) edge path with Lr(bk) = 0. Then bk is trivial or
is an edge path in Gr−1. Analogously b0 is trivial or is an edge path in Gr−1.
Now consider bj with j ∈ {1, . . . , k − 1}. Suppose that bj is nontrivial. Since

Lr(bj) = 0, Lemma 9.2.2) implies that [fMr(bj)] is an edge path in Gr−1. Clearly,
each r-cancelation area [fMr(Aj)] is an indivisible periodic Nielsen path of height r.
Thus, we have the statement 3) with S = Mr in this case. 2

10. Two corollaries from Brinkmann’s theorem

Let F be a free group of finite rank with a fixed basis X. For any element w ∈ F
let |w| be the length of w with respect to X. The following theorem was proven
by P. Brinkmann in [6, Theorem 0.1], see our comments in the previous section.
Theorem 10.1. There exists an algorithm which, given an automorphism φ of a
free group F of finite rank and given elements u, v ∈ F , verifies whether there exists
a natural number N such that φN(u) = v. If such N exists, then the algorithm
computes it.
Corollary 10.2. There exists an algorithm which, given a finite connected graph
Γ and a homotopy equivalence f : Γ → Γ with f(Γ0) ⊆ Γ0, and given two edge paths
ρ, τ in Γ, decides whether there exists a natural number k such that fk(ρ) = τ . If
such k exists, then the algorithm computes it.

Proof. First we reduce the problem to the case, where f fixes the endpoints
of ρ. Let ui and vi be the initial and the terminal vertices of ρi := f i(ρ). Since
f acts on the finite set Γ0×Γ0, there exist natural numbers r, n such that (ui, vi) =
(ui+n, vi+n) for i > r.
First we check, whether fk(ρ) = τ for k < r. If yes, we are done, if no we

investigate the case k > r. Given such k, we can write k = i + ℓn for some ℓ > 0
and r 6 i < r + n. So, we have fk(ρ) = gℓ(ρi), where g := fn. Thus we have to
investigate n problems: does there exist ℓ > 0 such that gℓ(ρi) = τ , r 6 i < r + n.
Note that g fixes the endpoints of ρi.

So, from the beginning, we may assume that f fixes the endpoints of ρ and
α(ρ) = α(τ), and ω(ρ) = ω(τ).
Let Γ1 be the graph obtained from Γ by adding a new vertex v and two new

oriented edges: E1 from v to α(ρ) and E2 from v to ω(ρ). Let f1 : Γ1 → Γ1 be the
extension of f that maps E1 to E1 and E2 to E2. Clearly, f1 is a homotopy equiva-
lence which fixes v. Let (f1)v : π1(Γ1, v) → π1(Γ1, v) be the induced automorphism.
We have

fk(ρ) = τ ⇐⇒ fk
1 (E1ρĒ2) = E1τĒ2 ⇐⇒ (f1)

k
v([[E1ρĒ2]]) = [[E1τĒ2]].

Thus, the problem is solvable by Theorem 10.1. 2

Corollary 10.3. There exists an algorithm which, given a finite connected graph
Γ and a homotopy equivalence f : Γ → Γ with f(Γ0) ⊆ Γ0, and given two edge



26 OLEG BOGOPOLSKI∗ AND OLGA MASLAKOVA†

paths ρ, τ in Γ, decides whether there exist natural numbers k > s such that fk(ρ) =
f s(τ). If such k and s exist, then the algorithm computes them.

Proof. Let ui and vi be the initial and the terminal vertices of f i(ρ), i > 0,
and let u′

j and v′j be the initial and the terminal vertices of f j(τ), j > 0. First
we decide, whether there exist i, j such that (ui, vi) = (u′

j, v
′
j). If such i, j don’t

exist, then the desired k, s don’t exist. If such i, j exist, we can algorithmically
find natural i, j, n with the following properties:
1) (ui, vi) = (u′

j, v
′
j);

2) (ui, vi) = (ui+n, vi+n) and n is minimal;
3) i > j;
4) i− j is the minimal possible for 1)-3).

So, we reduce the problem to the following: does there exist p > q > 0 such that
f i+pn(ρ) = f j+qn(τ)? We set ρ1 := f i(ρ), τ1 := f j(τ), g := fn. Then the endpoints
of ρ1 and τ1 coincide and are fixed by g. In this setting we have to decide, whether
there exist p > q > 0 such that gp(ρ1) = gq(τ1).
We extend Γ to Γ′ by adding an edge E from vi to ui and we extend g to

g′ : Γ′ → Γ′ by setting g′|Γ = g and g′(E) = E. Then the problem is equivalent to
the following: does there exist p > q > 0 such that g′p(ρ1E) = g′q(τ1E)?
Since g′ is a homotopy equivalence and ρ1E and τ1E are loops based at the same

point, and this point is fixed by g′, we have

g′p(ρ1E) = g′q(τ1E) ⇐⇒ g′p−q(ρ1E) = τ1E.

Thus, the problem can be reformulated as follows: does there exist m > 0 such
that g′m(ρ1E) = τ1E? This can be decided by Theorem 10.1. 2

11. r-perfect and A-perfect paths

Definition 11.1. Let Hr be an exponential stratum. An edge path τ ⊂ Gr is
called r-perfect if the following conditions are satisfied:

(i) τ is a reduced f -path and its first edge belongs to Hr,
(ii) τ is r-legal,
(iii) [τf(τ)] ≡ τ · [f(τ)] and the turn of this path at the point between τ

and [f(τ)] is legal.

A vertex in Df is called r-perfect if the corresponding f -path in Γ is r-perfect.

Note that these conditions imply that [τf(τ)] is r-legal. In the following proposi-
tion we formulate some important properties of r-perfect paths; they can be proved
directly from the above definition.

Proposition 11.2. Let Hr be an exponential stratum and let τ be an r-perfect path
in Gr. Then the following statements are satisfied:
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(1) For every i > 0, the path f̂ i(τ) ⊂ Gr is r-legal, contains edges from Hr,

and Lr(f̂
i+1(τ)) > Lr(f̂

i(τ)).

(2) For every i > 0, the path [f i(τ)] is r-perfect.

(3) For every i > 0, the vertex [f i(τ)] of Df lies in the τ -subgraph. Moreover,

[f i(τ)] ≡ f̂ mi(τ) for some computable mi satisfying m0 = 0, mi < mi+1.

In particular, Lr(f̂
mi(τ)) = λi

rLr(τ), and the τ -subgraph is infinite.

Definition 11.3. Let Hr be an exponential stratum. A reduced f -path τ ⊂ Gr

containing edges from Hr is called A-perfect if

(i) all r-cancelation points in τ are non-deletable,
the corresponding r-cancelation areas are edge paths,

(ii) the A-decomposition of τ begins with an A-area, i.e., it has the form
τ ≡ A1b1 . . . Akbk, k > 1,

(iii) [τf(τ)] ≡ τ · [f(τ)] and the turn at the point between τ and [f(τ)] is legal.

A vertex in Df is called A-perfect if the corresponding f -path in Γ is A-perfect.

Note that the first edge of such τ lies in Hr. The following proposition can be
proved straightforward and we leave it for the reader.

Proposition 11.4. Let Hr be an exponential stratum and let τ be an A-perfect
path in Gr with the A-decomposition τ ≡ A1b1 . . . Akbk.
For 1 6 j 6 k, we set τ0,j ≡ [Ajbj . . . Akbkf(A1b1 . . . Aj−1bj−1)] and for i > 1 we

set τi,j ≡ [f i(τ0,j)]. Then the following statements are satisfied:

(1) For any 1 6 j 6 k and i > 0 the path τi,j is A-perfect.

(2) For any 1 6 j 6 k and i > 0 the vertex τi,j of Df lies in the τ -subgraph.

Moreover, τi,j ≡ f̂ mi,j(τ) for some computable mi,j satisfying m0,1 = 0,
mi,j < mi,j+1, and mi,k < mi+1,1.

(3) All A-perfect vertices of the τ -subgraph are τi,j, 1 6 j 6 k, i > 0.

(4) For every vertex σ in the τ -subgraph, at least one of the paths σ, f̂(σ), . . . , f̂ l(σ)(σ)
coincides with τi,j for some i, j.

12. r-perfect and A-perfect vertices in µ-subgraphs

From here and to the end of the paper, we work with the PL-relative train track
f : Γ → Γ which satisfies (RTT-iv), see Corollary 7.13. Let R⋆ = R⋆(f) be the
maximum of l-lengths of r-cancelation areas over all r. The main result of this
section is Theorem 12.8.

Definition 12.1. Let Hr be an exponential stratum. A reduced f -path τ ⊂ Gr is
called r-superstable if all r-cancelation points in τ and in [τf(τ)] are non-deletable
and all r-cancelation areas in these paths are edge paths.
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Note that if τ is r-superstable, then [f i(τ)] is r-superstable for all i > 0.

Lemma 12.2. Let Hr be an exponential stratum. For any reduced f -path τ ⊂ Gr,
one can compute a natural number S = S(τ) such that the path [fS(τ)] is r-super-
stable.

Proof. By Theorem 8.2, we can compute numbers S1 and S2 such that all
r-cancelation points in [fS1(τ)] and in [fS2([τf(τ)])] are non-deletable. We set
S = max{S1, S2}+ P , where P is the constant from (RTT-iv). 2

The proof of the following lemma is straightforward.

Lemma 12.3. Let Hr be an exponential stratum. Let µ ≡ στ be a reduced f -path
such that σ is a nontrivial path in Gr−1 with endpoints in Hr and τ is an r-legal

path in Gr with the first and the last edges from Hr. Then f̂ l(σ)(µ) is r-perfect.

Proposition 12.4. Let Hr be an exponential stratum and let µ ⊂ Gr be a reduced
f -path such that µ is r-legal and [µf(µ)] is r-legal or trivial. After several applica-

tions of f̂ , one can obtain an f -path µ′ satisfying one of the following conditions:

(1) µ′ lies in Gr−1;
(2) µ′ is r-perfect;
(3) l(µ′) 6 ||f ||.

Proof. We induct on the number of r-edges in µ. We assume that µ contains an
r-edge, otherwise we have (1) for µ′ := µ. Write µ ≡ b1 · b2, where b1 lies in Gr−1

or is trivial, and the first edge of b2 lies in Hr. Then f̂ l(b1)(µ) has the first edge
in Hr, it satisfies all conditions for µ, and it has the same number of r-edges as µ.
Thus, we may assume from the beginning that the first edge E of µ lies in Hr. Set
I := I(µ̄, [f(µ)]). Both I and f(E) are initial subpaths of [f(µ)].
Case 1. Suppose that f(E) lies in I.
We may assume that l(µ) > ||f || + 1. Then µ1 := [Eµf(E)] is a subpath of µ.

We may assume that µ1 is nontrivial, otherwise we have (3) for µ
′ := µ1. Moreover,

[µ1f(µ1)] is a subpath of µ, [f(µ)], or [µf(µ)]. Hence, µ1 satisfies the assumptions
of this proposition. Since µ1 contains less r-edges than µ, we can apply induction.

Case 2. Suppose that f(E) is longer than I (see Figure 8).
We may assume that l(µ) > l(I)+ 2, otherwise l(µ) 6 1+ l(I) 6 l(f(E)) 6 ||f ||

and we have (3). Let E1 be the second edge of µ. We set µ1 :≡ [Eµf(E)]. The
path µ1 is r-legal as a subpath of [µf(µ)], it begins with E1 and ends with the last
edge of f(E).
Suppose that E1 is an r-edge. Then [f(µ1)] begins with the first edge of f(E1).

Therefore the turn between µ1 and [f(µ1)] coincides with the turn between f(E)
and f(E1). This turn is legal, since the turn between E and E1 is an r-turn in the
r-legal path µ. Hence, µ1 is r-perfect and we have (2) for µ′ :≡ µ1.
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If E1 lies in Gr−1, we apply Lemma 12.3 to µ1 and construct µ′ satisfying (2). 2
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Figure 8. Figure 9.

Proposition 12.5. Let Hr be an exponential stratum. Let µ ⊂ Gr be a reduced r-
legal f -path. Suppose that [µf(µ)] contains a non-deletable r-cancelation point and
that the r-cancelation area in [µf(µ)] is an edge path. After several applications of

f̂ and f , one can obtain an f -path µ′ satisfying one of the following conditions:

(1) µ′ lies in Gr−1;
(2) µ′ is r-perfect;
(3) µ′ is A-perfect;
(4) l(µ′) 6 R⋆ + ||f ||.

Proof. For i = 0, 1, let zi be the unique non-deletable r-cancelation point in the
path [f i(µ)f i+1(µ)] and let A(zi) be the r-cancelation area in this path. We have
A(z1) ≡ [f

(
A(z0)

)
]. Let a and b be the initial and the terminal vertices of A(z0).

Then f(a) and f(b) are the initial and the terminal vertices of A(z1). We induct
on the number of r-edges in µ.
Let E be the first edge of µ. Arguing as in the proof of Proposition 12.4, we

may assume that the first edge E of µ lies in Hr. Set I := I(µ̄, [f(µ)]). Both I and
f(E) are initial subpaths of [f(µ)].

Case 1. Suppose that f(E) lies in I.
Then µ1 := [Eµf(E)] is a subpath of µ, hence µ1 is r-legal or trivial. We may

assume that µ1 is nontrivial, otherwise we have (4) for µ′ := µ1. If [µ1f(µ1)] is
r-legal or trivial, we apply Proposition 12.4.
Suppose that [µ1f(µ1)] is not r-legal and nontrivial, so it contains a unique

r-cancelation point, say x. If x is non-deletable, then [µ1f(µ1)] is a subpath of
[µf(µ)], and the r-cancelation area in [µ1f(µ1)] is A(z0). In this case we apply
induction to µ1. If x is deletable, we find S such that [fS([µ1f(µ1)])] is r-legal or
trivial and apply Proposition 12.4 to [fS(µ1)] (as µ1, this path is r-legal or trivial;
we may assume that it is nontrivial, otherwise we have (4) for µ′ := [fS(µ1)]).

Case 2. Suppose that f(E) is longer than I (see Figure 9).
We may assume that E lies to the left from a, otherwise l(µ) 6 l(A(z0))+ l(I) 6

R⋆ + l(f(E)) 6 R⋆ + ||f || and we have (4). Then [f(E)] lies in [f(µ)] to the left
from f(a), in particular, z0 lies to the left from f(a).
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Let p be the initial subpath of µ until the vertex a. We claim that µ′ := f̂ l(p)(µ)
satisfies (3) or (4). To prove this, we first observe that µ′ is the subpath of [µf(µ)]
from a to f(a). If f(a) lies between z0 and b, then l(µ′) 6 R⋆, and we have (4).
Thus assume that f(a) lies to the right from b in [f(µ)].
We prove that µ′ is A-perfect. First note that µ′ has the A-decomposition

µ′ ≡ A(z0) · ℓ, where ℓ is the subpath of [f(µ)] from b to f(a). We have [f(µ′)] ≡
A(z1) · [f(ℓ)]. The turn in µ′ · [f(µ′)] at the point between µ′ and [f(µ′)] coincides
with the turn in [f(µ)] at f(a). This turn is legal, since [f(µ)] is r-legal and the
first edge of the r-cancelation area A(z1) lies in Hr. Thus, µ

′ is A-perfect. 2

Lemma 12.6. Let Hr be an exponential stratum and let µ be a reduced r-stable

f -path in Gr. After several applications of f̂ and f , one can obtain an f -path µ′

which is either trivial, or r-legal, or r-superstable and has the property that the
A-decomposition of µ′ starts with an A-area and Nr(µ

′) 6 Nr(µ) + 1.

Proof. We may assume that the paths which we obtain in the process below
are nontrivial. Using Lemma 12.2, we may assume that µ is r-superstable. Let
µ ≡ b0A1 . . . Akbk be the A-decomposition of µ. We shall analyze the case where

k > 1 and b0 is nonempty. Consider µ1 := f̂ l(b0)(µ) ≡ [A1 . . . Akbkf(b0)].
First suppose that [f(b0)] completely cancels in A1 . . . Akbk[f(b0)]. If A1 remains

there, then we set µ′ := [fS(µ1)], where S is as in Lemma 12.2. Otherwise, µ1 is a
proper initial segment of A1, hence (µ1)stab is r-legal, and we set µ′ := (µ1)stab.
Now suppose that [f(b0)] not completely cancels in A1 . . . Akbk[f(b0)]. Then µ1

is a subpath of [µf(µ)].
If A1 remains in µ1, then µ1 is a block subpath of the r-stable path [µf(µ)].

Hence µ1 is r-stable, its A-decomposition starts with A1, and Nr(µ1) 6 Nr(µ)+1.
Applying a power of f , we may assume that µ1 is r-superstable.
If the cancelations meet A1, then µ1 ≡ A′

1[f(b0)]
′, where A′

1 is a nontrivial
initial proper subpath of A1 and [f(b0)]

′ is a nontrivial terminal subpath of [f(b0)].

Write [f(b0)]
′ ≡ [f(b′0)] for some terminal subpath b′0 of b0. Then f̂ l(A′

1)(µ1) ≡
[f(b0)]

′[f(A′
1)] ≡ [f(b′0A

′
1)]. By Lemma 8.4, (b′0A

′
1)stab is r-legal. Hence µ′ :=

(f̂ l(A′
1)(µ1))stab is r-legal. 2

Proposition 12.7. Let Hr be an exponential stratum and let µ be a reduced f -path

in Gr. After several applications of f̂ and f , one can obtain an f -path µ1 which is
either r-legal, or A-perfect, or trivial, or is an r-cancelation area.

Proof. We may assume that µ is r-stable and that the paths which we obtain
in the process below are nontrivial. By Lemma 12.6, we can pass to new µ and
assume that µ is r-superstable and has the A-decomposition µ ≡ A1b1A2 . . . Akbk;
the value Nr(µ) increases by at most 1. If bk is a nontrivial path in Gr−1, then µ
is A-perfect. So, we assume that bk is empty or Lr(bk) > 0. Applying f several
times, we may assume that bk is empty or Lr(bk) > 2λrLcritical.
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Case 1. Suppose that k = 1, i.e. µ ≡ A1b1. We may assume that b1 is nonempty,

otherwise we are done. Since Lr(b1) > 2λrLcritical, we have f̂ l(A1)(µ) ≡ [b1f(A1)].
If there is no cancelations between b1 and [f(A1)], then [µf(µ)] ≡ A1b1[f(A1)][f(b1)].

Since µ is r-superstable, the turn between b1 and [f(A1)] is legal, hence µ is A-
perfect.

If there is a cancelation between b1 and [f(A1)], then f̂ l(A1)(µ) ≡ b′1[f(A1)]
′,

where b′1 is an initial subpath of b1 and [f(A1)]
′ is a proper terminal subpath of

[f(A1)]. Write [f(A1)]
′ ≡ [f(A′

1)] for some proper terminal subpath A′
1 of A1.

Then f̂ l(A1b′1)(µ) ≡ [f(A1)]
′[f(b′1)] ≡ [f(A′

1b
′
1)]. By Lemma 8.4, (A′

1b
′
1)stab is r-

legal. Hence µ′ := (f̂ l(A1b′1)(µ))stab is r-legal.
Case 2. Suppose that k > 2. First we suppose that bk is nonempty. Since

Lr(bk) > 2λrLcritical, we have f̂
l(A1)(µ) ≡ [b1A2 . . . Akbkf(A1)] and the last edge of

[f(A1)] remains uncanceled. Then f̂ l(A1b1)(µ) ≡ [A2 . . . Akbkf(A1)f(b1)] is a block
subpath of the r-stable path [µf(µ)], hence it is r-stable. Clearly, it is A-perfect.

Now suppose that bk is empty. If [Akf(A1)] is nontrivial, then f̂ l(A1)(µ) ≡
[b1A2 . . . Akf(A1)], where the last edge of [f(A1)] remains uncanceled, and we can

proceed as above. If [Akf(A1)] is trivial, then Nr

(
f̂ l(A1)(µ)

)
= Nr(µ)− 2, and we

can proceed by induction. 2

Theorem 12.8. Let Hr be an exponential stratum. Suppose that µ is a reduced

f -path in Gr. After several applications of f̂ and f , one can obtain an f -path µ1

which either lies in Gr−1, or is r-perfect, or is A-perfect, or has l-length at most
R⋆ + ||f ||.

Proof. In view of Proposition 12.7, it suffices to consider the case where µ is
r-legal. By Lemma 12.2, we may additionally assume that µ is r-superstable.
Applying Proposition 12.4 or Proposition 12.5, we complete the proof. 2

13. E-perfect vertices in µ-subgraphs

Let Hr be a polynomial stratum. There exists a permutation σ on the set of
r-edges and, for each r-edge E, there exists an edge path cE (which is trivial or is
an edge path in Gr−1) such that f(E) = cE · σ(E) · cE. Then, for each i > 0 and
for each r-edge E, one can compute a path ci,E (which is trivial or is an edge path
in Gr−1) such that f i(E) ≡ ci,E · σi(E) · ci,E. For any edge path µ ⊂ Gr, let N (µ)
be the number of r-edges in µ. Clearly, if µ is a reduced nontrivial f -path in Gr,

then N (f̂(µ)) 6 N (µ).

Definition 13.1. Let Hr be a polynomial stratum. A vertex µ ∈ Df is called
E-perfect if µ ≡ E1b1E2 . . . Ekbk, where k > 1, E1, . . . , Ek are r-edges, b1, . . . , bk
are paths which lie in Gr−1 or are trivial, and N (µ′) = N (µ) for every vertex µ′ in
the µ-subgraph.
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Proposition 13.2. Let Hr be a polynomial stratum. Let µ ≡ E1b1 . . . Ekbk be a
reduced f -path in Gr, where k > 1, E1, . . . , Ek are r-edges, and b1, . . . , bk are paths
which lie in Gr−1 or are trivial. For 1 6 j 6 k and i > 1, we set

µ0,j ≡ [Ejbj . . . Ekbkf(E1b1 . . . Ej−1bj−1)],

µi,j ≡ [ci,Ej
f i(µ0,j)f(ci,Ej

)].

Then the following statements are satisfied.

(1) µ is E-perfect if and only if N (f̂(µ)) = N (µ).
(2) One can efficiently find a vertex in the µ-subgraph which is E-perfect or lies

in Gr−1 (considered as an f -path), or is dead.

(3) If µ is E-perfect, then µi,j ≡ f̂ mi,j(µ) for some computable mi,j satisfying
m0,1 = 0, mi,j < mi,j+1, and mi,k < mi+1,1. Moreover, all E-perfect vertices
of the µ-subgraph are µi,j, 1 6 j 6 k, i > 0.

Proof. (1) If k = 1, then µ is E-perfect. Suppose that k > 2. Then (1) follows
by induction from the next claim.
Claim. The condition (a) below implies the condition (b).

(a) N (µ) = N (f̂(µ)) = k.

(b) N (µ′) = N (f̂(µ′)) = k, where µ′ := f̂ 1+l(b1)(µ).

Proof. We have f̂(µ) ≡ [b1E2b2 . . . Ek ·bkc1,E1 ·σ(E1) ·c1,E1
]. If (a) is valid, then b1

is an initial subpath of f̂(µ) and we have µ′ ≡ [E2b2 . . . Ek ·bkc1,E1 ·σ(E1)·c1,E1
f(b1)],

hence N (µ′) = N (f̂(µ)) = k. Then

f̂(µ′) = [b2E3 . . . Ek · bkc1,E1 · σ(E1) · c1,E1
f(b1)c1,E2 · σ(E2) · c1,E2

].

Suppose that (b) is not valid, i.e.,N (f̂(µ′)) < k. Then [σ(E1)·c1,E1
f(b1)c1,E2 ·σ(E2)]

is trivial. This is possible only if E2 = E1 (hence b1 is a loop) and [c1,E1
f(b1)c1,E1

]
is trivial. The latter is equivalent that b1 is trivial. But then [E1b1E2] is trivial
and µ is not reduced, a contradiction. 2
(2) follows from (1), and (3) can be proved by direct computations. 2

Proposition 13.3. Let Hr be a polynomial stratum. For every two E-perfect
vertices µ, τ in Df , one can decide whether τ lies in the µ-subgraph.

Proof. By Proposition 13.2.(3), τ lies in the µ-subgraph if and only if τ ≡ µi,j

for some i > 0 and 1 6 j 6 k, where k = N (µ).
Let m be the number of edges in Hr including the inverses. Since the filtration

for f is maximal, we have σm = id. Then, for each r-edge E we have

fm(E) ≡ cm,E · E · cm,E. (13.1)



A BASIS OF THE FIXED POINT SUBGROUP OF AN AUTOMORPHISM ... 33

Since f , restricted to any edge, is a piecewise-linear map, we can find a subdivision
E = E ′E ′′ such that fm(E ′) ≡ cm,EE

′ and fm(E ′′) ≡ E ′′cm,E. This implies

cm,E = fm(E ′)E ′. (13.2)

Claim. For any integers a, b, s, t > 0 and for each r-edge E the following is
satisfied:
1) ca+b,E = f b(ca,E)cb,σa(E).

2) cms,E = fms(E ′)E ′.

3) cms+t,E = fms+t(E ′)f t(E ′)ct,E.

Proof. 1) follows from the definition of ci,E. From 1) and using σm = id, we have

cms,E = fm(s−1)(cm,E) . . . f
m(cm,E)cm,E.

This and the equation (13.2) imply 2). Claim 3) follows from 1) and 2). 2

Using Claim 3), we deduce

µms+t,j ≡ [cms+t,Ej
fms+t(µ0,j)f(cms+t,Ej

)]

≡ [ct,Ej
f t(E ′

j) · fms+t(E ′
jµ0,jf(E

′
j)) · f t+1(E ′

j)f(ct,Ej
)].

(13.3)

Thus, τ ≡ µi,j for some i > 0 and 1 6 j 6 k if and only if there exist s > 0,
0 6 t < m, and 1 6 j 6 k, such that

[f t(E ′
j)ct,Ej

τf(ct,Ej
)f t+1(E ′

j)] = [fms(f t(E ′
jµ0,jf(E

′
j)))].

For fixed t, j, and using Corollary 10.2 for fm, one can decide whether there exists
s > 0 satisfying the above equation. Hence, one can decide whether there exist i, j
with τ ≡ µi,j. 2

14. Finiteness and Membership problems

We continue to work with the PL-relative train track f : Γ → Γ satisfying
(RTT-iv). We prove Propositions 14.4 and 14.7 which solve the Finiteness and the
Membership problems for such f .

Definition 14.1. A path p in Df is called directed if either p is a vertex in Df

or p ≡ e1e2 . . . en, where e1, . . . , en are edges in Df and the preferable direction at
α(ei) is the direction of ei for each i = 1, 2, . . . , n.

The set of all repelling vertices of Df is denoted by Rep(Df ).

Recall that k-transversal paths and k-spheres Sk(µ) were defined in Definition 6.1.

Lemma 14.2. Let µ be a vertex in Df and let p be a k-transversal path to the
µ-subgraph. Then there exists a terminal subpath p1 of p such that p1 is directed
and α(p1) ∈ {α(p)} ∪Rep(Df ).
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Proof. We may assume that p is nontrivial. Let e be the last edge of p. If e is
repelling, we take p1 := ω(e). If not, at least one of the paths e or ē is directed.
But ē is not directed since p is k-transversal to the µ-subgraph. Thus, e is directed.
Then p1 is the maximal directed terminal subpath of p. 2

Remark 14.3. Let R be an infinite µ-subgraph. Let p1 and p2 be directed paths
which are k1-transversal and k2-transversal to R. If k1 ̸= k2, then α(p1) ̸= α(p2).

Proposition 14.4. Given a vertex µ in Df , one can decide whether the µ-subgraph
is finite or not.

Proof. Let r be the minimal number such that the f -path µ lies in Gr.
First suppose that Hr is an exponential stratum. Observe that if σ ∈ Ss(µ) is

an alive vertex, then f̂(σ) ∈ Ss(µ) or f̂(σ) ∈ Ss+1(µ). Moreover, if s satisfies the
conditions of Theorem 6.2, then [f(σ)] ∈ St(µ) for some computable t > s, and
one can construct a t-transversal path from [f(σ)] to the µ-subgraph.
This and Theorem 12.8 imply that we can either

(a) prove that the µ-subgraph is finite, or
(b) find k > 1 and a vertex µ′ ∈ Sk(µ) with one of the following properties:

1) the f -path µ′ lies in Gr−1;
2) µ′ is r-perfect;
3) µ′ is A-perfect;
4) l(µ′) 6 max{2C⋆, R⋆ + ||f ||}.

Moreover, we can construct a k-transversal path p from µ′ to the µ-subgraph.

It suffices to consider (b). If we have Case 4) or if the path p contains a repelling

vertex, we restart with µ := f̂ (k+1)(µ) if it exists.
Let K be the number of f -paths τ in Γ with l(τ) 6 max{2C⋆, R⋆ + ||f ||} plus

the number of repelling vertices in Df . If the number of restarts exceed K or the
new µ does not exist, then the original µ-subgraph is finite (see Lemma 14.2 und
Remark 14.3). Thus, we may assume that µ′ satisfies one of 1)-3) and the path
p does not contain repelling vertices. By Lemma 14.2, p is directed, hence the
µ-subgraph and the µ′-subgraph intersect, thus they are simultaneously finite or
infinite. Redenoting, we may assume that µ = µ′ satisfies one of 1)-3).
In Case 1) we apply induction. In Case 2) the µ′-subgraph is infinite by Proposi-

tion 11.2. Consider Case 3). By Proposition 11.4. (2), there exist natural numbers

m1,1 < m2,1 < m3,1 < . . . such that f̂ mi,1(µ′) ≡ [f i(µ′)], i > 0. Hence, the µ′-
subgraph is finite if and only if there exist 0 < i < j such that [f i(µ′)] = [f j(µ′)].
This problem is decidable by Corollary 10.3.
Now suppose that Hr is a polynomial stratum. By Proposition 13.2. (2), we can

efficiently find a vertex µ′ in the µ-subgraph with one of the following properties:
1) µ′ is dead;
2) the f -path µ′ lies in Gr−1;
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3) µ′ is E-perfect.
In Case 1) the µ-subgraph is finite. In Case 2) we apply induction. Consider

Case 3). Let m be the number of edges in Hr including the inverses. Let µ′ ≡
E1b1 . . . Ekbk, where k > 1, E1, . . . , Ek are r-edges, and b1, . . . , bk are paths which
lie in Gr−1 or trivial. By Proposition 13.2. (3), the µ′-subgraph is finite if and only
if there exist 0 6 s1 < s2 such that µ′

ms1 ,1
≡ µ′

ms2 ,1
. (Recall that µ′

0,1 ≡ µ′.) By

the formula (13.3), this is equivalent to

[fms1 (E ′
1µ

′f(E ′
1))] = [fms2 (E ′

1µ
′f(E ′

1))].

The problem of existence of such s1 , s2 is decidable by Corollary 10.3.
If Hr is a zero stratum, then following along the µ-subgraph at most l(µ) steps,

we can find a vertex µ′ in the µ-subgraph such that the f -path µ′ lies in Gr−1 or
is trivial. Then we apply induction. 2

Proposition 14.5. For every two vertices µ, τ in Df , where µ is r-perfect, one
can decide whether τ lies in the µ-subgraph.

Proof. We may assume that the f -path τ lies in Gr (otherwise τ does not lie
in the µ-subgraph). Let µ = µ0, µ1, . . . , be consecutive vertices of the µ-subgraph.
Using Proposition 11.2, we can compute the minimal i such that Lr(µi) > Lr(τ).
Then τ lies in the µ-subgraph if and only if τ coincides with one of the vertices
µ0, µ1, . . . , µi−1. 2

Proposition 14.6. For every two vertices µ, τ in Df , where µ is A-perfect, one
can decide whether τ lies in the µ-subgraph.

Proof. Due to Proposition 14.4, we may assume that the µ-subgraph is infinite.
Let µ ≡ A1b1 . . . Akbk be the A-decomposition of µ. We use the following notation
from Proposition 11.4:

µ0,j ≡ [Ajbj . . . Akbkf(A1b1 . . . Aj−1bj−1)],

µi,j ≡ [f i(µ0,j)],
(14.1)

where 1 6 j 6 k and i > 1. By Proposition 11.4. (4), for every vertex σ in the

µ-subgraph, at least one of the paths σ, f̂(σ), . . . , f̂ l(σ)(σ) coincides with µi,j for
some i, j.

Thus, we first decide, whether one of the paths τ , f̂(τ), . . . , f̂ l(τ)(τ) coincides
with µi,j for some i, j. In view of (14.1), this can be done with the help of Corol-
lary 10.2. If the answer is negative, then τ does not lie in the µ-subgraph. If it is

positive, then we can find t, i, j such that f̂ t(τ) ≡ µi,j. Recall that by Proposi-

tion 11.4. (2), µi,j ≡ f̂ mi,j(µ) for computable mi,j. Then τ lies in the µ-subgraph

if and only if mi,j > t and τ ≡ f̂ mi,j−t(µ). 2

Proposition 14.7. Given two vertices µ, τ in Df , one can decide whether τ lies
in the µ-subgraph.
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Proof. By Proposition 14.4, we can decide whether the µ-subgraph and the τ -
subgraph are finite or not. If the µ-subgraph is finite, we can compute all its vertices
and verify, whether τ is one of them. Suppose that the µ-subgraph is infinite. Then,
if the τ -subgraph is finite, the vertex τ cannot lie in the µ-subgraph. So, we may
assume that the τ -subgraph is also infinite. Let r be the minimal number such
that the f -path µ lies in Gr. We will induct on r.

First suppose that Hr is an exponential stratum. Then, as in the proof of
Proposition 14.4, we can find k > 1, a vertex µ′ ∈ Sk(µ), and a directed path p

from µ′ to µk := f̂ k(µ) such that one of the following properties is satisfied:

1) the f -path µ′ lies in Gr−1;
2) µ′ is r-perfect;
3) µ′ is A-perfect.
First we check whether τ belongs to the segment of the µ-subgraph from µ to µk.

If yes, we are done. If not, we check whether τ belongs to the segment of the µ′-
subgraph from µ′ to µk. If yes, then τ does not belong to the µ-subgraph. If
not, we replace µ by µ′ and consider the above cases. In Case 1) we proceed by
induction, in Case 2) by Proposition 14.5, and in Case 3) by Proposition 14.6.
Now suppose that Hr is a polynomial stratum. Then, by Proposition 13.2. (2),

we can efficiently find a vertex µ′ in the µ-subgraph with one of the following
properties:

1) the f -path µ′ lies in Gr−1;
2) µ′ is E-perfect.

In Case 1) we proceed by induction. Consider Case 2). We may assume that the
f -path τ lies in Gr, otherwise τ does not lie in the µ-subgraph. By Proposition 13.2,

we can find k > 0 such that either f̂ k(τ) lies in Gr−1, or f̂ k(τ) is E-perfect. If

f̂ k(τ) lies in Gr−1, then τ does not lie in the µ-subgraph. Suppose that f̂ k(τ) is E-

perfect. By Proposition 13.3, we can decide whether f̂ k(τ) lies in the µ′-subgraph,

and hence in the µ-subgraph (these subgraphs differ by a finite segment). If f̂ k(τ)

does not lie in the µ-subgraph, then τ does not lie in the µ-subgraph. If f̂ k(τ) lies

in the µ-subgraph, say f̂ k(τ) = f̂ t(µ), then τ lies in the µ-subgraph if and only

if t > k and τ = f̂ t−k(µ).
Finally, if Hr is a zero stratum, we follow along the µ-subgraph at most l(µ)

steps until we arrive at a vertex µ′ ∈ Df which, considered as an f -path, lies in
Gr−1. Then we apply induction. 2

15. The main algorithm

Our algorithm for finding a basis of Fix(φ) is the following:

1) Represent the automorphism φ : F → F by a PL-relative train track
f : (Γ, v) → (Γ, v) (see Theorem 4.4).
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2) Subdivide f as in Corollary 7.13 to ensure that f satisfies (RTT-iv).
3) Construct CoRe(Cf ). (A construction modulo the Finiteness and the Mem-

bership problems is explained in Section 5. Solutions to these problems in
the case where f is a PL-relative train track satisfying (RTT-iv) are given
in Section 14.)

4) Decide, whether there exists a repelling vertex µ in Df such that 1v lies
in the µ-subgraph. If such µ exists, compute the µ-subgraph. This can be
done with the help of the solution of the Finiteness problem.

5) Compute a basis of π1(Df (1v),1v) (see Proposition 5.6).
6) Compute a basis of Fix(f) using Lemma 5.1.
7) Compute a basis of Fix(φ) using 1) and 6).
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