
About the paper of Touikan [14]: background

We fix a nonabelian free group F of finite rank. Please distinguish F from F ; the letter
F will also denote a free group.

1 General facts on equations

The following holds for any finite set of variables. For simplicity we use only x and y.
• An equation in x, y with coefficients in F can be considered as an element of

F[x, y] := F ∗ F (x, y).

Let S be a (possibly infinite) system of equations in x, y. According to this point of view,
S is a subset of F[x, y]. The set of solutions of S in F is the set

V (S) := {(g1, g2) ∈ F× F |S(g1, g2) = 1},

which is traditionally called the algebraic variety associated with S.

We assume that S has at least one solution in F. Then ⟨⟨S⟩⟩ ∩ F = 1 and hence F is
naturally embedded into F[x, y]/⟨⟨S⟩⟩. Moreover, the images of x, y in F[x, y]/⟨⟨S⟩⟩ satisfy
S. But we are looking for solutions in F and not in larger groups.

(Think on polynomial equations over a field K. They also can be considered as elements of K[x].

Solutions of irreducible f(x) ∈ K[x] live in the field K[x]/⟨f(x)⟩ which contains K.)

• We will work in the category of F-groups and F-homomorphisms. Thus, for two
F-extensions F 6 G1 and F 6 G2, we will consider F-homomorphisms G1 → G2, i.e.
homomorphisms which are identity on F. The set of all F-homomorphisms from G1 to G2

is denoted by HomF(G1, G2).

• There is a one-to-one correspondence

HomF
(
F[x, y]/⟨⟨S⟩⟩, F

)
←→ V (S).

• Recall Hilbert’s Nullstellensatz. Let f ∈ K[x] and K be an algebraic closure of K.
By definition, Rad(f) is the set of all polynomials g ∈ K[X] which vanish on all solutions
of f(x) in K. This set is an ideal in K[x]. Hilbert’s Nullstellensatz says that

Rad(f) = ⟨g ∈ K[x] | ∃n ∈ N : gn = f⟩.

• For a system of equations S ⊂ F[x, y], we define the radical Rad(S) in exactly the
same way: Let Rad(S) be the set of all equations g ∈ F[x, y] which vanish on all solutions
of S. Nobody knows how sounds Hilbert’s Nulstellensatz in this situation.

• Since V (S) = V (Rad(S)), we have one-to-one correspondences:

V (S) ←→ HomF
(
F[x, y]/⟨⟨S⟩⟩, F

)
←→ HomF

(
F[x, y]/Rad(S), F

)
.

Clearly, if V (S) ̸= ∅, then F ∩Rad(S) = 1 and hence F embeds into F[x, y]/Rad(S).
And if V (S) = ∅?
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• We introduce the following important definitions:

(1) The group FR(S) := F[x, y]/Rad(S) is called the coordinate group of S.

(2) The algebraic variety V (S) is called reducible if it a union V (S) = V (S1)∪V (S2) of
algebraic varieties with V (S1) ̸= V (S) and V (S2) ̸= V (S).

(3) An F-group G is called fully residually F if for every finite subset P ⊂ G there exists
f ∈ HomF(G,F) such that the restriction of f to P is injective.

(In particular, such groups are limit groups.)

The following theorems are of general character.

Theorem 1.4. [1] S is irreducible if and only if FR(S) is fully residually F.
Theorem 1.5. [1] Either FR(S) is fully residually F, or

V (S) = V (S1) ∪ · · · ∪ V (Sn),

where each V (Si) is irreducible and there are canonical epimorphisms

πi : FR(S) → FR(Si)

such that each f ∈ HomF
(
FR(S),F

)
factors through some πi.

The following is a slight modification of Corollary 1.6 from the paper of Touikan. He
gives it without proof. It seems that the condition “fully residually F” can be replaced by
“residually F”.

Proposition. If F[x, y]/⟨⟨S⟩⟩ is fully residually F, then ⟨⟨S⟩⟩ = Rad(S).

Proof. It is a general fact that each F-homomorphism φ : F[x, y]/⟨⟨S⟩⟩ → F factors
through F[x, y]/Rad(S). Suppose that there is g ∈ Rad(S) \ ⟨⟨S⟩⟩. By assumption, there
exists an F-homomorphism φ : F[x, y]/⟨⟨S⟩⟩ → F such that φ(g⟨⟨S⟩⟩) ̸= 1. This contradicts
the fact that φ factors through F[x, y]/Rad(S). 2

2 Splittings of groups. Moves of splittings

2.1 Fundamental groups of graphs of groups

This subsection is written to make notation precise. All material can be found in the
classical book of J.-P. Serre “Trees”. Touikan is not accurate in defining the fundamental
groups of graphs of groups that can lead to misunderstanding later. Therefore we want
to recall precise definitions.

(A) (A graph of groups G(Γ))
Let Γ be a connected directed graph with the set of vertices V Γ and the set of edges EΓ.

The graph is directed in the sense that there are functions i : EΓ→ V Γ and t : EΓ→ V Γ
corresponding to the initial and terminal vertices of edges. To Γ we associate the following:

• a vertex group Gv for each v ∈ V Γ and an edge Ge for each e ∈ EΓ;

• monomorphisms σe : Ge → Gi(e) and τe : Ge → Gt(e) for each edge e ∈ EΓ.
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The maps σe and τe are called boundary monomorphisms and the images of these maps
are called boundary subgroups. The set of these data (i.e the graph Γ, the vertex groups,
the edge groups, and the boundary morphisms), denoted G(Γ), is called a graph of groups.

(B) Let T be a maximal tree in Γ. The fundamental group π1(G(Γ), T ) is constructed
in two steps:

(1) We take the free products of all vertex groupsGv, v ∈ V Γ(= V T ), and put additional
relations for each e ∈ T :

σe(g) = τe(g), g ∈ Ge.

In other words, the resulting group is the amalgamated product of vertex groups
of Γ, where the amalgamation goes through the edge groups Ge, where e ∈ T .

(2) For each e ∈ EΓ \ ET , we add the stable letter te and the following relations:

t−1
e (σe(g))te = τe(g) g ∈ Ge.

In other words, we take consecutive HNN extensions of the group obtained in (1).

We say that G splits as the fundamental group of a graph of groups if there is an
isomorphism φ : G→ π1(G(Γ), T ). The data D = (G,G(Γ), T, φ) are called splitting data
of G.

2.2 How changes the isomorphism φ
if we choose another maximal tree T in Γ

Example. For brevity we write α instead of σe and β instead of τe. Other notations below
are also unusual, but clear from the context. Maximal trees are colored in blue.

G1

G2 G3

G4

t1

t2
G1

G2 G3

G4

s1 s2

Figure 1.

Let T1, T2 be the distinguished maximal trees in Γ. Then

π1(G(Γ), T1) = ⟨G1, G2, G3, G4, t1, t2 | α(G12) = β(G12), α(G23) = β(G23), α(G34) = β(G34),

t−1
1 α(G13)t1 = β(G13), t

−1
2 α(G14)t2 = β(G14)⟩,

π1(G(Γ), T2) = ⟨G1, G2, G3, G4, s1, s2 | s−1
1 α(G12)s1 = β(G12), α(G23) = β(G23),

s−1
2 α(G34)s2 = β(G34), α(G13) = β(G13), α(G14) = β(G14)⟩.

The following map is an isomorphism:

ψ : π1(G(Γ), T1)→ π1(G(Γ), T2), G1 7→ s−1
1 G1s1, G2 7→ G2, G3 7→ G3, G4 7→ s2G4s

−1
2 ,

t1 7→ s−1
1 , t2 7→ s−1

1 s−1
2 .
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In the general case an isomorphism ψ : π1(G(Γ), T1)→ π1(G(Γ), T2) can be defined as
follows:

• Choose an arbitrary v ∈ V Γ (in the above example, I choose v2). For two vertices
u,w ∈ V Γ let [u,w] be the unique reduced path in T1 from u to w.

• To every edge e ∈ EΓ, we associate the closed path [v, i(e)] · e · [t(e), v]. Let
e1, e2, . . . , ek be the consecutive edges of this path which do not lie in T2. Then
we send te to te1te2 . . . tek .

• To every vertex w ∈ V Γ, we associate the path [v, w]. Let e1, e2, . . . , ek be the
consecutive edges of this path which do not lie in T2. Then we sendGw to te1te2 . . . tek ·
Gw · (te1te2 . . . tek)−1.

2.3 Elementary moves on graphs of groups

There are the following elementary moves:

(1) Conjugation of boundary monomorphisms (or local conjugation)

A ∗C B  ACaBa,

⟨A, t | t−1C1t = C2⟩ ⟨A, t1 | t−1
1 Ca

1 t1 = C2⟩, where t1 = a−1t.

(2) Slide

(3) Folding

(4) Collapse an edge
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These moves are well known. Formal definitions can be found in the paper of Touikan.
Suppose that G(Γ2) is obtained from G(Γ1) by an elementary move. It is a useful exercise
to establish an isomorphism between π1(G(Γ1), T1) and π1(G(Γ2), T2) for appropriately
chosen maximal trees T1 and T2.

3 JSJ splittings

3.1 Theorem of Rips and Sela

Definitions 1.14 and 1.15.

(1) A splitting of G as the fundamental group of a graph of groups is called cyclic if all
the edge groups are infinite cyclic groups.

(2) Let G = π1(G(Γ), T ). A subgroup H 6 G is called elliptic if H is conjugate into a
vertex subgroup of G; otherwise H is called hyperbolic.

(3) A splitting of G is called elementary if the underlying graph is either a segment or a
loop with one edge. In this case G is an amalgamated product or an HNN-extension.

(4) Suppose that G has two elementary splittings D and D′, say

G = A ∗
C1=C2

B and G = ⟨A′, t | t−1C ′
1t = C ′

2⟩.

We say that D is elliptic in D′ if the edge group C1 is elliptic in D′, i.e. if C1 is
conjugate into A′.

(5) Let G be an F-group. A splitting φ : G→ π1(G(Γ), T ) is said to be modulo F if φ(F)
is contained in a vertex group.

Theorem 1.16.

(1) Let G be freely indecomposible modulo F and let D and D′ be two elementary cyclic
splittings of G modulo F. Then D is elliptic in D′ if and ony if D′ is elliptic in D.

(2) If D′ is hyperbolic in D, then G admits a splitting D′′ such that one of its vertex
groups Q can be identified with the fundamental group π1(S) of a punctured surface
S such that the boundary subgroups of Q correspond to the puncture subgroups.
Moreover, if ⟨d⟩ and ⟨d′⟩ are the cyclic edge subgroups from D and D′, then d and d′

are conjugate to elements q and q′ of Q = π1(S), which correspond to simple closed
loops in S.

Definition 1.17. A subgroup Q 6 G is a quadratically hanging (QH) subgroup if
there are elementary cyclic splittings D and D′ of G such that Q is a vertex group of a
new cyclic splitting that arises as in Theorem 3.1.2 (2).

Remark. Not every surface with punctures can yield a QH subgroup. By [6, Theo-
rem 3], the projective plane with puncture(s) and the Klein bottle with puncture(s) cannot
give QH subgroups. Surfaces that can give QH subgroups must admit pseudo-Anosov ho-
meomorphisms. (Why?)
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Definitions 1.18 and 1.19.

(1) A QH subgroup Q of G is a maximal QH (MQH) subgroup if Q is not properly
contained in another QH subgroup of G.

(2) Having a splitting of G with a QH vertex subgroup Q = π1(S), one can produce a
refinement of this splitting by using simple loops in S.

(3) A splitting D is called almost reduced if vertices of valency 1 and 2 properly contain
images of edge subgroups, except vertices between two MQH subgroups that may
coincide with one of the edge groups.

(4) A splitting D is called unfolded if D cannot be obtained from another splitting D′

via a folding move.

3.2 JSJ splitting of a fully residually F group

Theorem 1.20. ([7, Proposition 2.15]). Let G be a freely indecomposable modulo F
finitely generated fully residually free F group. Then there exists an almost reduced un-
folded cyclic splitting D, called the cyclic JSJ splitting of G modulo F, with the following
properties.

(1) Every MQH subgroup of G can be conjugated to a vertex group of D. Every QH
subgroup of G lies in a MQH subgroup of G. Vertex subgroups in D, which are
non-MQH, are either maximal abelian, or nonabelian (in the latter case they are
called rigid). Every non-MQH vertex subgroup is elliptic in every cyclic splitting of
G modulo F .

(2) If an elementary cyclic splitting G = A ∗C B or G = A∗C is hyperbolic in another
elementary cyclic splitting, then C can be conjugated into some MQH subgroup.

(3) Every elementary cyclic splitting G = A∗CB or G = A∗C modulo F which is elliptic
with respect to any other elementary cyclic splitting modulo F of G can be obtained
from D by a sequence of elementary moves given in Definition 1.12.

(4) If D1 is another cyclic splitting of G modulo F that has properties (1)-(3), then D1

can be obtained from D by a sequence of slidings, conjugations, and local conjuga-
tions.

Theorem 1.22. ([6, 10]) If FR(S) ̸= F and is freely indecomposable modulo F, then it
admits a nontrivial cyclic JSJ decomposition modulo F.

4 Example of a JSJ splitting

Let w(x, y) = x2y2x4y4 and u ∈ F, u ̸= 1. The following is a JSJ splitting of the group
F[x, y]/⟨⟨S⟩⟩ = F ∗

u=w(x,y)
F (x, y) modulo F:

F ∗
u=w(x,y)

(
F (x2, y2) ∗

x2
⟨x⟩

)
∗
y2
⟨y⟩.
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5 Canonical F-automorphisms of the group FR(S)
Definition 1.13. Dehn twist along an edge of a cyclic splitting is defined as follows:

• Let G = A ∗⟨γ⟩ B. We set

δ(x) =

x if x ∈ A,

xγ if x ∈ B.

• Let G = ⟨A, t | t−1γt = β⟩, γ, β ∈ A. We set

δ(x) =

x if x ∈ A,

tβ if x = t.

Definition 1.21. Suppose that FR(S) is freely indecomposable modulo F. Let D be
a cyclic JSJ splitting of FR(S) modulo F. The group ∆ of canonical F-automorphisms of
FR(S) is generated by the following:

(1) Dehn twists along edges of D or along closed simple curves in MQH subgroups;
these must fix F 6 FR(S).

(2) automorphisms of the abelian vertex groups that fix its peripheral subgroups.

6 The structure of HomF
(
FR(S),F

)
The first theorem is general and the second is special.

Theorem. Let G be a finitely generated non-free group and F be a free group. There
is a finite tree of epimorphisms (φi)i∈I with nontrivial kernels as on Figure 2 such that
• each group in this tree is a limit group with possible exception of G,
• all bottom groups are free groups,

• for any homomorphism f : G→ F, there exists a branch of epimorphisms from the
top vertex to some bottom vertex

G
ϕ1� Γ1

ϕ2� Γ2

ϕ3� . . .
ϕk� Γk

and there exist automorphisms α0 ∈ Aut(G), αi ∈ Aut(Γi), i = 1, . . . , k, such that

f = ψ ◦ αk ◦ ϕk ◦ · · · ◦ α2 ◦ ϕ2 ◦ α1 ◦ ϕ1 ◦ α0

for some homomorphism ψ : Γk → F.
G

. . .

. . . . . .

. . .
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Figure 2.

Theorem. ([6, 10]) Let G = FR(S). There is a finite tree of F-epimorphisms (φi)i∈I
with nontrivial kernels as on Figure 2 such that

• each group in this tree is of kind FR(Si) and is a limit group with possible exception
of G,

• all bottom groups are free groups of kind F ∗ F (Yi) for some finite Yi,

• for any F-homomorphism f : G → F, there exists a branch of epimorphisms from
the top vertex to some bottom vertex

G
ϕ1� Γ1

ϕ2� Γ2

ϕ3� . . .
ϕk� Γk

and there exist α0 ∈ AutF(G), αi ∈ AutF(Γi), i = 1, . . . , k, such that

f = ψ ◦ αk ◦ ϕk ◦ · · · ◦ α2 ◦ ϕ2 ◦ α1 ◦ ϕ1 ◦ α0

for some F-homomorphism ψ : Γk → F. The F-automorphisms α1, . . . , αk−1 are ca-
nonical, i.e. they appear from JSJ decompositions of Γ1, . . . ,Γk as in Definition 1.21,
and αk = id.

7 Existence of rank 2 solutions

implies residual freeness of FR(S)
Consider one equation S := w(x, y)u−1 with u ∈ F. We have S ∈ F [x, y] = F ∗ F (x, y).
We say that S has a rank n solution, if there is a solution that generates Fn.

Theorem. ([14, Lemma 2.6]) Let u ∈ F, u ̸= 1. Suppose that w(x, y) = u has a rank 2
solution in F. We set S := {w(x, y)u−1}. The group

F[x, y]/⟨⟨S⟩⟩ = F ∗
u=w(x,y)

F (x, y)

is fully residually free modulo F.
In particular, this group coincides with the coordinate group FR(S). If, additionally, w

is not primitive and not a proper power, then FR(S) is freely indecomposable modulo F,
and hence has a nontrivial cyclic JSJ splitting modulo F.

Proof. Let X,Y be a rank 2 solution. Consider the F-embedding

F ∗
u=w(x,y)

F (x, y) −→
x 7→ t−1Xt

y 7→ t−1Y t

F ∗
u=t−1ut

t−1Ft 6 ⟨F, t | t−1ut = u⟩

The latter HNN extension is fully residually free modulo F, so the embedded group too.
By the last proposition from Section 1, we have F[x, y]/⟨⟨S⟩⟩ = FR(S). The free indecom-
posability of FR(S) modulo F follows from Kurosh’s theorem. 2
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8 Swarup’s theorem on splittings of free groups

Swarup’s theorem [13] (see also [2, 3, 5, 8, 12]) describes splittings of a free group F .
They appear in a natural way. Figure 3 shows how amalgams appear from free splittings.
Similarly HNN extensions appear from free splittings.

Figure 3.

Lemma. ([14, Lemma 2.10]) Let G be a free group of rank 2. Then the only possible
almost reduced (see Def. 1.18 and 1.19) nontrivial splittings of G as the fundamental
group of a graph of groups are as follows:

(1) G is a star of groups with the central group free of rank 2 and each edge group is
nontrivial, cyclic and is a proper finite index subgroup of the associated peripheral
group.

(2) G is an HNN extension ⟨H, t | t−1pt = qn⟩, where H is free of rank 2 with free
generators p, q and n ∈ N. In particular, G = ⟨q, t⟩.

Application. ([14, Corollary 2.12]) Suppose that w ∈ F (x, y) is not primitive and
not a proper power. Let u ∈ F and suppose that w(x, y) = u has a rank 2 solution in F.
As we have seen in Section 7, the coordinate group

FR(S) = F ∗
u=w(x,y)

F (x, y)

has a nontrivial cyclic JSJ splitting modulo F. There are only three possible classes of
such splittings (see figures below). In each case the group of canonical F-automorphisms
can be computed easily.
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(1)

F u = w(x, y) F (x, y)

(2)

F u = w(x, y)

F (x, y)

(3)

F u = w(x, y)

F (x, y)

torus with boundary

It seems, that in (3) the word w(x, y) is conjugate to [x, y]±1 in F (x, y).

9 Solutions of rank 1 in the situation, where there

are also solutions of rank 2

Solutions of rank 1 for w(x, y) = u can be described easily. However, it is instructive to
describe (to parameterize) them by using Makanin-Razborov diagrams. We will do that
under the following assumption.

Assumption. Suppose that w(x, y) = u has solutions of rank 1 and of rank 2, and
that w is neither primitive nor a proper power.

Then, by Baumslag (see [14, Theorem 2.4]), u is not a proper power. Thus, there are
integers p, q such that

pσx(w) + qσy(w) = 1.

Let S = {w(x, y)u−1} and S1 = {w(x, y)u−1, [x, y]}. Clearly V (S) is strictly larger
than V (S1). Then the canonical epimorphism

θ : FR(S) → FR(S1)

has a nontrivial kernel.
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Lemma. ([14, Lemma 2.13]) Under above Assumption, FR(S1) is isomorphic to the
fully residually free group

F1 := ⟨F, s | [u, s] = 1⟩.
The F-morphism π : FR(S1) → F1 given by

π(x) = upsσy(w) = x; π1(y) = uqs−σx(w) = y,

where p, q are as above, is an isomorphism.

Proposition. ([14, Proposition 2.14]) Under above Assumption and using notation of
above Lemma, we have the following.

Consider the F-morphisms π1 = π ◦ θ : FR(S) → F1 and π2 = F1 → F given by
π2(s) = u.

(1) If FR(S) is as in (1) in Application, then V (S1) is represented by the following branch
in Diag(FR(S),F):

FR(S)
π1→

σ
y
F1

π2→ F,

where σ ∈ ∆1 is a canonical F-automorphism of F1.

(2) If FR(S) is as in (2) in Application, then V (S1) is represented by the following branch
in Diag(FR(S),F):

σ
y

FR(S)
π3→ F,

where σ ∈ ∆ is a canonical F-automorphism of FR(S) and π3 = π2 ◦ π1.

Note that FR(S) cannot be as in (3) in Application because of rank 1 solutions.

Proof. Observe that each rank 1 solution considered as an element of HomF(FR(S),F)
factors through FR(S1)

∼= F1. We use F1 instead of FR(S1) since it has clear F-morphisms
into F. 2
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