Lemma 17.2		· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c} q_{1} \\ \hline \\ q_{1} \\ \hline \\ $	$ P_{1} + P_{2} \leq \delta(q_{1} $ Then either Or^{-1}	$\begin{array}{c} \mathbf{q}_{1}, \ \mathbf{q}_{1} \ \text{are smooth and} \ \mathbf{q}_{1} + \mathbf{q}_{2} > 0 \\ \mathbf{q}_{1} + \mathbf{q}_{2} \\ \hline \\ 1 + \mathbf{q}_{2} \\ \hline \\ 1 \\ \hline \\ 1 $
· · · · · · · · · · · · · · · · · · ·		(a β-cell)
Proof Induction by $ \Delta(2) $. η_1 η_2	$\mathbf{P}_{\mathbf{I}}$	$\begin{array}{c} q_{j} \\ \hline \hline \\ \hline $
impossible since q_l is reduce \Rightarrow If $ \Delta(2) = 0$, then all 0-bon	no O-bonds between q ₁	
Now $ \Delta(2) > 0$. Corollary 16.1 gives us a 7-ce 1_{j} 1_{j} 1_{j} 1_{j} 1_{j} 1_{j} 1_{j} 1_{j} 1_{j}	Π - R-cell P sum of contiguity	$\sqrt{\text{degrees}} > \overline{2} = -2^{\circ}$ $ 2^{4} - \text{cases:}$

one submap	vertical	horizontal		two corners
One submap smooth f_1 f_1 f_1 f_1 f_2 f_1 f_2 f_3 f_4 f_4 f_5 f_4 f_5 f_4 f_5 f		(_इ रूद्र) L 15	 contradiction 5.6 ⇒ S₁ ± S₂ < induction 	$\mathbf{t}_{\mathbf{a}} = 1 - \mathbf{x}$
Vertical $($	ͳ <u>ͺ</u> , ₉₁) +	$(\Pi, \Gamma_2, \eta_1) > \overline{\alpha}$	≥ B ⇒ πis	αß-cell
≤ \$1000000000000000000000000000000000000	[−] ₹ <u>₹</u> −₿	<(T, r, p,)+(`)≤B, otherwise⊺ ∏, Γ2, P2)	T is a β-cell
Theorem 17.1 applied ț _i + է <u>s</u> + 4 ζ		ives: + ビ」) > 声(を-声	ā) ∂∏ ⇒	
$ t_1 + t_2 > (\beta(\beta - 2) - 4\zeta) \partial \pi $				

$\begin{array}{c} \begin{array}{c} \eta_{1} \\ \hline p_{1} \\ \hline \downarrow \\ \downarrow \\ \downarrow \\ \hline r_{1} \\ \hline r_{1} \\ \hline r_{1} \\ \hline \eta_{2} \end{array} \end{array} \xrightarrow{\left\{ \zeta_{1} \mathcal{T} \right\}} \overline{p}_{2} \\ \hline F \\ \hline P_{1} \\ \hline P_{2} \\ \hline P_{1} \\ \hline P_{1} \\ \hline P_{2} \\ \hline P_{1} \hline \hline P_{1} \\ \hline P_{1} \hline \hline$				
(戸(ヨーシ)-4ζ)10TT + 戸1+ 戸1+ 戸1+ 戸1 <1/2)(19,1+191) アーデー ー				
$(\overline{P}(B-2)-4\zeta) \partial\Pi +P<\frac{2}{\overline{P}}(P+(4\zeta+1) \partial\Pi)$ - contradiction				
Corner				
$\begin{array}{cccc} u & t^{2} & v & 9_{1} \\ \hline u & \hline F_{7} & (\Pi, \Gamma_{p}, P_{1}) < \overline{\sigma} & (q_{1} \text{ is smooth}) \Rightarrow \\ \hline u & \hline F_{7} & (\Pi, \Gamma_{p}, P_{1}) > \overline{\sigma} - \overline{\sigma} \Rightarrow \\ \hline t_{1} & \hline F_{p} & H_{1} & H_{2} & H_{1} & H_{2} &$				
$ \vec{P}_1 \leq \vec{D}_1 + (\vec{D}_1 + \vec{D}_2)/\partial \vec{T}_1 $ - estimate on the new left side				
ℙι ー ℙ = IჀ +(էュ +Iଘ –IℙI>Iଘ +(アース-2β)[Ͽ∏[–(୪+ユϛ)/ͽͲ = Iଘ +(½-ペーユβ-2૪-2ζ) ϿΠ				
New upper side is v. Estimate on the difference:				
$ \eta_{i} - \nu = \nu_{i}t^{2} < \frac{1}{\beta} \left(\overline{\mu} + (2\zeta + \lambda + \overline{\lambda}) \partial \Pi \right) \implies$				
୪()q)−/ν)<ਵੱiūi+☆(2ζ+γ+⋥) ∂Π) ⇒				
$\mathcal{D}(q_i - \nu_i) < p_i - \overline{p_i} $				
Combining with hypothesis $ P_1 + P_2 \leq \mathcal{Y}(q_1 + q_2)$:				
Ē1+1₽21≤४(101+1921)				
Now remove the corner and apply unduction.				
· · · · · · · · · · · · · · · · · · ·				

Two corners					
$\overline{\overline{P}}_{1}$ \overline{P}_{2} \overline{P}_{1} \overline{P}_{2} \overline{P}_{3} \overline{P}_{3} \overline{P}_{3}	$\begin{aligned} (\Pi, \Gamma, P_{I}) > \overline{\nabla} - \overline{\beta} &= \beta - \overline{\nabla}, \text{otherwise } \Pi \text{ is a } \beta \text{-cell} \\ t_{2} > \frac{\beta - \overline{\Delta}}{ +2\beta } \partial \Pi^{-} (by \text{ Lemma 15.4, since } \overline{\beta} - \overline{\nabla} > \underline{c}) \\ & \left(\frac{1}{ +2\beta } > 1 - 2\beta\right) \\ P_{I} - \overline{P}_{I} > \overline{P} + \overline{P} + \left((1 - 2\beta)(\beta - \overline{\sigma}) - 2\zeta - \overline{c}\right) \partial \Pi \end{aligned}$				
q ₁ + _{q₂} -(q̄ ₁ +	+ ¶ ₂) ≤ / _Ϸ ((+4ζ) ∂Π + ϝ + ϝ) _{τ17,1} μ =>				
୪ (q₁ + _{9₂} –(ଵ୕ୄ୲	+୲⋥⋔)≤≌(((++4⋩) ∂π1+ ╒ + ╒1)				
$\delta'(q_1 + q_2 -$ Remove the region on the left of	\Rightarrow $-(\overline{q}_{1} + \overline{q}_{2})) < P_{1} - \overline{P}_{1} $ and use induction.				
	. .				
	. .				