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This is a short introduction to limit groups based on papers [1] and [2]. The math-
ematics in this area is really nice, but might be difficult for non-experienced students.
Therefore, I decided to write a self-contained text that could be helpful for them (the text
will be extended).

1 Motivation

Example 1.1 Find all solutions of the following equations in the free group F (a, b):

1) [a, b][x1, x2] = 1,

2) x21x
2
2x

2
3 = 1.

Let F be a free group and let a1, . . . , ak be some elements of F. An equation in F with
constants a1, . . . , ak and unknowns x1, . . . , xn is an expression of kind

W (a1, . . . , ak, x1, . . . , xn) = 1, (1)

where W is a word in k + n variables. A solution of this equation in F is a tuple of
elements (X1, . . . , Xn) in F such that W (a1, . . . , ak, X1, . . . , Xn) = 1.

To describe all solutions, it is convenient to reformulate this problem in terms of
homomorphisms. Let F (x1, . . . , xn) be the free group with the basis x1, . . . , xn and let

G := 〈F ∗ F (x1, . . . , xn) |W (a1, . . . , ak, x1, . . . , xn)〉.
Proposition 1.2 There is a bijection between the set of solutions of the equation (1) in
F and the set of homomorphisms G→ F sending ai to ai for i = 1, . . . , k.

Proof. If (X1, . . . , Xn) is a solution of this equation, then there is a homomorphism
φ : G → F sending ai to ai and xj to Xj. Conversely, if φ : G → F is a homomorphism
sending ai to ai, then (φ(x1), . . . , φ(xn)) is a solution of this equation. 2

We formulate a weaker version of this proposition.

Proposition 1.3 There is a bijection between the set of solutions of the equation

W (x1, . . . , xn) = 1

in F and the set of homomorphisms G→ F, where

G := 〈F ∗ F (x1, . . . , xn) |W (x1, . . . , xn)〉.
Therefore the following problem (formulated for an arbitrary f.g. group G) is important.
Problem. Given a finitely generated group G, describe the set Hom(G,F).

2 A description of Hom(G,F)
If G = F (x1, . . . , xn) is a free group of rank n, then there is a natural bijection

Hom (G,F)→ F× . . . ,×F︸ ︷︷ ︸
n

.

Therefore in the following theorem we consider the case, where G is not free.
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Theorem 2.1 ([Kh,M], [Se]) Let G be a finitely generated non-free group and F be a
free group. There is a finite collection of epimorphisms {pi : G� Γi} such that
• each Γi is a limit group1 and each Ker (pi) is nontrivial,
• for any homomorphism f : G→ F, there exists α ∈ Aut(G) such that f ◦α factors2

through some pi.

Gα

p1 . . . pi . . . pn

Γ1 Γi Γn

F

fϕ

∀f ∃α ∃i ∃φ : f = φ ◦ pi ◦ α
Example 2.2 Let G = Zn = 〈y1, . . . , yn〉. Let p1 : Zn → Z be the projection to the
first coordinate. We will show that, for each homomorphism f : Zn → F, there exists
α ∈ Aut(Zn) such that f ◦ α factors though p1.

Zn = ⟨y1, . . . , yn⟩α

p1

⟨y1⟩

F

fϕ

Since all f(yi) commute, they lie in the same maximal cyclic subgroup of F.
Thus, there exists a ∈ F such that f(yi) = a`i for some `i. We write `i = dk1, where

d = g.c.d.(`1, . . . , `n) and 1 = g.c.d.(k1, . . . , kn).

• Define α : Zn → Zn by the rule
y1 → k11y1 + · · ·+ k1nyn

. . .

yn → kn1y1 + · · ·+ knnyn,

where k11 = k1, . . . , kn1 = kn and the remaining kij are chosen so that the matrix
(kst) is invertible.

• Define φ : Z = 〈y1〉 → F by the rule y1 7→ ad. It is easy to check that f = φ ◦ p1 ◦α.

1Several definitions of limit groups will be given later.
2One says that a homomorphism ϕ : G → A factors through a homomorphism ψ : G → B if there

exists a homomorphism θ : B → A such that ϕ = θ ◦ φ.
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Example 2.3 Let Sg be a closed orientable surface of genus g. We consider Sg as a
sphere with g handles. We fix a retraction Sg → Rg, where Rg is a rose with g petals
embedded to Sg. Let p1 : π1(Sg, v) → π1(Rg, v) be the induced epimorphism, where v is
the unique vertex of the rose. We can choose the objects so that the following will be
valid:

π1(Sg, v) = 〈x1, y1, . . . , xg, yg |
g∏
i=1

[xi, yi]〉;

π1(Rg) = F (x1, . . . , xg);

p1 : π1(Sg, v)→ π1(Rg, v)
xi 7→ xi
yi 7→ 1

Then for each homomorphism f : π1(Sg, v) → F, there exists α ∈ Aut(π1(Sg, v)) such
that f ◦ α factors though p1.

π1(Sg, v)α

p1

π1(Rg, v)

F

fϕ

Consider the case g = 2 in details:

y1 x1 y2 x2
v

Figure 1. We use notation [a, b] = a−1b−1ab.

π1(S2, v) = 〈x1, y1, x2, y2 | [x1, y1][x2, y2]〉;
π1(R2, v) = F (y1, x2);

p1 : π1(S2, v)→ π1(R2, v)
x1 7→ 1
y1 7→ y1
x2 7→ x2
y2 7→ 1
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3 Limit groups (first definition)

Definition 3.1 Let G be a finitely generated group. A sequence of homomorphisms

(fi : G→ F)i∈N

is called stable if, for all g ∈ G, the sequence of elements {fi(g)} is eventually always 1,
or eventually never 1.

g1 g2 g3 g4 g5 . . .
f1 ∗ ∗ ∗ ∗ ∗ . . .
f2 ∗ ∗ ∗ ∗ ∗ . . .
f3 ∗ ∗ ∗ ∗ ∗ . . .
f4 ∗ ∗ ∗ ∗ ∗ . . .
f5 ∗ 6= 1 ∗ 1 ∗ . . .
f6 1 6= 1 ∗ 1 6= 1 . . .
f7 1 6= 1 1 1 6= 1 . . .
f8 1 6= 1 1 1 6= 1 . . .
f9 1 6= 1 1 1 6= 1 . . .
. . . . . . . . . . . . . . . . . . . . .

∀g ∈ G ∃n0 ∈ N : (∀n > n0 fn(g) = 1) ∨ (∀n > n0 fn(g) 6= 1).

Definition 3.2 (stable kernels and limit groups)

1) The stable kernel of a stable sequence (fi) of homomorphisms from Hom(G,F) is

Ker
−→

(fi) := {g ∈ G | fi(g) = 1 for almost all i}.

2) A finitely generated group Γ is called a limit group if there exists a finitely generated
group G and a stable sequence (fi) in Hom(G,F) such that Γ ∼= G/Ker

−→
(fi).

4 Residually free and ω-residually free groups

Definition 4.1 1) A finitely generated group G is residually free if, for any 1 6= γ ∈ G,
there exists f ∈ Hom(G,F) such that f(γ) 6= 1.

2) A finitely generated group Γ is ω-residually free if for each n ∈ N and for each
collection of n nontrivial elements γ1, . . . , γn ∈ G, there exists f ∈ Hom(G,F) such that
f(x1), . . . , f(xn) are nontrivial.

We reformulate 2) in a compact way:
2′) A finitely generated group G is ω-residually free if, for every finite subset X ⊂ G,

there exists f ∈ Hom(G,F) such that f |X is injective.

Example 4.2 1) Finitely generated free groups are ω-residually free.
2) Finitely generated free abelian groups are ω-residually free.

Indeed, let A = Zk and let a1, . . . , an ∈ A \ {0}. Choose b ∈ A so that all scalar products
(ai, b) are nonzero. Then the homomorphism A→ Z, a 7→ (a, b) satisfies Definition 4.12).
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Proposition 4.3 Every subgroup of an ω-residually free group is ω-residually free.

Definition 4.4 A group G is called commutative transitive if the following holds:

∀x, y, z ∈ G \ {1} ([x, y] = 1 ∧ [y, z] = 1) ⇒ ([x, z] = 1).

Proposition 4.5 The following implications are valid:

G is ω-residually free

⇓ ⇓

G is residually free G is commutative transitive

⇓ ⇓
G is torsion free Every non-trivial abelian subgroup of G is con-

tained in a unique maximal abelian subgroup

Example 4.6 The group F2 × Z is residually free, but not ω-residually free.

Theorem 4.7 The only 2-generated noncyclic residually free groups are F2 and Z2.

Proof. Let G = 〈x, y〉 be a noncyclic residually free group. If G is non-abelian, then
[x, y] 6= 1. Then there exists a homomorphism f : G → Fn with f([x, y]) 6= 1. Then
〈f(x), f(y)〉 ∼= F2. Hence G ∼= F2. If G is abelian, then (since G is torsion free) G ∼= Z2.2

Proposition 4.8 Every ω-residually free group G is a limit group.

Proof. Let G = 〈g1, . . . , gk〉. Let Bn ⊂ G be the ball of radius n about the identity in
the corresponding word metric:

Bn = {g ∈ G | g = x1 . . . x`, where all xi ∈ {g±1 , . . . , g±k } and ` 6 n}.

We have G = ∪
n>1

Bn. Since G is ω-residually free, there is a homomorphism fn : G → F
that is injective on Bn. Then the sequence (fn)n∈N is stable and Ker

−→
(fn) = 1. Hence

G = G/Ker
−→

(fn) is a limit group. 2

5 Limit groups are ω-residually free

Let

G
φ
� H

be an epimorphism of groups, and let F be a third group. Then φ determines the map

φ̃ : Hom(H,F ) → Hom(G,F ),

ψ 7→ ψ ◦ φ.

The map φ̃ is injective, but not necessarily surjective.
We say that α ∈ Hom(G,F ) lifts to ψ ∈ Hom(H,F ) if α = ψ ◦ φ.
We say briefly that α ∈ Hom(G,F ) lifts if it lifts to some ψ ∈ Hom(H,F ).
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Lemma 5.1 A homomorphism α ∈ Hom(G,F ) lifts if and only if Ker(φ) ⊆ Ker(α).

Theorem 5.2 Let F be a finitely generated free group and let G1

φ1
� G2

φ2
� G3

φ3
� . . .

be an infinite sequence of epimorphisms between finitely generated groups. Then the se-
quence

Hom(G1,F)
φ̃1←− Hom(G2,F)

φ̃2←− Hom(G3,F)
φ̃3←− . . .

eventually stabilizes, i.e., φ̃n is a bijection for all sufficiently large n.

Proof.
Step 1. We embed F into SL2(Z). Indeed, F is embeddable into F (a, b), and F (a, b) is

embeddable into SL2(Z) by a 7→ A, b 7→ B, where

A =

(
1 2
0 1

)
, B =

(
1 0
2 1

)
.

It suffices to prove the theorem for SL2(Z) instead of F.

Step 2. Let G be a finitely generated group. We describe all homomorphisms G→ SL2(Z)
as follows. Since G is finitely generated it has a countable presentation:

G = 〈g1, g2, . . . , gn | rj(g1, . . . , gn) = 1, (j ∈ N)〉.
Let

Ai =

x(i)11 x
(i)
12

x
(i)
21 x

(i)
22


be some matrices from SL2(Z), i = 1, . . . , n. The map gi 7→ Ai can be continued to
a homomorphism G→ SL2(Z) if and only if

rj(A1, . . . , An) = E

for all j ∈ N, where E is the identity matrix in SL2(Z). This gives infinitely many
polynomial equations, where the polynomials belong to the ring

R := Z
[
x
(1)
11 , x

(1)
12 , x

(1)
21 , x

(1)
22 , . . . , x

(n)
11 , x

(n)
12 , x

(n)
21 , x

(n)
22

]
.

These polynomials generate an ideal I. Zeros of this ideal are in 1-1 correspondence
with homomorphisms G→ SL2(Z).

Step 3. For G = Gi, we denote this ideal by Ii. Since Gi+1 can be obtained from Gi by
putting new relations, we have Ii ⊆ Ii+1. By Hilbert’s Basissatz3 the chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ . . .

stabilizes from some moment n. Then, for all i > n, each homomorphism Gi →
SL2(Z) lifts to a homomorphism Gi+1 → SL2(Z). This proves that φ̃i is a bijection
for i > n. 2

3Definition. A ring K is called noetherian, if each non-decreasing chain of ideals in K stabilizes.
Equivalently: A ring K is called noetherian, if each ideal in K is finitely generated.

Hilbert’s Basissatz. If K is a noetherian Ring, then K[X] is too.
Corollary. If K is noetherian, then each (infinite) system of polynomial equations over K is equivalent

to some finite subsystem.
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Theorem 5.3 Every limit group is ω-residually free.

Proof. Let Γ be a limit group. Then there exist a finitely generated group G and
a stable sequience of homomorphisms F = (fi : G → F)i∈N such that Γ = G/Ker

−→
(fi).

Let φ : G � Γ be the natural epimorphism with the kernel Ker
−→

(fi). We enumerate all

elements of this kernel:
Ker
−→

(fi) = {r1, r2, . . . }

and set Gi := G/〈〈r1, r2, . . . , ri〉〉. Then we have the chain of natural epimorphisms:

G
φ0
� G1

φ1
� G2

φ2
� . . .�Γ.

Step 1. We show that for each 1 6= γ ∈ Γ, there exists ψ ∈ Hom(Γ,F) with ψ(γ) 6= 1.
For that, we choose a preimage γ̃ of γ in G and note the following:

• Since γ 6= 1, we have γ̃ /∈ Ker
−→

(fi).

• Since γ̃ /∈ Ker
−→

(fi), we have fi(γ̃) 6= 1 for almost all i.

• Since r1 ∈ Ker
−→

(fi), we have r1 ∈ Kerfi for almost all i.

By Lemma 5.1, these fi lift to homomorphisms from G1 to F.

• More general, for each n ∈ N, we have {r1, . . . , rn} ⊂ Kerfi for almost all i.

Lemma 5.1 implies that these fi lift to homomorphisms from Gn to F.

• By Theorem 5.2, there exists n such that each homomorphism from Gn to F lifts to a
homomorphism from Gn+1 to F and further.

All this implies that almost all fi : G→ F lift to some homomorphisms ψi : Γ→ F. Then
ψi(γ) = ψi(φ(γ̃)) = fi(γ̃) 6= 1 for almost all i. In other words, ψi(γ) 6= 1 for a co-finite
subset of indices i in N.

Step 2. To show that Γ is ω-residually free, we must show that for every finite subset {γ1, . . . , γk} ⊂
Γ \ {1}, there exists ψ ∈ Hom(Γ,F) such that {ψ(γ1), . . . , ψ(γk)} ⊂ F \ {1}. This follows
from Step 1 and from the fact that the intersection of finitely many co-finite subsets in N
is co-finite. 2

Theorem 5.4 A sequence of epimorphisms G1

φ1
� G2

φ2
� G3

φ3
� . . . between residually

free groups eventually stabilizes, i.e. φn are isomorphisms for all sufficiently large n.

Proof. Suppose Ker(φi) 6= 1. Take x 6= 1 from Ker(φi). Then there is a homomorphism
f : Gi → F with f(x) 6= 1. Then f cannot be lifted to a homomorphism from Gi+1 to F.
This contradicts to Theorem 5.2. 2

Lemma 5.5 Every tree that contains infinitely many vertices, each having finite degree,
has at least one infinite simple path.

Using Theorem 5.4 and this lemma, one can deduce the following extended version of
Theorem 2.1.
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Theorem 5.6 Let G be a finitely generated non-free group and F be a free group. There
is a finite tree of epimorphisms with nontrivial kernels as on Figure 2 such that

• each group in this tree is a limit group with possible exception of G,

• all bottom groups are free groups,

• for any homomorphism f : G→ F, there exists a branch of epimorphisms from the
top vertex to some bottom vertex

G
φ1
� Γ1

φ2
� Γ2

φ3
� . . .

φk
� Γk

and there exist automorphisms α0 ∈ Aut(G), αi ∈ Aut(Γi), i = 1, . . . , k, such that

f = ψ ◦ αk ◦ φk ◦ · · · ◦ α2 ◦ φ2 ◦ α1 ◦ φ1 ◦ α0

for some homomorphism ψ : Γk → F.

G

. . .

. . . . . .

. . .

Figure 2

6 Constructible limit groups

Definition 6.1 A generalized abelian decompositon of a group G is a finite graph of
groups decomposition of G with abelian edge groups in which some of the vertices are
designated quadratically hanging (abbreviated QH), some others are designated abelian,
and the remaining are designated rigid, and the following holds:

• A QH-vertex group is the fundamental group of a compact surface S with boundary
and the boundary components correspond to the incident edge groups (they are all
infinite cyclic). Further, S is a torus with 1 boundary component (in this case
χ(S) = −1) or χ(S) 6 −2.

• An abelian vertex group A is abelian Let P (A) be the subgroup of A generated by
incident edge groups. The subgroup P (A) := {a ∈ A | ∃n(a) : an(a) ∈ A} is called
the peripheral subgroup. It is easy to understand that there exists A0 such that
A = A0 ⊕ P (A).
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Definition 6.2 We define a hierarchy of finitely generated groups. If a group belongs to
this hierarchy it is called a constructible limit group (abbreviated CLG).

Level 0 of the hierarchy consists of finitely generated free groups.
Level 6 n+ 1 consists of groups G for which one of the following holds:

1) G has a free product decomposition G = G1 ∗G2 with G1 and G2 of level 6 n.

2) G has a homomorphism ρ : G→ G′ with G′ of level 6 n and
G has a generalized abelian decomposition which satisfies the following properties:

• For each edge group E at least one of the images of E in a vertex group of
the one-edged splitting induced by E is a maximal abelian subgroup.

• The image of each QH-vertex group is a non-abelian subgroup of G′.

• ρ is injective on each edge group E.

• ρ is injective on the peripheral subgroup of each abelian vertex group.

• ρ is injective on the envelope B̃ of each rigid vertex group B.

(The envelope B̃ is defined by first replacing each abelian vertex group with its

peripheral subgroup and then letting B̃ be the subgroup of the resulting group
generated by B and by the centralizers of incident edge-groups.)

Example 1. A free abelian group of rank n is a CLG of level n− 1.
Example 2. The fundamental group of a closed surface S with χ(S) 6 −2 is a CLG

of level 1.
Example 3. Let w be an element of a free group F which is not a nontrivial power

of another element. Let G be the double of F along 〈w〉, i.e. G = F ∗Z F , where the
generator 1 of Z is identified with w in both copies of F . Then G is a CLG of level 1.

Example 4. Let S be the space obtained from the circle by attaching to it 3 surfaces
with one boundary component, with genera 1,2,3. Then π1(S) is a CLG of level 2.

�� �
�� �

�� ��� �

1

Theorem 6.3 The class of constructible limit groups coincides with the class of limit
groups.
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7 R-trees

Will be extended.
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